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Restoring uniqueness by Gaussian noise

▶ It is well known that an ODE with non-Lipschitz coefficients
may not have a unique solution.

▶ We can restore uniqueness via adding Brownian noise:
consider the (finite dimensional) SDE: given b bounded
measurable, W an n-dimensional Brownian motion,

dXt = b(Xt)dt + dWt . (1)

▶ Unique weak solution via Girsanov theorem.
▶ Unique strong solution via Zvonkin’s transform or other

methods.
▶ Also true in infinite dimensions: parabolic SPDEs, etc.
▶ ”On quasi-linear stochastic partial differential equations”,

Gyöngy and Pardoux,1993.
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Irregular Noise coefficient

▶ For multiplicative noise, what can the noise coefficient be?

▶ Consider
dXt = σ(Xt)dWt . (2)

▶ Assume σ continuous (but not Lipschitz) and non-degenerate:

0 < Λ1 < |σ(x)| < Λ2, x ∈ Rn.

▶ Weak uniqueness: Xt is a time changed Brownian motion.
▶ Strong uniqueness: imposing Sobolev regularity conditions on

σ and use PDE theory.
▶ None of them works in infinite dimensions.
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Notion of solutions to stochastic PDEs

▶ Random field solutions/ martingale measures approach: JB.
Walsh. Regard s and y on an equal footing.
W (A) =

∫
A W (dyds).

▶ Evolution equations on Hilbert spaces: Da Prato-Zabczyk.
Consider orthogonal basis (en(x))n∈N,

W (dxdt) =
∞∑

n=1

en(x)dB(n)
t dx .

N(t , x) =
∞∑

n=1

∫ t

0

∫
Rd

S(t − s, x − y)g(s, y)en(y)dydB(n)
s .

▶ Rough path theory, regularity structure, paracontrolled calculus.

∂tΦ = ∆Φ+ CΦ− Φ3 + ξ

Only for additive noise or sufficiently regular noise coefficient.
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Known results for the stochastic Heat equation

▶ Additive noise case ∂tu = ∆u + f (u) + ∂2W
∂t∂x

.

▶ Hilbert space valued SPDEs: strong solution for Hölder
continuous f (u). Strong solution for a.e. initial value for bounded
measurable f . ”Strong uniqueness for SDEs in Hilbert spaces
with nonregular drift.”

▶ Random field SPDEs: strong solutions for distributional f (u).
”Well-posedness of stochastic heat equation with distributional
drift and skew stochastic heat equation.”

▶ Multiplicative, Hölder continuous noise coefficient: σ being
3
4 + ϵ-Hölder continuous in X (t , x), the random field case:

∂

∂t
X (t , x) =

1
2
∆X (t , x)dt + σ(t , x ,X (t , x))dW (t , x)

”Pathwise Uniqueness for Stochastic Heat Equations with
Hölder Continuous Coefficients: the White Noise Case”, 77 p”.
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4 + ϵ-Hölder continuous in X (t , x), the random field case:

∂

∂t
X (t , x) =

1
2
∆X (t , x)dt + σ(t , x ,X (t , x))dW (t , x)

”Pathwise Uniqueness for Stochastic Heat Equations with
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Assumptions

▶ A sufficiently general and easy to implement construction of
SPDEs on Hilbert space, with non-Lipschitz noise coefficient.

▶ Some attempts to this question in the 2000s. Mostly too
restrictive that require trace class perturbations of identity
operator, or require close to diagonal coefficients.

▶ Our assumptions: for W the cylindrical noise on H,

dXt = AXtdt + B(Xt)dt + σ(Xt)dWt , (3)

▶ Eigenvalues αk of A scale as αk ∼ k
1

1−η0 [η0 = 1
2 for 1-d

Laplacians]
▶ σ has a bounded right inverse and β > 1 − η0

2 -Hölder
continuous (3

4 + ϵ for 1-d Laplacian)
▶ B has linear growth.
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Well-Posedness

Theorem (Well-posedness of Stochastic Heat equation)

Under the assumptions in the previous slide, there exists a unique
(probabilistic weak) mild solution to

dXt = AXtdt + B(Xt)dt + σ(Xt)dWt , X0 ∈ H. (4)

Given 1
2 + ϵ-Hölder F : H → H, unique weak-mild solution to

dXt = AXtdt + (−A)1/2F (Xt)dt + B(Xt)dt + σ(Xt)dWt , (5)

▶ Examples: Burgers type equations, ξ ∈ (0,2π)

du(t , ξ) =
∂2

∂ξ2 u(t , ξ)dt +
∂

∂ξ
h(u(t , ξ))dt + σ(u(t , ξ))dWt(ξ).

▶ Cahn-Hilliard equations in dimensions 1,2,3:

du(t , ξ) = −∆2
ξu(t , ξ)dt +∆ξh(u(t , ξ))dt + σ(u(t , ξ))dWt(ξ)
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Long-time behaviour

Theorem (Exponential ergodicity)

Assume the drift B : H → H is Hölder continuous, and the Lyapunov
condition hold: for some V : H → R+ and some λ ∈ (0,1) infinity at
infinity,

E[V (Xt)] ≤ λV (X0) + M (6)

for some given t > 0 and M > 0. Then there exists a unique
invariant measure, and the solution converges to the invariant
measure exponentially fast with respect to (some specific)
Wasserstein distance on P(H).

▶ No applicable Itô formula for cylindrical noise

▶ Lyapunov assumption satisfied when B, F , σ are bounded, and
A is a negative operator.
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Methods

▶ A generalized coupling approach, inspired by

▶ ”Asymptotic coupling and a general form of Harris’ theorem
with applications to stochastic delay equations,”
”Well-posedness, stability and sensitivities for stochastic delay
equations: a generalized coupling approach.”

▶ In order to compare Xt to a process

dX n
t = AX n

t dt + Bn(X n
t )dt + σn(X n

t )dWt ,

consider auxiliary process with λ > 0 and stopping time τ

dX̃ n
t = AX̃ n

t dt + Bn(X̃ n
t )dt + λ1t≤τdt + σn(X̃ n

t )dWt ,

▶ Probabilistic estimate: compare X n|[0,T ] and X̃ n|[0,T ] via
Girsanov transform and Pinsker’s inequality.

▶ Use pathwise estimate to compare X |[0,T ] with X̃ n|[0,T ].
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Methods

Some technical challenges in infinite dimensions:
▶ Derive maximal inequality for the process, when λ is large:

dXt = ∆Xtdt − λXtdt +Φ(t)dWt , X0 = 0,

▶ When ∆ is the 1-D Laplacian, has the form

E sup
0≤s≤T

∥Xs∥ ≤ λ− 1
4+ϵE sup

0≤s≤T
∥Φ(s)∥.

▶ No applicable Itô’s formula: always work with mild formulations.
▶ Lipschitz approximation in infinite dimensions: compactness of

heat semigroup.
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Stochastic wave equation: well-posedness

Our method works not only for the parabolic systems, but also for
hyperbolic systems.
Consider the (abstract) damped stochastic wave equation

µ
∂2uµ(t)
∂t2 = Auµ(t)−

∂uµ(t)
∂t

+ B(t ,uµ(t)) + G(t ,uµ(t))dWt ,

and the stochastic wave equation without damping term

µ
∂2uµ(t)
∂t2 = Auµ(t) + B(t ,uµ(t)) + G(t ,uµ(t))dWt ,

Theorem (Well-posedness of stochastic wave equation)

Under the same assumption on A, B and G as in the case of the
stochastic heat equation, there exists a unique weak-mild solution
to both these equations.
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Stochastic wave equation: small mass limit

Theorem
Assume moreover that B is Hölder continuous in uµ. Then as µ
tends to 0, the solution to the damped stochastic wave equation

µ
∂2uµ(t)
∂t2 = Auµ(t)−

∂uµ(t)
∂t

+ B(t ,uµ(t)) + G(t ,uµ(t))dWt

converges in distribution on path space to the solution of the
stochastic heat equation

∂uµ(t)
∂t

= Auµ(t) + B(t ,uµ(t)) + G(t ,uµ(t))dWt .

”On the Smoluchowski-Kramers approximation for a system with an
infinite number of degrees of freedom”, Freidlin and Cerrai, 2006.
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Thanks
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