Acoustic Wave Propagation and Scattering in the Pipe with Uncertainties

Yicheng Yu

University of Sheffield

Pipebóts

In collaboration with

UNIVERSITY^{OF} BIRMINGHAM

Supported by

Engineering and Physical Sciences Research Council

Outline

- Partially filled water pipe
- Pipe wall roughness
- Scattering due to blockage:
 - detection and localization

Outline

- Partially filled water pipe
- Pipe wall roughness
- Scattering due to blockage:
 - detection and localization

Acoustic wave modes in pipes

Dispersive curve of acoustic waves in partially filled sewer pipe: split of non-axisymmtric modes

Dispersive curve of acoustic waves in partially filled sewer pipe: axisymmetric mode shapes (first axisymmetric mode) and dispersive curves

Dispersive curve of acoustic waves in partially filled sewer pipe: analytical model

Outline

- Partially filled water pipe
- Pipe wall roughness
- Scattering due to blockages in the pipe
- Blockage detection and localization

Rough surface

• Statistically 1D rough surface

$$\overline{\eta(x)} = \int_{-\infty}^{+\infty} \eta(x) w(\eta, x) \mathrm{d}\eta = 0$$

- $\eta(x)$ random function
- $\circ \ \ \text{Gaussian pdf}$

$$w(\eta, x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\eta^2}{2\sigma^2}\right)$$

Small perturbation theory

• Deterministic p_a and random p_r components

$$p = p_a + p_r$$

with

$$\overline{p} = p_a$$
 and $\overline{p}_r = 0$

• Small perturbation

$$\epsilon = rac{\sigma}{h} << 1 \quad ext{and} \quad h \sim L$$

with

L - characteristic wavelength along waveguide axis

Reflection (coherent part) and scattering of an acoustic wave incident a rough surface. By Masetti et al

Fourier transform

•
$$\hat{F}(z,\xi) = \int_{-\infty}^{+\infty} F(x,z) \mathrm{e}^{-\mathrm{i}\xi x} \mathrm{d}x$$

• Correlation function of Gaussian distribution

$$W(x_1, x_2) = \overline{\eta(x_1)\eta(x_2)} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \eta(x_1)\eta(x_2)w(\eta_1, x_1; \eta_2, x_2)\mathrm{d}\eta_1\mathrm{d}\eta_2,$$

 $h+\eta(x)$

 $\lim_{|x_1-x_2|\to\infty}W(x_1,x_2)=0$

with joint pdf $w(\eta_1, x_1; \eta_2, x_2) = \frac{1}{2\pi\sqrt{1 - W(x_1, x_2)}} \exp\left[-\frac{\eta_1^2 - 2W(x_1, x_2)\eta_1\eta_2 + \eta_2^2}{2(1 - W(x_1, x_2)^2)}\right]$

Wavenumber correction

- Back to dimensional variables
- M = 0, $q_0 = 0$ and $\xi_0 = k$
- Scattering backwards

$$\xi_{0,2} = \frac{\mathrm{i}}{2} \frac{\sigma^2}{h^2} k^2 \hat{W}(2k)$$

• Amplitude of the propagating plane wave (x > 0)

$$|p_a| pprox A_0 \exp(-|\xi_{0,2}|x)$$

• Correlation function and its Fourier transform

$$W(x) = e^{-x^2/l^2}$$
 and $\hat{W}(\xi) = \sqrt{\pi} l e^{-\xi^2 l^2/4}$

Surface roughness in cylindrical pipe

$$\bar{\eta}(\theta, z) = \int_{-\infty}^{\infty} \eta(\theta, z) w(\eta, \theta, z) \, d\eta = 0$$

Wavenumber correction

General equation for wavenumber

•
$$\xi = \xi_{mn} + \frac{i\sigma^2}{2R^2} \sum_{q=0}^{Q} \sum_{s=0}^{S} \frac{k_{mn} J_m(k_{mn})}{\xi_{mn} \xi_{qs}^+ f_m'(k_{mn})(1+\delta_{m0,n0,q0,s0})} \frac{J_q(k_{qs})}{J_q''(k_{qs})} \left(-qm + q^2 - \xi_{qs}^\pm \xi_{mn} + \xi_{qs}^\pm^2 - \frac{J_m''(k_{qs})}{J_m(k_{qs})} k_{qs}^2\right) \left(-qm + m^2 - \xi_{qs}^\pm \xi_{mn} + \xi_{qs}^2 - \frac{J_m''(k_{mn})}{J_m(k_{mn})} k_{mn}^2\right) \widehat{W}(m - q, \xi_{mn} - \xi_{qs}^\pm)$$

Plane wave

$$\begin{split} & \left[\frac{\xi_{00,2}}{2R^2} \left[\left[k^2 \widehat{W}(0,2k) + \frac{J_1(k_{10})}{4k\xi_{10}J_1''(k_{10})} \left(\xi_{10}{}^2 - k\xi_{10} - \frac{J_1''(k_{10})}{J_1(k_{10})} k_{10}^2 \right) (k^2 - k\xi_{10}) \widehat{W}(1,k-\xi_{10}) \right. \right. \\ & \left. + \frac{J_1(k_{10})}{4k\xi_{10}J_1''(k_{10})} \left(\xi_{10}{}^2 + k\xi_{10} - \frac{J_1''(k_{10})}{J_1(k_{10})} k_{10}^2 \right) (k^2 + k\xi_{10}) \widehat{W}(1,k+\xi_{10}) \right] \right. \\ & \left. + \frac{J_2(k_{20})}{4k\xi_{20}J_2''(k_{20})} \left(\xi_{20}{}^2 - k\xi_{20} - \frac{J_2''(k_{20})}{J_2(k_{20})} k_{20}^2 \right) (k^2 - k\xi_{20}) \widehat{W}(2,k-\xi_{20}) \right. \\ & \left. + \frac{J_1''(k_{20})}{4k\xi_{20}J_2'(k_{20})} \left(\xi_{20}{}^2 + k\xi_{20} - \frac{J_2''(k_{20})}{J_2(k_{20})} k_{20}^2 \right) (k^2 + k\xi_{20}) \widehat{W}(2,k+\xi_{20}) \right] \end{split}$$

Wave scattering

Empty pipe

Outline

- Partially filled water pipe
- Pipe wall roughness
- Scattering due to blockage:
 - detection and localization

Mode Coupling theory

$$p_{1} = p_{1i} + p_{1r} = \sum_{m,n} (a_{i,mn} e^{i\gamma_{mn}z} + a_{r,mn} e^{-i\gamma_{mn}z}) \Psi_{mn}(r,\theta) \qquad p_{3} = \frac{1}{\sqrt{2\pi}} \sum_{m,n} c_{t,mn} e^{i\gamma_{mn}(z-L)} \Psi_{mn}(r,\theta)$$
$$p_{2} = \sum_{\mu,l} b_{\mu l} \Phi_{\mu l}(x, y, z)$$

$$\iiint\limits_{V} \left[p \nabla^2 \Phi_{\mu l} - \Phi_{\mu l} \nabla^2 p + \left(k_{\mu l}^2 - k_0^2 \right) \Phi_{\mu l} p \right] dV = i \rho_0 \omega Q_S(\omega) \Phi_{\mu l}(\boldsymbol{r}_S)$$

Frequency domain: blockages

Microphone array for blockage/lateral detection on robot

Acoustic localization and mapping of the pipe

Acoustic classification of pipe features

Acoustic classification

Metric	Time domain Linear SVM	Wavelet Linear SVM	Time domain RBF SVM	Wavelet RBF SVM
Accuracy	53%	65%	78%	88%
Precision	0.571	0.686	0.829	0.886
Recall	0.625	0.615	0.806	0.912
F1 score	0.597	0.649	0.817	0.899

• Thank you!