Phase transition for random walks on graphs with added weighted random matching

Jww Jonathan Hermon, Anđela Šarković, and Perla Sousi

Zsuzsa Baran

2023-05-10

Motivation

- A sequence of graphs might have a property cutoff.

Motivation

- A sequence of graphs might have a property cutoff.
- Presence / lack of cutoff known for some sequences, but no simple way to check.

Motivation

- A sequence of graphs might have a property cutoff.
- Presence / lack of cutoff known for some sequences, but no simple way to check.

Question: Given a sequence of graphs $\left(G_{n}\right)$, can we make a small modification to get cutoff?

Motivation

[Hermon, Sly, Sousi 2020]

- General sequence of graphs $\left(G_{n}\right)$.

G_{1}

G_{2}

Motivation

[Hermon, Sly, Sousi 2020]

- General sequence of graphs $\left(G_{n}\right)$.
- Add edges of a uniform random matching \leadsto random $\left(G_{n}^{*}\right)$.

G_{1}^{*}

G_{2}^{*}

Motivation

[Hermon, Sly, Sousi 2020]

- General sequence of graphs $\left(G_{n}\right)$.
- Add edges of a uniform random matching \leadsto random $\left(G_{n}^{*}\right)$.

G_{1}^{*}

G_{2}^{*}

- $\left(G_{n}^{*}\right)$ has cutoff whp.

Motivation

[Hermon, Sly, Sousi 2020]

- General sequence of graphs $\left(G_{n}\right)$.
- Add edges of a uniform random matching $\leadsto \operatorname{random}\left(G_{n}^{*}\right)$.

G_{1}^{*}

G_{2}^{*}

- $\left(G_{n}^{*}\right)$ has cutoff whp.

Question: What if we add the red edges with smaller weight?

Motivation

[Hermon, Sly, Sousi 2020]

- General sequence of graphs $\left(G_{n}\right)$.
- Add edges of a uniform random matching $\leadsto \operatorname{random}\left(G_{n}^{*}\right)$.

G_{1}^{*}

G_{2}^{*}

- $\left(G_{n}^{*}\right)$ has cutoff whp.

Question: What if we add the red edges with smaller weight?

- weight ε_{n}, allow $\varepsilon_{n} \rightarrow 0$

Intuition

Intuition

$\varepsilon_{n} \asymp 1$

Intuition

$$
\varepsilon_{n} \asymp 1
$$

(G_{n}^{*}) has cutoff whp
(by Hermon et al.)

Intuition

0
ε_{n} very small
$\varepsilon_{n} \asymp 1$
(G_{n}^{*}) has cutoff whp
(by Hermon et al.)

Intuition

0
ε_{n} very small
$\left(G_{n}^{*}\right)$ has cutoff
$\left(G_{n}^{*}\right)$ has cutoff whp iff $\left(G_{n}\right)$ does
(added edges make negligible difference)
(by Hermon et al.)

Intuition

0
ε_{n} very small
$\left(G_{n}^{*}\right)$ has cutoff
(G_{n}^{*}) has cutoff whp iff $\left(G_{n}\right)$ does
(added edges make negligible difference)
(by Hermon et al.)

Question: What happens in-between?

Results - expanders

$\left(G_{n}\right)$ expander family, bounded degrees

Results - expanders

$\left(G_{n}\right)$ expander family, bounded degrees

$$
0
$$

$$
\varepsilon_{n} \ll \frac{1}{\log \left|V_{n}\right|}
$$

Results - expanders

$\left(G_{n}\right)$ expander family, bounded degrees

0

$$
\varepsilon_{n} \ll \frac{1}{\log \left|V_{n}\right|}
$$

$\left(G_{n}^{*}\right)$ has cutoff
iff $\left(G_{n}\right)$ has cutoff

Results - expanders

$\left(G_{n}\right)$ expander family, bounded degrees

$$
0
$$

$$
\varepsilon_{n} \ll \frac{1}{\log \left|V_{n}\right|} \quad \varepsilon_{n} \gg \frac{1}{\log \left|V_{n}\right|}
$$

$\left(G_{n}^{*}\right)$ has cutoff
iff $\left(G_{n}\right)$ has cutoff

Results - expanders

$\left(G_{n}\right)$ expander family, bounded degrees

Results - expanders

$\left(G_{n}\right)$ expander family, bounded degrees

$$
\varepsilon_{n} \ll \frac{1}{\log \left|V_{n}\right|}
$$

$\left(G_{n}^{*}\right)$ has cutoff
iff $\left(G_{n}\right)$ has cutoff

$$
\varepsilon_{n} \gg \frac{1}{\log \left|V_{n}\right|}
$$

whp (G_{n}^{*}) has cutoff
$\varepsilon_{n} \asymp \frac{1}{\log \left|V_{n}\right|},\left(G_{n}\right)$ has no cutoff \Longrightarrow whp $\left(G_{n}^{*}\right)$ has no cutoff

Results - expanders

$\left(G_{n}\right)$ expander family, bounded degrees

$$
\varepsilon_{n} \ll \frac{1}{\log \left|V_{n}\right|}
$$

$\left(G_{n}^{*}\right)$ has cutoff
iff $\left(G_{n}\right)$ has cutoff

$$
\varepsilon_{n} \gg \frac{1}{\log \left|V_{n}\right|}
$$

whp (G_{n}^{*}) has cutoff

$$
\begin{aligned}
& \varepsilon_{n} \asymp \frac{1}{\log \left|V_{n}\right|},\left(G_{n}\right) \text { has no cutoff } \Longrightarrow \text { whp }\left(G_{n}^{*}\right) \text { has no cutoff } \\
& \exists\left(G_{n}\right):\left(G_{n}\right) \text { has cutoff, } \forall \varepsilon_{n} \asymp \frac{1}{\log \left|V_{n}\right|} \text { whp }\left(G_{n}^{*}\right) \text { has cutoff }
\end{aligned}
$$

Results - expanders

$\left(G_{n}\right)$ expander family, bounded degrees

0

$$
\varepsilon_{n} \ll \frac{1}{\log \left|V_{n}\right|}
$$

$\left(G_{n}^{*}\right)$ has cutoff
iff $\left(G_{n}\right)$ has cutoff

$$
\varepsilon_{n} \gg \frac{1}{\log \left|V_{n}\right|}
$$

whp (G_{n}^{*}) has cutoff
$\varepsilon_{n} \asymp \frac{1}{\log \left|V_{n}\right|},\left(G_{n}\right)$ has no cutoff \Longrightarrow whp $\left(G_{n}^{*}\right)$ has no cutoff
$\exists\left(G_{n}\right):\left(G_{n}\right)$ has cutoff, $\forall \varepsilon_{n} \asymp \frac{1}{\log \left|V_{n}\right|}$ whp $\left(G_{n}^{*}\right)$ has cutoff
$\exists\left(G_{n}\right):\left(G_{n}\right)$ has cutoff, $\forall \varepsilon_{n} \asymp \frac{1}{\log \left|V_{n}\right|}$ whp $\left(G_{n}^{*}\right)$ has no cutoff

Results - graphs of polynomial growth

$\left(G_{n}\right)$ vertex-transitive, polynomial growth, bounded degrees (e.g. tori \mathbb{Z}_{n}^{d}) 0

Results - graphs of polynomial growth

$\left(G_{n}\right)$ vertex-transitive, polynomial growth, bounded degrees (e.g. tori \mathbb{Z}_{n}^{d}) 0

$$
\varepsilon_{n} \lesssim\left|V_{n}\right|^{-\Theta(1)}
$$

Results - graphs of polynomial growth

$\left(G_{n}\right)$ vertex-transitive, polynomial growth, bounded degrees (e.g. tori \mathbb{Z}_{n}^{d})

$$
\varepsilon_{n} \lesssim\left|V_{n}\right|^{-\Theta(1)}
$$

whp (G_{n}^{*}) has no cutoff

Results - graphs of polynomial growth

$\left(G_{n}\right)$ vertex-transitive, polynomial growth, bounded degrees (e.g. tori \mathbb{Z}_{n}^{d})

$$
\varepsilon_{n} \lesssim\left|V_{n}\right|^{-\Theta(1)} \quad \varepsilon_{n} \gtrsim\left|V_{n}\right|^{-o(1)}
$$

whp (G_{n}^{*}) has no cutoff

Results - graphs of polynomial growth

$\left(G_{n}\right)$ vertex-transitive, polynomial growth, bounded degrees (e.g. tori \mathbb{Z}_{n}^{d})

$$
\varepsilon_{n} \lesssim\left|V_{n}\right|^{-\Theta(1)}
$$

$$
\varepsilon_{n} \gtrsim\left|V_{n}\right|^{-o(1)}
$$

whp (G_{n}^{*}) has no cutoff
whp (G_{n}^{*}) has cutoff

Thank you for your attention!

Also check out my poster!

References

圊 Jonathan Hermon, Allan Sly, and Perla Sousi. Universality of cutoff for graphs with an added random matching. The Annals of Probability, 50(1):203-240, 2022.

