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Why build a digital twin?

Better
understanding
of future
behaviour in
response to

More intelligent

decisions ->
high ROI

environment

Af-[ =
1= “=/\

Key questions we often seek to answer:

- What is the current state of the asset, system, or process?

- How will it perform in the future?

- How will it perform under a range of hypothetical scenarios?

- What decisions can we take that will optimise future performance?

Understanding why helps scope the appropriate methodologies and model architecture to ensure a digital twin adds
value
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Capturing and documenting connections can
become complex if you can’t measure what you

Creating a line of sight want directly...

Data Modelling approach Decisions

’
Sparse Safety Speed
Incomplete , Engineering '

software

Pnysics-based
simulation: FEA, Environmental Reputational
CFD, thermal-
hydraulics,
electrical system

Rich/Big data modelling
Operational

Domain knowledge
Can we measure the &

critical output directly?
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Real time?
Predicting the future requires some
notion of timescales.

Most classical engineering models (FEA,
CFD etc.) are too slow and can restrict the
utility of a digital twin.

Consider surrogate models:

* Physically-based reduced order
models

* Machine learning approaches

Trade-off with impact on uncertainty?
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uncertainty
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Rapid design
iterations or
optimisation
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Real-time
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It won’t be perfect

User
uncertainty

Comparing a digital twin’s predictions to reality is
essential to build confidence

Scaling Model

Agreement unlikely to be exact due to uncertainty , ;
uncertainty uncertainty

Effective validation and confidence building comes
from defining:

* The behaviour range we expect to see? Sources of
 The range we’d be surprised to see? uncertainty
An assessment of uncertainty is an essential part of

building a digital twin Initial and Numerical

boundary uncertaint
conditions !
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Use cases and case studies

Gas turbines

Wind turbines Performance &
availability

Managing

Steam turbines

Strategy Qg Assurance Jssets

PRIME

Graphite safety case

Nuclear bailer pipes
&tanks

Assurance

Additive
manufacturing
Spatial-temporal
convolutional graphs
Managing REARM
DIGITAL assets
TWINS
Forward Mounting
Base (FMB)

Agent-based
behaviour modelling
REPAIR Very
Short-term planning
rail freight

Strategy

Value of Lost Load
Rail depot modelling

Flow

Geological Disposal
Facility
CNG fleet mdelling

Fleet decarbonisation

Pandemic impact

Wind farm arrays

Emergency towing in
UK waters

Energy Neutral
Market Facilitator
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Predictive maintenance for industrial gas turbines
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Predictive maintenance for industrial gas turbines
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Predictive maintenance for industrial gas turbines

Understand how a single crystal blade degrades to provide a rigorous foundation to optimising the intervention strategy
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Predictive maintenance for industrial gas turbines

How can we relate
measurable quantities
to location of interest?
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Predictive maintenance for industrial gas turbines

Validated against a fully- Detailed CFD and FE analysis to
instrumented unit understand behaviour of hot gas path
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Predictive maintenance for industrial gas turbines

» Sufficiently accurate

* Adaptable and fast to solve

* Risk managed through
probabilistic analysis

Expensive, time
consuming and
inflexible
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Predictive maintenance for industrial gas turbines

1600

_stress (ksi)
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Predictive maintenance for industrial gas turbines

1600
1400
1200
1000
800
600
400
200

_stress (ksi)
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We can now quickly and reliably determine unit-specific blade damage from engine
monitoring data
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Predictive maintenance for industrial gas turbines

Relative Usage and Life Consumption
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Predictive maintenance for industrial gas turbines
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Advanced-Gas Cooled Reactors

Scenario

Tolerable limit for cracking

Fraction of cracked bricks

Core age
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Advanced-Gas Cooled Reactors

Limited
distortion

Challenges Solutions

Bice Averape Lambda ftimm|

Potential failure DT’s modelling measurements
point cannot be and data chain
monitored predicts Power Level
dlreCtly failure pomt Modelled Modelled Sl\:lrodellenci Surrogate Modelled Failure
Neutron Dose Oxidation rate . essay Model Cracking Probability
. Lirftias Distortion
- Aggregation of Measured
Limited additional Temperature
measurements data sources o
X Limited
into DT oxidation

measurements

Model 100%
Inherent incorporated
. i Average
uncertainty and quantified components Strongest
ail components

do not fail within
foreseeable future

uncertainty

50% \

First failures

Percentile of Keyway Root Cracks

Proportion of Cracked Bricks

DT uses seen amongst
Expensive-to-run efficient e mponents
physical models surrogate \
; | ; | 0%
models 13 14 15 16 Cme\;umuw;svm 19 20 21 Bumup

Probabilistic forecasts suggest period between detectable cracking and safety limit
Approach successful and extended generation significantly — many times ROI
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Understanding flight operations on an aircraft carrier
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A simulation and agent-based approach

1000
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‘LV Predict’: predicting future condition of an electrical power network

Benefits

How can we predict
the condition of - Asse.t T
underground Low Integrity understanding of LV
Voltage (LV) cables? cable degradation

Innovative
data sources

Provide insight to
maintenance planning

Data science

- ' . Understand how
Visualisation Net-Zero will influence
network condition
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‘LV Predict’: predicting future condition of an electrical power network

How can we predict
the condition of
underground Low
Voltage (LV) cables?

Asset

integrity

Cyclic stress-strain curve

Stress (MPa)
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Strain (%)
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‘LV Predict’: predicting future condition of an electrical power network

. . 200
The most likely thermal conductivity
The different soil types in the Electricity of soil in the Electricity North
North West region West region (W/mK)

How can we predict
the condition of
underground Low
Voltage (LV) cables?

150

Innovative
data sources

100

r0.75

r0.50

r0.25
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‘LV Predict’: predicting future condition of an electrical power network
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‘LV Predict’: predicting future condition of an electrical power network

How can we predict
the condition of
underground Low
Voltage (LV) cables?

https://Iv-predict.fnc.digital/
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https://lv-predict.fnc.digital/

Summary

/\f &
L {e}
Data
Knowledge
Modelling i
and Digital

simulation .
connectivity

Intelligent decisions
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