Isotonic subgroup selection

CCIMI 7th Annual Academic Conference

May 2023

Manuel Müller

University of Cambridge, CCIMI

K ロ ▶ K @ ▶ K 로 ▶ K 콘 ▶ _ 콘/로 _ K) Q Q @

Henry Reeve Timothy Cannings Richard Samworth

▶ M., M. M., Reeve, H. W. J., Cannings, T. I. and Samworth, R. J. (2023). Isotonic subgroup selection. arXiv:2305.04852.

Subgroup selection in regression: Identify a subset of the covariate domain on which the regression function satisfies a particular property (e.g. exceeds a threshold).

Subgroup selection in regression: Identify a subset of the covariate domain on which the regression function satisfies a particular property (e.g. exceeds a threshold).

Setting:

Fix $\sigma>0.$ Let $\mathcal{P}_{\mathrm{Mon},d}(\sigma)$ be the family of distributions P on $\mathbb{R}^d\times\mathbb{R}$ such that for $(X, Y) \sim P$,

Subgroup selection in regression: Identify a subset of the covariate domain on which the regression function satisfies a particular property (e.g. exceeds a threshold).

Setting:

Fix $\sigma>0.$ Let $\mathcal{P}_{\mathrm{Mon},d}(\sigma)$ be the family of distributions P on $\mathbb{R}^d\times\mathbb{R}$ such that for $(X, Y) \sim P$,

(i) the regression function $\eta(x):=\mathbb{E}(Y|X=x)$ is increasing* on \mathbb{R}^d .

$$
x_0 \preccurlyeq x_1 \Longrightarrow \eta(x_0) \leq \eta(x_1).
$$

[Isotonic Subgroup Selection](#page-0-0) 3/11

Subgroup selection in regression: Identify a subset of the covariate domain on which the regression function satisfies a particular property (e.g. exceeds a threshold).

Setting:

Fix $\sigma>0.$ Let $\mathcal{P}_{\mathrm{Mon},d}(\sigma)$ be the family of distributions P on $\mathbb{R}^d\times\mathbb{R}$ such that for $(X, Y) \sim P$,

(i) the regression function $\eta(x):=\mathbb{E}(Y|X=x)$ is increasing* on \mathbb{R}^d .

(ii) $\left\vert Y-\eta(X)\mid X\right\vert$ is sub-Gaussian with variance parameter $\sigma^{2}.$

$$
x_0 \preccurlyeq x_1 \Longrightarrow \eta(x_0) \leq \eta(x_1).
$$

[Isotonic Subgroup Selection](#page-0-0) 3/11

Notation:

► Fix
$$
\tau \in \mathbb{R}
$$
. Define τ -superlevel set by
 $\mathcal{X}_{\tau}(\eta) := \{x \in \mathbb{R}^d : \eta(x) \geq \tau\}.$

Notation:

► Fix $\tau \in \mathbb{R}$. Define τ -superlevel set by $\mathcal{X}_{\tau}(\eta) := \{x \in \mathbb{R}^d : \eta(x) \geq \tau\}.$

 \blacktriangleright μ denotes the marginal distribution of X.

Notation:

- **►** Fix $\tau \in \mathbb{R}$. Define τ -superlevel set by $\mathcal{X}_{\tau}(\eta) := \{x \in \mathbb{R}^d : \eta(x) \geq \tau\}.$
- \blacktriangleright μ denotes the marginal distribution of X.

$$
\blacktriangleright \mathcal{D} := ((X_1, Y_1), \ldots, (X_n, Y_n)).
$$

Statistical setting

Notation:

- **►** Fix $\tau \in \mathbb{R}$. Define τ -superlevel set by $\mathcal{X}_{\tau}(\eta) := \{x \in \mathbb{R}^d : \eta(x) \geq \tau\}.$
- \blacktriangleright μ denotes the marginal distribution of X.

$$
\blacktriangleright \mathcal{D} := ((X_1, Y_1), \ldots, (X_n, Y_n)).
$$

Goal: algorithm that returns a selected set $\hat{A}(\mathcal{D})\subseteq\mathbb{R}^d$

Statistical setting

Notation:

- **►** Fix $\tau \in \mathbb{R}$. Define τ -superlevel set by $\mathcal{X}_{\tau}(\eta) := \{x \in \mathbb{R}^d : \eta(x) \geq \tau\}.$
- \blacktriangleright μ denotes the marginal distribution of X.

$$
\blacktriangleright \mathcal{D} := ((X_1, Y_1), \ldots, (X_n, Y_n)).
$$

Goal: algorithm that returns a selected set $\hat{A}(\mathcal{D})\subseteq\mathbb{R}^{d}$ with:

► Type I error control: Fix $\alpha \in (0,1)$. Require

$$
\inf_{P \in \mathcal{P}_{\text{Mon},d}(\sigma)} \mathbb{P}_P\{\hat{A}(\mathcal{D}) \subseteq \mathcal{X}_{\tau}(\eta)\} \ge 1 - \alpha.
$$

▶ Power: Want small expected regret

$$
\mathbb{E}\big\{\mu\big(\mathcal{X}_\tau(\eta)\setminus\hat{A}(\mathcal{D})\big)\big\}.
$$

For $x_0 \in \mathbb{R}^d$, define null hypothesis $H_0(x_0) := \{P \in \mathcal{P}_{\mathrm{Mon},d}(\sigma) : \eta(x_0) < \tau\}.$

-
-
-

For $x_0 \in \mathbb{R}^d$, define null hypothesis $H_0(x_0) := \{P \in \mathcal{P}_{\mathrm{Mon},d}(\sigma) : \eta(x_0) < \tau\}.$

High-level strategy:

1. Sub-sample m covariate vectors X_1, \ldots, X_m with $m \leq n$;

For $x_0 \in \mathbb{R}^d$, define null hypothesis $H_0(x_0) := \{P \in \mathcal{P}_{\mathrm{Mon},d}(\sigma) : \eta(x_0) < \tau\}.$

High-level strategy:

- 1. Sub-sample m covariate vectors X_1, \ldots, X_m with $m \leq n$;
- 2. Construct p -values \hat{p}_ℓ for $H_0(X_\ell)$, i.e. $\mathbb{P}\big(\hat{p}_\ell(\mathcal{D})\leq \alpha \mid (X_i)_{i=1}^n\big)\leq \alpha$ for all $P \in H_0(X_\ell), \alpha \in (0,1), \ell \in \{1,\ldots,m\};$

For $x_0 \in \mathbb{R}^d$, define null hypothesis $H_0(x_0) := \{P \in \mathcal{P}_{\mathrm{Mon},d}(\sigma) : \eta(x_0) < \tau\}.$

High-level strategy:

- 1. Sub-sample m covariate vectors X_1, \ldots, X_m with $m \leq n$;
- 2. Construct p -values \hat{p}_ℓ for $H_0(X_\ell)$, i.e. $\mathbb{P}\big(\hat{p}_\ell(\mathcal{D})\leq \alpha \mid (X_i)_{i=1}^n\big)\leq \alpha$ for all $P \in H_0(X_\ell), \alpha \in (0,1), \ell \in \{1, \ldots, m\};$
- 3. Apply a multiple testing procedure to reject $\mathcal{R}_{\alpha} \subseteq \{1, \dots, m\}$ with $\mathbb{P}_P\big(\mathcal{R}_\alpha\cap\{\ell\in\{1,\ldots,m\}:P\in H_0(X_\ell)\}\neq\emptyset\mid (X_i)_{i=1}^m\big)\leq\alpha;$

For $x_0 \in \mathbb{R}^d$, define null hypothesis $H_0(x_0) := \{P \in \mathcal{P}_{\mathrm{Mon},d}(\sigma) : \eta(x_0) < \tau\}.$

High-level strategy:

- 1. Sub-sample m covariate vectors X_1, \ldots, X_m with $m \leq n$;
- 2. Construct p -values \hat{p}_ℓ for $H_0(X_\ell)$, i.e. $\mathbb{P}\big(\hat{p}_\ell(\mathcal{D})\leq \alpha \mid (X_i)_{i=1}^n\big)\leq \alpha$ for all $P \in H_0(X_\ell), \alpha \in (0,1), \ell \in \{1, \ldots, m\};$
- 3. Apply a multiple testing procedure to reject $\mathcal{R}_{\alpha} \subseteq \{1, \ldots, m\}$ with $\mathbb{P}_P\big(\mathcal{R}_\alpha\cap\{\ell\in\{1,\ldots,m\}:P\in H_0(X_\ell)\}\neq\emptyset\mid (X_i)_{i=1}^m\big)\leq\alpha;$
- 4. Output $\hat A:=\big\{x\in\mathbb{R}^d: X_\ell\preccurlyeq x\text{ for some }\ell\in\mathcal{R}_\alpha\}.$

p-value construction

Given $x_0 \in \mathbb{R}^d,$ we seek a p -value for $H_0(x_0) := \{ P \in \mathcal{P}_{\text{Mon},d}(\sigma) : \eta(x_0) < \tau \}.$

p-value construction

Given $x_0 \in \mathbb{R}^d,$ we seek a p -value for $H_0(x_0) := \{ P \in \mathcal{P}_{\text{Mon.}d}(\sigma) : \eta(x_0) < \tau \}.$

Write $\mathcal{I}(x_0) := \{i \in [n] : X_i \preccurlyeq x_0\}$. Let $X_{(i)}$ be the jth nearest neighbor in sup-norm of x_0 among $X_i,$ $i \in {\cal I } (x_0),$ and let $Y_{(i)}$ be the corresponding response.

p-value construction

Given $x_0 \in \mathbb{R}^d,$ we seek a p -value for $H_0(x_0) := \{P \in \mathcal{P}_{\text{Mon }d}(\sigma) : \eta(x_0) < \tau\}.$

Write $\mathcal{I}(x_0) := \{i \in [n] : X_i \preccurlyeq x_0\}$. Let $X_{(i)}$ be the *j*th nearest neighbor in sup-norm of x_0 among $X_i,$ $i \in {\cal I } (x_0),$ and let $Y_{(i)}$ be the corresponding response.

Then, $S_k := \sum_{j=1}^{|{\cal I}(x_0)|}(Y_{(j)}-\tau)/\sigma$ is a supermartingale under $P \in H_0(x_0)$. Combination with time-uniform bounds by [Howard et al. \(2021\)](#page-32-0) gives p-values.

[Isotonic Subgroup Selection](#page-0-0) 6/11

Combining the presented p -value construction with the just illustrated multiple testing procedure defines the proposed procedure $\hat A^{\mathrm{ISS}}\equiv\hat A^{\mathrm{ISS}}_{\sigma,\tau,\alpha,m}.$

Theorem. For any $n \in \mathbb{N}$, $m \in [n]$, $\alpha \in (0,1)$, $\sigma > 0$, and $P \in \mathcal{P}_{\text{Mon }d}(\sigma)$, along with $\mathcal{D} \sim P^n,$ we have

$$
\mathbb{P}_P\left(\hat{A}_{\sigma,\tau,\alpha,m}^{\text{ISS}}(\mathcal{D})\subseteq\mathcal{X}_\tau(\eta)\mid\mathcal{D}_X\right)\geq 1-\alpha.
$$

Ideas: martingale test procedures [\(Duan et al., 2020\)](#page-32-1), time-uniform boundaries on martingales with sub-Gaussian increments [\(Howard et al., 2021\)](#page-32-0) and the sequential rejection principle [\(Goeman and Solari, 2010\)](#page-32-2).

Theorem. Let $\sigma, \gamma > 0, \theta > 1$ and $\lambda \in (0, 1)$. There exists $C \geq 1$, depending only on (d, θ) , such that for any $P \in \mathcal{P}_{\text{Mon.}d}(\sigma) \cap \mathcal{P}_{\text{Reg.}d}(\tau, \theta, \gamma, \lambda), n \in \mathbb{N}$, $m \in [n],$ $\alpha \in (0,1)$ and $\mathcal{D} \sim P^n$ that^a

$$
\mathbb{E}_{P}\{\mu(\mathcal{X}_{\tau}(\eta) \setminus \hat{A}^{\text{ISS}}(\mathcal{D}))\}
$$

\n
$$
\leq 1 \wedge C\left\{ \left(\frac{\sigma^2}{n\lambda^2} \log_+\left(\frac{m \log_+ n}{\alpha}\right)\right)^{1/(2\gamma+d)} + \left(\frac{\log_+ m}{m}\right)^{1/d} \right\}.
$$

\n^alog₊ x := log(x \vee e).

Theorem. Let $\sigma, \gamma > 0$, $\theta > 1$ and $\lambda \in (0, 1)$. There exists $C > 1$, depending only on (d, θ) , such that for any $P \in \mathcal{P}_{\text{Mon.}d}(\sigma) \cap \mathcal{P}_{\text{Reg.}d}(\tau, \theta, \gamma, \lambda), n \in \mathbb{N}$, $m \in [n],$ $\alpha \in (0,1)$ and $\mathcal{D} \sim P^n$ that^a

$$
\mathbb{E}_{P}\{\mu(\mathcal{X}_{\tau}(\eta) \setminus \hat{A}^{\text{ISS}}(\mathcal{D}))\}\n\leq 1 \wedge C\left\{ \left(\frac{\sigma^2}{n\lambda^2} \log_{+}\left(\frac{m \log_{+} n}{\alpha}\right)\right)^{1/(2\gamma+d)} + \left(\frac{\log_{+} m}{m}\right)^{1/d} \right\}.
$$
\n
$$
\int_{a}^{a} \log_{+} x := \log(x \vee e).
$$

Theorem. Our procedure is minimax-optimal up to poly-logarithmic factors among procedures with Type I error control over $\mathcal{P}_{\text{Mon.}d}(\sigma) \cap \mathcal{P}_{\text{Reg.}d}(\tau,\theta,\gamma,\lambda)$.

AIDS Clinical Trials Group Study 175 [\(Hammer et al., 1996\)](#page-32-3)

▶ We addressed the problem of subgroup selection in isotonic regression.

- ▶ We addressed the problem of subgroup selection in isotonic regression.
- ▶ We propose a computationally-feasible algorithm controlling Type I error.

- ▶ We addressed the problem of subgroup selection in isotonic regression.
- ▶ We propose a computationally-feasible algorithm controlling Type I error.
- ▶ We show minimax-optimality up to poly-logarithmic factors of our method.

- ▶ We addressed the problem of subgroup selection in isotonic regression.
- ▶ We propose a computationally-feasible algorithm controlling Type I error.
- \triangleright We show minimax-optimality up to poly-logarithmic factors of our method.

- ▶ We addressed the problem of subgroup selection in isotonic regression.
- ▶ We propose a computationally-feasible algorithm controlling Type I error.
- \triangleright We show minimax-optimality up to poly-logarithmic factors of our method.

Extensions and further results (see full paper for details):

▶ Variation tailored to bounded responses and classification.

- ▶ We addressed the problem of subgroup selection in isotonic regression.
- ▶ We propose a computationally-feasible algorithm controlling Type I error.
- \triangleright We show minimax-optimality up to poly-logarithmic factors of our method.

- ▶ Variation tailored to bounded responses and classification.
- Variation tailored to isotonic quantile regression.

- ▶ We addressed the problem of subgroup selection in isotonic regression.
- ▶ We propose a computationally-feasible algorithm controlling Type I error.
- \triangleright We show minimax-optimality up to poly-logarithmic factors of our method.

- ▶ Variation tailored to bounded responses and classification.
- ▶ Variation tailored to isotonic quantile regression.
- ▶ Use in heterogeneous treatment effects in randomised controlled trials.

- ▶ We addressed the problem of subgroup selection in isotonic regression.
- ▶ We propose a computationally-feasible algorithm controlling Type I error.
- \triangleright We show minimax-optimality up to poly-logarithmic factors of our method.

- ▶ Variation tailored to bounded responses and classification.
- ▶ Variation tailored to isotonic quantile regression.
- ▶ Use in heterogeneous treatment effects in randomised controlled trials.
- \blacktriangleright Further applications and simulations.

- ▶ We addressed the problem of subgroup selection in isotonic regression.
- ▶ We propose a computationally-feasible algorithm controlling Type I error.
- \triangleright We show minimax-optimality up to poly-logarithmic factors of our method.

Extensions and further results (see full paper for details):

- ▶ Variation tailored to bounded responses and classification.
- ▶ Variation tailored to isotonic quantile regression.
- ▶ Use in heterogeneous treatment effects in randomised controlled trials.
- \blacktriangleright Further applications and simulations.

▶ ...

- Duan, B., Ramdas, A., Balakrishnan, S., and Wasserman, L. (2020). Interactive martingale tests for the global null. Electronic Journal of Statistics, 14(2):4489–4551.
- Goeman, J. J. and Solari, A. (2010). The sequential rejection principle of familywise error control. The Annals of Statistics, 38(6):3782–3810.
- Hammer, S. M., Katzenstein, D. A., Hughes, M. D., Gundacker, H., Schooley, R. T., Haubrich, R. H., Henry, W. K., Lederman, M. M., Phair, J. P., Niu, M., et al. (1996). A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. New England Journal of Medicine, 335(15):1081–1090.
- Howard, S. R., Ramdas, A., McAuliffe, J., and Sekhon, J. (2021). Time-uniform, nonparametric, nonasymptotic confidence sequences. The Annals of Statistics, 49:1055–1080.
- Meijer, R. J. and Goeman, J. J. (2015). A multiple testing method for hypotheses structured in a directed acyclic graph. Biometrical Journal, 57(1):123–143.

Key idea: logical relationships of hypotheses $H_0(x_i)$, $i \in [m]$, induce DAG with vertex set [m]. Careful α -budget allocation and sequential rejections are then performed.

Key idea: logical relationships of hypotheses $H_0(x_i)$, $i \in [m]$, induce DAG with vertex set [m]. Careful α -budget allocation and sequential rejections are then performed.

Example: In the first iteration, no hypothesis has been rejected yet and only root nodes are assigned positive α -budget.

Here, nodes 1, 6 and 7 are current rejection candidates, and 1 will be rejected, as $p_1 = 0.01 \leq 0.0125$.

[Isotonic Subgroup Selection](#page-0-0) 1/8

Key idea: logical relationships of hypotheses $H_0(x_i)$, $i \in [m]$, induce DAG with vertex set [m]. Careful α -budget allocation and sequential rejections are then performed.

Example: After rejection of node 1 in the first step, we reallocate the α -budget.

Here, node 7 will be rejected.

Key idea: logical relationships of hypotheses $H_0(x_i)$, $i \in [m]$, induce DAG with vertex set [m]. Careful α -budget allocation and sequential rejections are then performed.

Example: Now that node 7 has been rejected, its child 5 receives α -budget sufficiently large for it to be rejected.

Although p_6 is quite large, 6 is an ancestor of 5 in the induced DAG and will hence also be rejected.

Key idea: logical relationships of hypotheses $H_0(x_i)$, $i \in [m]$, induce DAG with vertex set [m]. Careful α -budget allocation and sequential rejections are then performed.

Example: None of the remaining three nodes (coincidentally, the leaf nodes), have a *p*-value smaller than their respective α -budgets.

Nodes 1, 5, 6 and 7 have been rejected.

Given $d \in \mathbb{N}, \tau \in \mathbb{R}, \theta > 1, \gamma > 0$ and $\lambda \in (0, 1)$, we let $\mathcal{P}_{\text{Reg}, d}(\tau, \theta, \gamma, \lambda)$ denote the class of all distributions P on $\mathbb{R}^d \times \mathbb{R}$ with marginal μ on \mathbb{R}^d and associated regression function η such that

$$
\text{(i)}~~\theta^{-1}\cdot r^d\leq \mu\big(B_\infty(x,r)\big)\leq \theta\cdot (2r)^d\text{ for }x\in \mathcal{X}_\tau(\eta)\cap \text{supp}(\mu)~\text{and }r\in (0,1];
$$

(ii) $B_{\infty}(x,r) \cap \mathcal{X}_{\tau+\lambda\cdot r^{\gamma}}(\eta) \neq \emptyset$ for $x \in \mathcal{X}_{\tau}(\eta) \cap \text{supp}(\mu)$ and $r \in (0,1],$

where $B_{\infty}(x, r)$ is the closed sup-norm ball around x of radius r.

Given $d \in \mathbb{N}, \tau \in \mathbb{R}, \theta > 1, \gamma > 0$ and $\lambda \in (0, 1)$, we let $\mathcal{P}_{\text{Reg}, d}(\tau, \theta, \gamma, \lambda)$ denote the class of all distributions P on $\mathbb{R}^d \times \mathbb{R}$ with marginal μ on \mathbb{R}^d and associated regression function η such that

(i)
$$
\theta^{-1} \cdot r^d \le \mu(B_\infty(x,r)) \le \theta \cdot (2r)^d
$$
 for $x \in \mathcal{X}_\tau(\eta) \cap \text{supp}(\mu)$ and $r \in (0,1]$;

(ii) $B_{\infty}(x,r) \cap \mathcal{X}_{\tau+\lambda\cdot r^{\gamma}}(\eta) \neq \emptyset$ for $x \in \mathcal{X}_{\tau}(\eta) \cap \text{supp}(\mu)$ and $r \in (0,1],$

where $B_{\infty}(x, r)$ is the closed sup-norm ball around x of radius r.

The first condition ensures that μ is genuinely d-dimensional.

Given $d \in \mathbb{N}, \tau \in \mathbb{R}, \theta > 1, \gamma > 0$ and $\lambda \in (0, 1)$, we let $\mathcal{P}_{\text{Reg}, d}(\tau, \theta, \gamma, \lambda)$ denote the class of all distributions P on $\mathbb{R}^d \times \mathbb{R}$ with marginal μ on \mathbb{R}^d and associated regression function η such that

(i)
$$
\theta^{-1}\cdot r^d\leq \mu\big(B_\infty(x,r)\big)\leq \theta\cdot (2r)^d
$$
 for $x\in \mathcal{X}_\tau(\eta)\cap \mathrm{supp}(\mu)$ and $r\in (0,1];$

(ii) $B_{\infty}(x,r) \cap \mathcal{X}_{\tau+\lambda\cdot r^{\gamma}}(\eta) \neq \emptyset$ for $x \in \mathcal{X}_{\tau}(\eta) \cap \text{supp}(\mu)$ and $r \in (0,1],$

where $B_{\infty}(x, r)$ is the closed sup-norm ball around x of radius r.

The first condition ensures that μ is genuinely d-dimensional.

The second controls the way in which η grows around the τ -boundary.

We conduct a simulation study to compare with other choices of multiple testing procedure.

Our regression functions η are obtained by rescaling f.

Simulations: multiple testing procedure

We conduct a simulation study to compare with other choices of multiple testing procedure.

Simulations: multiple testing procedure

Presented is the MC-based estimate of $\mathbb{E}_P\{\mu(\mathcal{X}_\tau(\eta)\setminus\hat{A})\}$ for $\hat{A} \in \{\hat{A}^{\text{ISS}}, \hat{A}^{\text{ISS},\text{H}}, \hat{A}^{\text{ISS},\text{Any}}\}.$ The last two use methods due to [Meijer](#page-32-4) [and Goeman \(2015\)](#page-32-4).