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» It is well known that an ODE with non-Lipschitz coefficients
may not have a unique solution.

» We can restore uniqueness via adding Brownian noise:
consider the (finite dimensional) SDE: given b bounded
measurable, W an n-dimensional Brownian motion,

dX; = b(X,)dt + dW. (1)

» Unique weak solution via Girsanov theorem.

» Unique strong solution via Zvonkin’s transform or other
methods.

» Also true in infinite dimensions: parabolic SPDEs, etc.

» "On quasi-linear stochastic partial differential equations”,
Gybngy and Pardoux,1993.
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v

For multiplicative noise, what can the noise coefficient be?
Consider

v

dXt = O'(Xt)th. (2)

Assume o continuous (but not Lipschitz) and non-degenerate:

v

0< Ay <l|o(x)] <Ay, xeR™

v

Weak uniqueness: X; is a time changed Brownian motion.

Strong uniqueness: imposing Sobolev regularity conditions on
o and use PDE theory.

v

None of them works in infinite dimensions.

v
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» Random field solutions/ martingale measures approach: JB.
Walsh Regard s and y on an equal footing.

= [, W(dyds).
> Evolutlon equations on Hilbert spaces: Da Prato-Zabczyk.
Consider orthogonal basis (en(X))nen,

W(dxdt) = Y en(x)dB{"” dx.

n=1

0o ot
NEX) = [ [ ste=sx-yg(sv)eny)ayasy.

» Rough path theory, regularity structure, paracontrolled calculus.
o =Ad+Chd—d3 ¢

Only for additive noise or sufficiently regular noise coefficient.
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Known results for the stochastic Heat equation

» Additive noise case d;u = Au + f(u) + ?;g‘x/.

» Hilbert space valued SPDEs: strong solution for Hélder
continuous f(u). Strong solution for a.e. initial value for bounded
measurable f. ”Strong uniqueness for SDEs in Hilbert spaces
with nonregular drift.”
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Known results for the stochastic Heat equation

» Additive noise case d;u = Au + f(u) + %f—a"‘x/.

» Hilbert space valued SPDEs: strong solution for Hélder
continuous f(u). Strong solution for a.e. initial value for bounded
measurable f. ”Strong uniqueness for SDEs in Hilbert spaces
with nonregular drift.”

» Random field SPDEs: strong solutions for distributional f(u).
"Well-posedness of stochastic heat equation with distributional
drift and skew stochastic heat equation.”

» Multiplicative, HOlder continuous noise coefficient: o being
3 + e-Holder continuous in X(t, x), the random field case:
0 1
5X(t, X) = EAX(t, x)dt + o(t, x, X(t, x))dW(t, x)
t
"Pathwise Uniqueness for Stochastic Heat Equations with
Hélder Continuous Coefficients: the White Noise Case”, 77 p”.
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Assumptions

v

A sufficiently general and easy to implement construction of
SPDEs on Hilbert space, with non-Lipschitz noise coefficient.

Some attempts to this question in the 2000s. Mostly too
restrictive that require trace class perturbations of identity
operator, or require close to diagonal coefficients.

Our assumptions: for W the cylindrical noise on H,

dX; = AX,dt + B(X))dt + o(X;)dW,, (3)

1
Eigenvalues oy of A scale as oy ~ k™ [y = 4 for 1-d
Laplacians]

o has a bounded right inverse and g > 1 — “2-Hélder
continuous (2 + e for 1-d Laplacian)
B has linear growth.
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Well-Posedness

Theorem (Well-posedness of Stochastic Heat equation)

Under the assumptions in the previous slide, there exists a unique
(probabilistic weak) mild solution to

aX; = AXidt + B(Xt)dt aF U(Xt)th, Xo € H. (4)
Given } + e-Hélder F : H — H, unique weak-mild solution to

dX; = AXidt + (—A)V2F(X))dt + B(X;)dt + o(X)dW;,  (5)

» Examples: Burgers type equations, ¢ € (0, 27)

2
au(t, &) = ggzu(t,f)dﬁ— gh(u(l‘, €))dt + o(u(t,§))dWs(¢).

9
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Theorem (Well-posedness of Stochastic Heat equation)

Under the assumptions in the previous slide, there exists a unique
(probabilistic weak) mild solution to

aX; = AXidt + B(Xt)dt - U(Xt)th, Xo € H. (4)
Given } + e-Hélder F : H — H, unique weak-mild solution to

dX; = AX;dt + (—A)2F(X))dt + B(X;)dt + o(X)dW,,  (5)

» Cahn-Hilliard equations in dimensions 1,2,3:

du(t,§) = —AFu(t,§)at + Ach(u(t.€))at + o (u(t, €))dWi(€)
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Long-time behaviour

Theorem (Exponential ergodicity)

Assume the drift B : H — H is Hélder continuous, and the Lyapunov
condition hold: for some V : H — R and some \ € (0,1) infinity at
infinity,

E[V(X)] < AV(Xo) + M )
for some givent > 0 and M > 0. Then there exists a unique
invariant measure, and the solution converges to the invariant
measure exponentially fast with respect to (some specific)
Wasserstein distance on P(H).

» No applicable It6 formula for cylindrical noise
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Theorem (Exponential ergodicity)

Assume the drift B : H — H is Hélder continuous, and the Lyapunov
condition hold: for some V : H — R and some \ € (0,1) infinity at
infinity,

E[V(X)] < AV(Xo) + M )
for some givent > 0 and M > 0. Then there exists a unique
invariant measure, and the solution converges to the invariant
measure exponentially fast with respect to (some specific)
Wasserstein distance on P(H).

» No applicable It6 formula for cylindrical noise

» Lyapunov assumption satisfied when B, F, o are bounded, and
Ais a negative operator.
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equations: a generalized coupling approach.”

» In order to compare X; to a process

aX{’ = AX{'dt + B"(X{)dt + " (X{")dW;,
consider auxiliary process with A > 0 and stopping time 7
dX[ = AXPdt + B"(X[)dt + A< dt + o"(X])dW;,

» Probabilistic estimate: compare X"|(o 77 and )N(”\[O,T] via
Girsanov transform and Pinsker’s inequality.
» Use pathwise estimate to compare X 77 with X”|jo 7.
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Methods

Some technical challenges in infinite dimensions:
» Derive maximal inequality for the process, when )\ is large:

adX; = AXidt — A\ Xidt + d)(t)th, Xo =0,
» When A is the 1-D Laplacian, has the form

EOSUP Xl < A73E P ||¢( )|l
<s<

» No applicable Ité’s formula: always work with mild formulations.

» Lipschitz approximation in infinite dimensions: compactness of
heat semigroup.
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Stochastic wave equation: well-posedness

Our method works not only for the parabolic systems, but also for
hyperbolic systems.
Consider the (abstract) damped stochastic wave equation

aZU#(t) . (t) auﬂ( )

otz W ot
and the stochastic wave equation without damping term
02u,(t)

or?

+ B(t, u,(t)) + G(t, uu(t))dW;,

= Au, (1) + B(t. uu(1)) + G(t. U (1)) W,

Theorem (Well-posedness of stochastic wave equation)

Under the same assumption on A, B and G as in the case of the
stochastic heat equation, there exists a unique weak-mild solution
to both these equations.
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Stochastic wave equation: small mass limit

Theorem
Assume moreover that B is Holder continuous in u,,. Then as p
tends to 0, the solution to the damped stochastic wave equation

o Auy,(t) — augft) + B(t, u,(t)) + G(t, u,(t))dW;

converges in distribution on path space to the solution of the
stochastic heat equation

du(t) _

22 = Au (1) + B(t, u(1) + Gt, U, (1) AW

"On the Smoluchowski-Kramers approximation for a system with an

infinite number of degrees of freedom”, Freidlin and Cerrai, 2006.
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