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Introduction and outline

Canonical Correlation Analysis (CCA) is much like Principal Component Analysis
(PCA).
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Introduction and outline

Canonical Correlation Analysis (CCA) is much like Principal Component Analysis
(PCA).
Similarly, the term may refer to:

@ A mathematical object

@ A class of algorithms

@ Process for dimension reduction or interpretation

Structure of talk
@ Population CCA
@ CCA as a tool for data analysis

@ Our specific motivations and contributions
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Population CCA

In words: Given random variables X € RP| Y € R? find linear combinations
uTX,vTY with maximal correlation, successively, subject to orthogonality.
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Population CCA

In words: Given random variables X € RP| Y € R? find linear combinations
uTX,vTY with maximal correlation, successively, subject to orthogonality.

‘Function’ from law of pair (X, Y) to an optimal pair of bases.
Note: correlation is invariant to scaling, so normalise to have variance one.

In maths: Inductively define uy, vk by

maximize Cov (uTX, VTY)
u€RP,vERT

subject to Var (u”X) = Var (v'Y) =1,
Cov (uTX, ujTX) = Cov (vTY, vaY) =0 forj=1,...; k-1
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Population CCA

In words: Given random variables X € RP| Y € R? find linear combinations
uTX,vTY with maximal correlation, successively, subject to orthogonality.

‘Function’ from law of pair (X, Y) to an optimal pair of bases.

Note: correlation is invariant to scaling, so normalise to have variance one.
In maths: Inductively define uy, vk by

maximize Cov (uTX, VTY)
ueRrP, veRY
subject to Var (u”X) = Var (v'Y) =1,
Cov (uTX, ujTX) = Cov (VTY, vaY) =0 forj=1,...; k-1

Notation:
@ py the optimal value called k* canonical correlation
° ukTX, vaY called canonical variates

@ wuy, vy called weights
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Visualisation of CCA

maximize Cov (uTX, vTY)
uERP,vERT

subject to Var (u”X) = Var (v'Y) =1,
Cov (uTX, ujTX) = Cov (VTY, vaY) =0 forj=1,...,k—1.
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Matrix formulation

maximize Cov (uTX, vTY)
ueRrP veRI

subject to Var (u”X) = Var (v"Y) =1,

Cov(u"X,u/X)=Cov(v'Y,vY)=0 forj=1,... . k—1.
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Matrix formulation

maximize Cov (uTX, vTY)
ucRpP,veRY

subject to Var (u”X) = Var (v"Y) =1,

Cov(u"X,u/X)=Cov(v'Y,vY)=0 forj=1,... . k—1.

Weights are not the only interesting vectors - let's inspect matrix form - but skim
links to rest of matrix analysis for now...
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Matrix formulation

maximize Cov (uTX, vTY)
ucRpP,veRY

subject to Var (u”X) = Var (v"Y) =1,

Cov(u"X,u/X)=Cov(v'Y,vY)=0 forj=1,... . k—1.

Weights are not the only interesting vectors - let's inspect matrix form - but skim
links to rest of matrix analysis for now...

maximize uTZva
ueRP veRY

subject to u” ¥ u =1, vT):yyv =1,
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Matrix formulation

maximize Cov (uTX, vTY)
ucRpP,veRY

subject to Var (u”X) = Var (v"Y) =1,
Cov(u"X,u/X)=Cov(v'Y,vY)=0 forj=1,... . k—1.

Weights are not the only interesting vectors - let's inspect matrix form - but skim
links to rest of matrix analysis for now...

maximize uTZva
ueRP veRY

subject to u” ¥ u =1, vT):yyv =1,
uTZXXuj = vTZyyvj =0forl1<j< k-1
Notation: Define canonical loadings

Yotk = Cov(X,ul X), X, v = Cov(Y,v/]Y)
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Reconstruction

Orthonormality constraints u] Zuj = v/ X, v; = &y for 1 <j < k—1.

So (uk), (Xuxuk) and (vi), (¥, vk) are each pairs of dual bases.
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Reconstruction

Orthonormality constraints u] Zuj = v/ X, v; = &y for 1 <j < k—1.

So (uk), (Xuxuk) and (vi), (¥, vk) are each pairs of dual bases.

Hence

P q
X =" Ttk (g, X), Y= v (v Y)
k=1 k=1

Probabilistic CCA: Consider the model

Z ~ N(0, lg), min(p,q) >d >1
X|ZNN(W12+NL\U1)7 WleRde7w1 ?O
Y|Z NN(W2Z+:U'23\U2), W, € RPde\UZ =0

Then MLEs for Wy, W, are essentially matrices of canonical loadings
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Practical Uses

High-level: two sets of data and want to understand interactions

Different perspectives:

o stats: estimation
o bio-informatics: algorithm for data matrices, part of pipeline...

@ Uses: Dimension reduction, visualisation / interpretation, multi-view /
self-supervised learning

Motivating Example: Multi-OMICS for human microbiome measuring
p = 200 metabolites, and g = 800 enzymes for n = 500 individuals.
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Classical Estimator / Sample CCA algorithm

Just stick in sample covariances

maximize Cov(u' X, v'Y)
uERP,VERT

subject to \//;(UTX) <1, \//;(VTY) <1,
EO\V(UTX, uJTX) = a/(vTY, vJ-TY) =0for1 <j<k-1
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Classical Estimator / Sample CCA algorithm

Just stick in sample covariances
maximize 6c>\v(u—'—X7 vY)
u€RP,vERT
subject to \//;(UTX) <1, \//;(VTY) <1,
Eo\v(uTX, uJTX) = a/(vTY, vJ-TY) =0for1 <j<k-1

Classical Theory: asymptotic distributions, significance tests...

Problem: Arbitrary correlations of 1 in high dimensions (g > n).
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Classical Estimator / Sample CCA algorithm

Add regularisation
o Coul T T
g;?lél,%lﬁ? Cov(u' X, v'Y) —7yllulls — 7]Vl
subject to Var(u"X) < 1, Var(v'Y) < 1,

(fc;/(uTX7 ujTX) = C/o\v(vTY7 vJ-TY) =0forl1<j<k-1
Classical Theory: asymptotic distributions, significance tests...

Problem: Arbitrary correlations of 1 in high dimensions (g > n).
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Setting the stage

e Main perspective: Exploratory Data Analysis (EDA) with an eye on physical
interpretation. Loosely frequentist approach.

o Regularised CCA algorithms:

o ridge CCA: |2 penalty
e sparse CCA: I1 penalty

@ Practical considerations:

e model / tuning parameter selection
e number of pairs to consider
o interpretation

@ Unanswered question: Are these regularised CCA methods appropriate for
real data? Might other structural assumptions be more natural.
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Our contributions

o New algorithm: using graphical lasso; motivated by graphical models and
conditional independence.

@ Practical advice: for model comparison and interpretation motivated by the
fundamental geometry of population CCA.

Lennie Wells High-dimensional CCA May 9, 2023



o New algorithm: using graphical lasso; motivated by graphical models and
conditional independence.

@ Practical advice: for model comparison and interpretation motivated by the
fundamental geometry of population CCA.

o Main conclusions:
o CCA is fundamentally a subspace problem
e Variates and loadings are easier to estimate than weights
o Powerful visualisation via biplots

Model selection is subtle

Graphical lasso approach works well!
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Our contributions

o New algorithm: using graphical lasso; motivated by graphical models and
conditional independence.

@ Practical advice: for model comparison and interpretation motivated by the
fundamental geometry of population CCA.

o Main conclusions:
o CCA is fundamentally a subspace problem
e Variates and loadings are easier to estimate than weights
o Powerful visualisation via biplots

o Model selection is subtle

Graphical lasso approach works well!

These may seem natural, but are far from the accepted wisdom, and should
be a welcome contribution to the field.
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Questions?

wit, 3.5e+00, range(0, 3) s.c.suo, 1.3e-02, range(0, 3) s.c.s gglasso, 5.9e-03, [0, 1] s.c.gidge, 1.1e-01, range(0, 3) s.c.s
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Pretty picture




Links with matrix analysis

maximize u ZXVV
ueRP,veRY

subject to uTZXXu =1, vTZyyv =1,

UTZXXUJ' = VszyV/ =0forl <j< k-1

o Singular Value Decomposition
(pr, =2 ui, T3/ % i) give SVD of M := ¥.1/%%,, 5,12
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Links with matrix analysis

maX|m|ze u vav
ueRP,veRY

subject to uTZXXu =1, vTZyyv =1,
UTZXXUJ' = VTZWV/ =0forl <j< k-1

o Singular Value Decomposition
(pr, =2 ui, T3/ % i) give SVD of M := ¥.1/%%,, 5,12

o Generalised Eigenvalue Problem: Aw = ABw

(0 Exv _(xx O _(u _
A= (o ) (0 ) (1) emee
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Links with matrix analysis

maX|m|ze u vav
ueRP,veRY

subject to uTZXXu =1, vTZyyv =1,
UTZXXUJ' = VTZWV/ =0forl <j< k-1

o Singular Value Decomposition
(pr, =2 ui, T3/ % i) give SVD of M := ¥.1/%%,, 5,12

o Generalised Eigenvalue Problem: Aw = ABw

(0 Exv _(xx O _(u _
A= (o ) (0 ) (1) emee

@ Canonical Angles
X =span({X;:j=1,...,p}), Y:=span({Y;:j=1,...,q}) then CCA is

maximize (W, Z)
Wy EX,Z,EY

subject to || Wkl <1, || Zk]2 < 1,
(Wi, Wj) = (Zi,Z) =0 for 1 < j < k— 1.
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Probabilistic CCA

Consider the model:
Z ~ N(O, 1),
X|Z NN(le-i-,ul,\Ul),
Y|Z NN(WzZ—l—Mg,\Ug),

min(p,q) > d > 1
Wy e RPXY Wy =0
Ws € RPXY W, = 0

Then the MLEs of the parameters Wi, W5, Wy, Wy, g, po are

and /iy = X, 11> = Y where My, M, € R?*? are arbitrary matrices with
MM] = R, [[Mi]| < 1,[[ Mg <1

May 9, 2023
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Graphical Models

@ Setup: X = (X1,...,XP) a random vector; G = (V, E) graph with
V={1,...,p}
o Key idea: graph structure constrains distribution of X

e Gaussian graphical models: X' L XJ|(X*)x.;; whenever (i,j) ¢ E

©
O—E——~—~0O

®
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Graphical Lasso

Aim: Solve structure estimation problem

Setup: samples xi, ..., x, from some zero-mean Gaussian with precision
matrix € RP*P

o Write: S =137 xixT € RP*P
@ Log-likelihood:

1(92; X) = log det — trace(S)
@ Penalised Objective:

"€ argmax, g{logdet — trace(S) — api()}

where: a € (0,00) is a penalty parameter, p1() = >_,; [
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Our Approach

Observations:
o ¥ = Q! is differentiable function of Q.
@ M is a differentiable function of X
@ So M = () where f is differentiable

Algorithm: Estimate Q with graphical lasso, plug-in M = f(ﬁ) then apply SVD
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Our Approach

Observations:
o ¥ = Q! is differentiable function of Q.
@ M is a differentiable function of X
@ So M = () where f is differentiable

Algorithm: Estimate Q with graphical lasso, plug-in M = f(ﬁ) then apply SVD

Theorem: can combine results in the literature to see convergence rate

A log p\ /2
sin (5. 8) < (p) (“E7

n
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Existing Methods: PMD [WTH09]

Penalised Matrix Decomposition

A natural but difficult objective:

maximize = uTXTYv
u€eRP, veRg "

subject to [Xul3 <1, HYV[5< 1, [luh<a, vi<e
Make constraints tractable:
maximize LuTXTYv
u€RpP veRd "

subject to [[ull3 <1, [[VIE <1, [luli <a, vl < e

Justification: Identity approximation valid

Algorithm: alternate between solving for u, v by soft-thresholding
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Existing Methods: PMD [WTH09]

Penalised Matrix Decomposition

A natural but difficult objective:

maximize = uTXTYv
u€eRP, veRg "

subject to [Xul3 <1, HYV[5< 1, [luh<a, vi<e
Make constraints tractable:

maximize LuTXTYv
u€RpP veRd "

subject to [[ull3 <1, [[VIE <1, [luli <a, vl < e

Justification: Identity approximation valid

Algorithm: alternate between solving for u, v by soft-thresholding

Later pairs: Apply with 1X7Y — Z ° djuj
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Existing Methods: AMA [SMN*17]

Alternating Minimisation Algorithm

Use Lagrange multiplier penalty rather than explicit constraints:
minimize — 2u”XTYv + 71| ul|1 + 72||v]1
u,v

+1{us Xl <1} +1{v: IYv|3 <1}

Algorithm: alternate between solving for u, v.
For v fixed get:

. T~T
—u' XY 1 <1
%Qp','?e'fg u v+ilulli+1{]z]]2 <1}
f(u) &(z)

subject to Xu = z

Tool: Linearized ADMM
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Existing Methods: AMA [SMN*17]

Alternating Minimisation Algorithm

Use Lagrange multiplier penalty rather than explicit constraints:
minimize — 2u”XTYv + 71| ul|1 + 72||v]1
u,v

+1{us Xl <1} +1{v: IYv|3 <1}

Algorithm: alternate between solving for u, v.
For v fixed get:

. T~T
—u' XY 1 <1
%Qp','?e'fg u v+ilulli+1{]z]]2 <1}
f(u) &(z)

subject to Xu = z

Tool: Linearized ADMM
Later pairs: Add constraint UTX"Xu=0; VTYTYv =0
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E| Xiaotong Suo, Victor Minden, Bradley Nelson, Robert Tibshirani, and
Michael Saunders.
Sparse canonical correlation analysis.
arXiv:1705.10865 [stat], June 2017.
arXiv: 1705.10865.

@ Daniela M. Witten, Robert Tibshirani, and Trevor Hastie.
A penalized matrix decomposition, with applications to sparse principal
components and canonical correlation analysis.
Biostatistics, 10(3):515-534, July 20009.
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