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Subgroup selection

Task:
Subgroup selection in regression: Identify a subset of the covariate domain on
which the regression function satisfies a particular property (e.g. exceeds a
threshold).

Setting:
Fix σ > 0. Let PMon,d(σ) be the family of distributions P on Rd × R such that
for (X,Y ) ∼ P ,

(i) the regression function η(x) := E(Y |X = x) is increasing∗ on Rd.

(ii) Y − η(X) | X is sub-Gaussian with variance parameter σ2.

∗x0 ≼ x1 =⇒ η(x0) ≤ η(x1).
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Statistical setting

Notation:

▶ Fix τ ∈ R. Define τ -superlevel set by
Xτ (η) :=

{
x ∈ Rd : η(x) ≥ τ

}
.

▶ µ denotes the marginal distribution of X .

▶ D :=
(
(X1, Y1), . . . , (Xn, Yn)

)
.

Goal: algorithm that returns a selected set Â(D) ⊆ Rd with:

▶ Type I error control: Fix α ∈ (0, 1). Require

inf
P∈PMon,d(σ)

PP

{
Â(D) ⊆ Xτ (η)

}
≥ 1− α.

▶ Power: Want small expected regret

E
{
µ
(
Xτ (η) \ Â(D)

)}
.
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)}
.

Isotonic Subgroup Selection 4/11



Statistical setting

Notation:

▶ Fix τ ∈ R. Define τ -superlevel set by
Xτ (η) :=

{
x ∈ Rd : η(x) ≥ τ

}
.

▶ µ denotes the marginal distribution of X .

▶ D :=
(
(X1, Y1), . . . , (Xn, Yn)

)
.

Goal: algorithm that returns a selected set Â(D) ⊆ Rd with:
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High-level strategy

For x0 ∈ Rd, define null hypothesis H0(x0) := {P ∈ PMon,d(σ) : η(x0) < τ}.
X1

X5

X4

X2

X6

X3

Xτ(ηP )
x0

High-level strategy:

1. Sub-sample m covariate vectors X1, . . . , Xm with m ≤ n;

2. Construct p-values p̂ℓ for H0(Xℓ), i.e. P
(
p̂ℓ(D) ≤ α | (Xi)

n
i=1

)
≤ α for all

P ∈ H0(Xℓ), α ∈ (0, 1), ℓ ∈ {1, . . . ,m};

3. Apply a multiple testing procedure to reject Rα ⊆ {1, . . . ,m} with
PP

(
Rα ∩ {ℓ ∈ {1, . . . ,m} : P ∈ H0(Xℓ)} ≠ ∅ | (Xi)

m
i=1

)
≤ α;

4. Output Â :=
{
x ∈ Rd : Xℓ ≼ x for some ℓ ∈ Rα}.
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p-value construction

Given x0 ∈ Rd, we seek a p-value for
H0(x0) := {P ∈ PMon,d(σ) : η(x0) < τ}.

Write I(x0) := {i ∈ [n] : Xi ≼ x0}. Let
X(j) be the jth nearest neighbor in
sup-norm of x0 among Xi, i ∈ I(x0), and
let Y(j) be the corresponding response.

X1

X5

X4

X2

X6

X3

Xτ(ηP )
x0

Then, Sk :=
∑|I(x0)|

j=1 (Y(j) − τ)/σ is a supermartingale under P ∈ H0(x0) .
Combination with time-uniform bounds by Howard et al. (2021) gives p-values.

x0

k
τ

η

η(x)

Z0

Z1

∆1 ∆1

1

Z2

∆2

∆22

Z3

∆3

∆3

3

Z4

∆4

∆4

4

Z5

∆5

∆5

5

Z6

∆6

∆6

6

Sk

vk(α)

vk(p)

(Here: Zj := (X(j), Y(j)), ∆j := (Y(j) − τ)/σ.)
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Theory: Type I error control

Combining the presented p-value construction with the just illustrated multiple
testing procedure defines the proposed procedure ÂISS ≡ ÂISS

σ,τ,α,m.

Theorem. For any n ∈ N,m ∈ [n], α ∈ (0, 1), σ > 0, and P ∈ PMon,d(σ),
along with D ∼ Pn, we have

PP

(
ÂISS

σ,τ,α,m(D) ⊆ Xτ (η)
∣∣ DX

)
≥ 1− α.

Ideas: martingale test procedures (Duan et al., 2020), time-uniform boundaries
on martingales with sub-Gaussian increments (Howard et al., 2021) and the
sequential rejection principle (Goeman and Solari, 2010).
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Theory: Power

Theorem. Let σ, γ > 0, θ > 1 and λ ∈ (0, 1). There exists C ≥ 1, depending
only on (d, θ), such that for any P ∈ PMon,d(σ) ∩ PReg,d(τ, θ, γ, λ), n ∈ N,
m ∈ [n], α ∈ (0, 1) and D ∼ Pn thata

EP

{
µ
(
Xτ (η) \ ÂISS(D)

)}
≤ 1 ∧ C

{(
σ2

nλ2
log+

(m log+ n

α

))1/(2γ+d)

+

(
log+ m

m

)1/d}
.

alog+ x := log(x ∨ e).

Theorem. Our procedure is minimax-optimal up to poly-logarithmic factors
among procedures with Type I error control over PMon,d(σ) ∩ PReg,d(τ, θ, γ, λ).
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AIDS Clinical Trials Group Study 175 (Hammer et al., 1996)

Isotonic Subgroup Selection 9/11



Summary

▶ We addressed the problem of subgroup selection in isotonic regression.

▶ We propose a computationally-feasible algorithm controlling Type I error.

▶ We show minimax-optimality up to poly-logarithmic factors of our method.

Extensions and further results (see full paper for details):

▶ Variation tailored to bounded responses and classification.

▶ Variation tailored to isotonic quantile regression.

▶ Use in heterogeneous treatment effects in randomised controlled trials.

▶ Further applications and simulations.

▶ ...
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Multiple testing procedures for DAGs

Key idea: logical relationships of hypotheses H0(xi), i ∈ [m], induce DAG with
vertex set [m]. Careful α-budget allocation and sequential rejections are then
performed.

Example: In the first iteration, no hypothesis has been rejected yet and only root
nodes are assigned positive α-budget.

1
(0.01)

2
(0.1)

3
(0.3)

4
(0.04)

5
(0.01)

6
(0.1)

7
(0.03)

0.0125

0.025

0.0125

Here, nodes 1, 6 and 7 are current rejection candidates, and 1 will be rejected, as
p1 = 0.01 ≤ 0.0125.
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Multiple testing procedures for DAGs

Key idea: logical relationships of hypotheses H0(xi), i ∈ [m], induce DAG with
vertex set [m]. Careful α-budget allocation and sequential rejections are then
performed.

Example: After rejection of node 1 in the first step, we reallocate the α-budget.

1
(0.01)

2
(0.1)

3
(0.3)

4
(0.04)

5
(0.01)

6
(0.1)

7
(0.03)

0.0333

0.0167

Here, node 7 will be rejected.
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Multiple testing procedures for DAGs

Key idea: logical relationships of hypotheses H0(xi), i ∈ [m], induce DAG with
vertex set [m]. Careful α-budget allocation and sequential rejections are then
performed.

Example: Now that node 7 has been rejected, its child 5 receives α-budget
sufficiently large for it to be rejected.

1
(0.01)

2
(0.1)

3
(0.3)

4
(0.04)

5
(0.01)

6
(0.1)

7
(0.03)

0.0333

0.0167

Although p6 is quite large, 6 is an ancestor of 5 in the induced DAG and will
hence also be rejected.
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Multiple testing procedures for DAGs

Key idea: logical relationships of hypotheses H0(xi), i ∈ [m], induce DAG with
vertex set [m]. Careful α-budget allocation and sequential rejections are then
performed.

Example: None of the remaining three nodes (coincidentally, the leaf nodes),
have a p-value smaller than their respective α-budgets.

1
(0.01)

2
(0.1)

3
(0.3)

4
(0.04)

5
(0.01)

6
(0.1)

7
(0.03)

0.0167

0.0167

0.0167

Nodes 1, 5, 6 and 7 have been rejected.
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Theory: Power

Given d ∈ N, τ ∈ R, θ > 1, γ > 0 and λ ∈ (0, 1), we let PReg,d(τ, θ, γ, λ) denote
the class of all distributions P on Rd × R with marginal µ on Rd and associated
regression function η such that

(i) θ−1 · rd ≤ µ
(
B∞(x, r)

)
≤ θ · (2r)d for x ∈ Xτ (η)∩ supp(µ) and r ∈ (0, 1];

(ii) B∞(x, r) ∩ Xτ+λ·rγ (η) ̸= ∅ for x ∈ Xτ (η) ∩ supp(µ) and r ∈ (0, 1],

where B∞(x, r) is the closed sup-norm ball around x of radius r.

The first condition ensures that µ is genuinely d-dimensional.

The second controls the way in which η grows around the τ -boundary.
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Simulations: multiple testing procedure

We conduct a simulation study to compare with other choices of multiple
testing procedure.

Our regression functions η are obtained by rescaling f .
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Simulations: multiple testing procedure

Presented is the MC-based estimate of EP

{
µ
(
Xτ (η) \ Â

)}
for

Â ∈ {ÂISS, ÂISS,H, ÂISS,All, ÂISS,Any}. The last two use methods due to Meijer
and Goeman (2015).
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