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Introduction and outline

Canonical Correlation Analysis (CCA) is much like Principal Component Analysis
(PCA).

Similarly, the term may refer to:
A mathematical object
A class of algorithms
Process for dimension reduction or interpretation
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Population CCA

In words: Given random variables X ∈ Rp ,Y ∈ Rq find linear combinations
uT X , vT Y with maximal correlation, successively, subject to orthogonality.

‘Function’ from law of pair (X ,Y ) to an optimal pair of bases.
Note: correlation is invariant to scaling, so normalise to have variance one.
In maths: Inductively define uk , vk by

maximize
u∈Rp ,v∈Rq

Cov
(
uT X , vT Y

)
subject to Var

(
uT X

)
= Var

(
vT Y

)
= 1,

Cov
(
uT X , uT

j X
)
= Cov

(
vT Y , vT

j Y
)
= 0 for j = 1, . . . , k − 1.

Notation:
ρk the optimal value called kth canonical correlation
uT

k X , vT
k Y called canonical variates

uk , vk called weights
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Visualisation of CCA

maximize
u∈Rp ,v∈Rq

Cov
(
uT X , vT Y

)
subject to Var

(
uT X

)
= Var

(
vT Y

)
= 1,

Cov
(
uT X , uT

j X
)
= Cov

(
vT Y , vT

j Y
)
= 0 for j = 1, . . . , k − 1.
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Matrix formulation
maximize
u∈Rp ,v∈Rq

Cov
(
uT X , vT Y

)
subject to Var

(
uT X

)
= Var

(
vT Y

)
= 1,

Cov
(
uT X , uT

j X
)
= Cov

(
vT Y , vT

j Y
)
= 0 for j = 1, . . . , k − 1.

Weights are not the only interesting vectors - let’s inspect matrix form - but skim
links to rest of matrix analysis for now...

maximize
u∈Rp ,v∈Rq

uTΣxyv

subject to uTΣxxu = 1, vTΣyyv = 1,
uTΣxxuj = vTΣyyvj = 0 for 1 ≤ j ≤ k − 1.

Notation: Define canonical loadings

Σxxuk = Cov(X , uT
k X), Σyyvk = Cov(Y , vT

k Y )
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Reconstruction

Orthonormality constraints uT
k Σxxuj = vT

k Σyyvj = δjk for 1 ≤ j ≤ k − 1.

So (uk), (Σxxuk) and (vk), (Σyyvk) are each pairs of dual bases.

Hence

X =

p∑
k=1

Σxxuk 〈uk ,X〉, Y =

q∑
k=1

Σyyvk 〈vk ,Y 〉

Probabilistic CCA: Consider the model

Z ∼ N (0, Id), min(p, q) ≥ d ≥ 1
X |Z ∼ N (W1Z + µ1,Ψ1), W1 ∈ Rp×d ,Ψ1 < 0
Y |Z ∼ N (W2Z + µ2,Ψ2), W2 ∈ Rp×d ,Ψ2 < 0

Then MLEs for W1,W2 are essentially matrices of canonical loadings
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Practical Uses

High-level: two sets of data and want to understand interactions

Different perspectives:
stats: estimation
bio-informatics: algorithm for data matrices, part of pipeline...

Uses: Dimension reduction, visualisation / interpretation, multi-view /
self-supervised learning

Motivating Example: Multi-OMICS for human microbiome measuring
p = 200 metabolites, and q = 800 enzymes for n = 500 individuals.
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Classical Estimator / Sample CCA algorithm

Just stick in sample covariances

maximize
u∈Rp ,v∈Rq

Ĉov(u>X, v>Y)

subject to V̂ar(u>X) ≤ 1, V̂ar(v>Y) ≤ 1,

Ĉov(u>X, u>
j X) = Ĉov(v>Y, v>

j Y) = 0 for 1 ≤ j ≤ k − 1.

Classical Theory: asymptotic distributions, significance tests...

Problem: Arbitrary correlations of 1 in high dimensions (q ≥ n).
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Classical Estimator / Sample CCA algorithm

Add regularisation

maximize
u∈Rp ,v∈Rq

Ĉov(u>X, v>Y)− τu‖u‖1 − τv‖v‖1

subject to V̂ar(u>X) ≤ 1, V̂ar(v>Y) ≤ 1,

Ĉov(u>X, u>
j X) = Ĉov(v>Y, v>

j Y) = 0 for 1 ≤ j ≤ k − 1.

Classical Theory: asymptotic distributions, significance tests...

Problem: Arbitrary correlations of 1 in high dimensions (q ≥ n).
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Setting the stage

Main perspective: Exploratory Data Analysis (EDA) with an eye on physical
interpretation. Loosely frequentist approach.

Regularised CCA algorithms:
ridge CCA: l2 penalty
sparse CCA: l1 penalty

Practical considerations:
model / tuning parameter selection
number of pairs to consider
interpretation

Unanswered question: Are these regularised CCA methods appropriate for
real data? Might other structural assumptions be more natural.
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Our contributions

New algorithm: using graphical lasso; motivated by graphical models and
conditional independence.

Practical advice: for model comparison and interpretation motivated by the
fundamental geometry of population CCA.

Main conclusions:
CCA is fundamentally a subspace problem
Variates and loadings are easier to estimate than weights
Powerful visualisation via biplots
Model selection is subtle
Graphical lasso approach works well!

These may seem natural, but are far from the accepted wisdom, and should
be a welcome contribution to the field.
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Questions?
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Pretty picture
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Links with matrix analysis
maximize
u∈Rp ,v∈Rq

uTΣxy v

subject to uTΣxx u = 1, vTΣyy v = 1,

uTΣxx uj = vTΣyy vj = 0 for 1 ≤ j ≤ k − 1.

Singular Value Decomposition
(ρk ,Σ

1/2
x uk ,Σ

1/2
y vk) give SVD of M := Σ

−1/2
xx ΣxyΣ

−1/2
yy

Generalised Eigenvalue Problem: Aw = λBw

A =

(
0 ΣXY

ΣYX 0

)
, B =

(
ΣXX 0

0 ΣYY

)
, w =

(
u
v

)
, d = p + q.

Canonical Angles
X := span({Xj : j = 1, . . . , p}), Y := span({Yj : j = 1, . . . , q}) then CCA is

maximize
Wk∈X ,Zk∈Y

〈Wk ,Zk〉

subject to ‖Wk‖2 ≤ 1, ‖Zk‖2 ≤ 1,
〈Wk ,Wj〉 = 〈Zk ,Zj〉 = 0 for 1 ≤ j ≤ k − 1.
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Probabilistic CCA

Consider the model:

Z ∼ N (0, Id), min(p, q) ≥ d ≥ 1
X |Z ∼ N (W1Z + µ1,Ψ1), W1 ∈ Rp×d ,Ψ1 < 0
Y |Z ∼ N (W2Z + µ2,Ψ2), W2 ∈ Rp×d ,Ψ2 < 0

Then the MLEs of the parameters W1,W2,Ψ1,Ψ2, µ1, µ2 are

Ŵ1 = Σ̂xxUdM1

Ŵ2 = Σ̂yyVdM2

Ψ̂1 = Σ̂xx − Ŵ1Ŵ T
1

Ψ̂2 = Σ̂yy − Ŵ2Ŵ T
2

and µ̂1 = X̄ , µ̂2 = Ȳ where M1,M2 ∈ Rd×d are arbitrary matrices with
M1MT

2 = R , ‖M1‖ ≤ 1, ‖M2‖ ≤ 1

Lennie Wells High-dimensional CCA May 9, 2023 14 / 19



Graphical Models

Setup: X = (X1, . . . ,Xp) a random vector; G = (V ,E) graph with
V = {1, . . . , p}
Key idea: graph structure constrains distribution of X
Gaussian graphical models: X i ⊥ X j |(X k)k 6=i,j whenever (i , j) /∈ E

Lennie Wells High-dimensional CCA May 9, 2023 15 / 19



Graphical Lasso

Aim: Solve structure estimation problem
Setup: samples x1, . . . , xn from some zero-mean Gaussian with precision
matrix ∈ Rp×p

Write: S = 1
n
∑n

i=1 xixT
i ∈ Rp×p

Log-likelihood:
l(Ω;X) = log det − trace(S)

Penalised Objective:

ˆ∈ argmax�0{log det − trace(S)− αρ1()}

where: α ∈ (0,∞) is a penalty parameter, ρ1() =
∑

i 6=j |Ωij |

Lennie Wells High-dimensional CCA May 9, 2023 16 / 19



Our Approach

Observations:
Σ = Ω−1 is differentiable function of Ω.
M is a differentiable function of Σ
So M = f (Ω) where f is differentiable

Algorithm: Estimate Ω with graphical lasso, plug-in M̂ = f (Ω̂), then apply SVD

Theorem: can combine results in the literature to see convergence rate

sinΘ(B̂,B) . s0(p)
(
log p

n

)1/2
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Existing Methods: PMD [WTH09]

Penalised Matrix Decomposition
A natural but difficult objective:

maximize
u∈Rp ,v∈Rq

1
n uT XT Yv

subject to 1
n‖Xu‖2

2 6 1, 1
n‖Yv‖2

2 6 1, ‖u‖1 6 c1, ‖v‖1 6 c2

Make constraints tractable:

maximize
u∈Rp ,v∈Rq

1
n uT XT Yv

subject to ‖u‖2
2 6 1, ‖v‖2

2 6 1, ‖u‖1 6 c1, ‖v‖1 6 c2.

Justification: Identity approximation valid
Algorithm: alternate between solving for u, v by soft-thresholding

Later pairs: Apply with 1
n XT Y −

∑k−1
j=1 djujvT

j
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Existing Methods: AMA [SMN+17]

Alternating Minimisation Algorithm

Use Lagrange multiplier penalty rather than explicit constraints:

minimize
u,v

− 1
n uT XT Yv + τ1‖u‖1 + τ2‖v‖1

+ 1
{

u : 1
n‖Xu‖2

2 ≤ 1
}
+ 1

{
v : 1

n‖Yv‖2
2 ≤ 1

}
Algorithm: alternate between solving for u, v .
For v fixed get:

minimize
u∈Rp ,z∈Rn

−uT XT Yv + τ1‖u‖1︸ ︷︷ ︸
f (u)

+1 {‖z‖2 ≤ 1}︸ ︷︷ ︸
g(z)

subject to Xu = z

Tool: Linearized ADMM

Later pairs: Add constraint UT XT Xu = 0;V T YT Yv = 0
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