Universal cutoff for exclusion with reservoirs

Justin Salez (Université Paris-Dauphine)

1. Model and questions

2. Results
3. Proof ingredients

The standard exclusion process

The standard exclusion process

The standard exclusion process

The exclusion process with reservoirs

The exclusion process with reservoirs

Exclusion with reservoir density ρ on a network G

Exclusion with reservoir density ρ on a network G

Fix a density $\rho \in(0,1)$ and a network $G=(V, c, \kappa)$ consisting of

Exclusion with reservoir density ρ on a network G

Fix a density $\rho \in(0,1)$ and a network $G=(V, c, \kappa)$ consisting of

- a vertex set V with $|V|=n$;

Exclusion with reservoir density ρ on a network G

Fix a density $\rho \in(0,1)$ and a network $G=(V, c, \kappa)$ consisting of

- a vertex set V with $|V|=n$;
- a collection of edge rates $c: V \times V \rightarrow[0, \infty)$ (symmetric);

Exclusion with reservoir density ρ on a network G

Fix a density $\rho \in(0,1)$ and a network $G=(V, c, \kappa)$ consisting of

- a vertex set V with $|V|=n$;
- a collection of edge rates $c: V \times V \rightarrow[0, \infty)$ (symmetric);
- a collection of vertex rates $\kappa: V \rightarrow[0, \infty)$.

Exclusion with reservoir density ρ on a network G

Fix a density $\rho \in(0,1)$ and a network $G=(V, c, \kappa)$ consisting of

- a vertex set V with $|V|=n$;
- a collection of edge rates $c: V \times V \rightarrow[0, \infty)$ (symmetric);
- a collection of vertex rates $\kappa: V \rightarrow[0, \infty)$.

Consider the Markov process on $\mathscr{X}:=\{0,1\}^{V}$ with generator

Exclusion with reservoir density ρ on a network G

Fix a density $\rho \in(0,1)$ and a network $G=(V, c, \kappa)$ consisting of

- a vertex set V with $|V|=n$;
- a collection of edge rates $c: V \times V \rightarrow[0, \infty)$ (symmetric);
- a collection of vertex rates $\kappa: V \rightarrow[0, \infty)$.

Consider the Markov process on $\mathscr{X}:=\{0,1\}^{V}$ with generator

$$
(\mathscr{L} f)(x):=\frac{1}{2} \sum_{i, j \in V} c(i, j)\left(f\left(x^{i \leftrightarrow j}\right)-f(x)\right) \quad \text { (exchange) }
$$

Exclusion with reservoir density ρ on a network G

Fix a density $\rho \in(0,1)$ and a network $G=(V, c, \kappa)$ consisting of

- a vertex set V with $|V|=n$;
- a collection of edge rates $c: V \times V \rightarrow[0, \infty)$ (symmetric);
- a collection of vertex rates $\kappa: V \rightarrow[0, \infty)$.

Consider the Markov process on $\mathscr{X}:=\{0,1\}^{V}$ with generator

$$
\begin{aligned}
(\mathscr{L} f)(x) & :=\frac{1}{2} \sum_{i, j \in V} c(i, j)\left(f\left(x^{i \leftrightarrow j}\right)-f(x)\right) \quad \text { (exchange) } \\
& +\rho \sum_{i \in V} \kappa(i)\left(f\left(x^{i, 1}\right)-f(x)\right) \quad \text { (creation) }
\end{aligned}
$$

Exclusion with reservoir density ρ on a network G

Fix a density $\rho \in(0,1)$ and a network $G=(V, c, \kappa)$ consisting of

- a vertex set V with $|V|=n$;
- a collection of edge rates $c: V \times V \rightarrow[0, \infty)$ (symmetric);
- a collection of vertex rates $\kappa: V \rightarrow[0, \infty)$.

Consider the Markov process on $\mathscr{X}:=\{0,1\}^{V}$ with generator

$$
\begin{aligned}
(\mathscr{L} f)(x) & :=\frac{1}{2} \sum_{i, j \in V} c(i, j)\left(f\left(x^{i \leftrightarrow j}\right)-f(x)\right) \quad \text { (exchange) } \\
& +\rho \sum_{i \in V} \kappa(i)\left(f\left(x^{i, 1}\right)-f(x)\right) \quad \text { (creation) } \\
& +(1-\rho) \sum_{i \in V} \kappa(i)\left(f\left(x^{i, 0}\right)-f(x)\right) \quad \text { (annihilation) }
\end{aligned}
$$

Convergence to equilibrium

Convergence to equilibrium

- The measure $\pi:=\otimes_{i \in V} \operatorname{Ber}(\rho)$ is reversible under \mathscr{L}.

Convergence to equilibrium

- The measure $\pi:=\otimes_{i \in V} \operatorname{Ber}(\rho)$ is reversible under \mathscr{L}.
- \mathscr{L} is irreducible as soon as G is connected and $\kappa \not \equiv 0$.

Convergence to equilibrium

- The measure $\pi:=\otimes_{i \in V} \operatorname{Ber}(\rho)$ is reversible under \mathscr{L}.
- \mathscr{L} is irreducible as soon as G is connected and $\kappa \not \equiv 0$.

Consequently, the resulting process $\left(X_{t}\right)_{t \geq 0}$ mixes:

Convergence to equilibrium

- The measure $\pi:=\otimes_{i \in V} \operatorname{Ber}(\rho)$ is reversible under \mathscr{L}.
- \mathscr{L} is irreducible as soon as G is connected and $\kappa \not \equiv 0$.

Consequently, the resulting process $\left(X_{t}\right)_{t \geq 0}$ mixes:

$$
\forall x, y \in \mathscr{X}, \quad \mathbb{P}_{x}\left(X_{t}=y\right) \quad \underset{t \rightarrow \infty}{ } \pi(y)
$$

Convergence to equilibrium

- The measure $\pi:=\otimes_{i \in V} \operatorname{Ber}(\rho)$ is reversible under \mathscr{L}.
- \mathscr{L} is irreducible as soon as G is connected and $\kappa \not \equiv 0$.

Consequently, the resulting process $\left(X_{t}\right)_{t \geq 0}$ mixes:

$$
\forall x, y \in \mathscr{X}, \quad \mathbb{P}_{x}\left(X_{t}=y\right) \quad \xrightarrow[t \rightarrow \infty]{ } \pi(y)
$$

Question: how fast?

Mixing times (see book by Levin, Peres \& Wilmer)

Mixing times (see book by Levin, Peres \& Wilmer)

TV distance: $\mathrm{d}_{\mathrm{TV}}(t):=$

$$
\max _{A \subseteq \mathscr{X}}\left|\mathbb{P}_{x}\left(X_{t} \in A\right)-\pi(A)\right|
$$

Mixing times (see book by Levin, Peres \& Wilmer)

TV distance: $\mathrm{d}_{\mathrm{TV}}(t):=\max _{x \in \mathscr{X}} \max _{A \subseteq \mathscr{X}}\left|\mathbb{P}_{x}\left(X_{t} \in A\right)-\pi(A)\right|$

Mixing times (see book by Levin, Peres \& Wilmer)

TV distance: $\mathrm{d}_{\mathrm{TV}}(t):=\max _{x \in \mathscr{X}} \max _{A \subseteq \mathscr{X}}\left|\mathbb{P}_{x}\left(X_{t} \in A\right)-\pi(A)\right|$

- decreasing from nearly 1 to 0

Mixing times (see book by Levin, Peres \& Wilmer)

TV distance: $\mathrm{d}_{\mathrm{TV}}(t):=\max _{x \in \mathscr{X}} \max _{A \subseteq \mathscr{X}}\left|\mathbb{P}_{x}\left(X_{t} \in A\right)-\pi(A)\right|$

- decreasing from nearly 1 to 0
- sub-multiplicative: $\mathrm{d}_{\mathrm{TV}}(t+s) \leq 2 \mathrm{~d}_{\mathrm{TV}}(t) \mathrm{d}_{\mathrm{TV}}(s)$.

Mixing times (see book by Levin, Peres \& Wilmer)

TV distance: $\mathrm{d}_{\mathrm{TV}}(t):=\max _{x \in \mathscr{X}} \max _{A \subseteq \mathscr{X}}\left|\mathbb{P}_{x}\left(X_{t} \in A\right)-\pi(A)\right|$

- decreasing from nearly 1 to 0
- sub-multiplicative: $\mathrm{d}_{\mathrm{TV}}(t+s) \leq 2 \mathrm{~d}_{\mathrm{TV}}(t) \mathrm{d}_{\mathrm{TV}}(s)$.

$$
\frac{1}{t} \log \mathrm{~d}_{\mathrm{TV}}(t) \xrightarrow[t \rightarrow \infty]{ }
$$

Mixing times (see book by Levin, Peres \& Wilmer)

TV distance: $\mathrm{d}_{\mathrm{TV}}(t):=\max _{x \in \mathscr{X}} \max _{A \subseteq \mathscr{X}}\left|\mathbb{P}_{x}\left(X_{t} \in A\right)-\pi(A)\right|$

- decreasing from nearly 1 to 0
- sub-multiplicative: $\mathrm{d}_{\mathrm{TV}}(t+s) \leq 2 \mathrm{~d}_{\mathrm{TV}}(t) \mathrm{d}_{\mathrm{TV}}(s)$.

$$
\frac{1}{t} \log d_{\mathrm{TV}}(t) \xrightarrow[t \rightarrow \infty]{ } \quad-\operatorname{gap}(\mathscr{L})
$$

Mixing times (see book by Levin, Peres \& Wilmer)

TV distance: $\mathrm{d}_{\mathrm{TV}}(t):=\max _{x \in \mathscr{X}} \max _{A \subseteq \mathscr{X}}\left|\mathbb{P}_{x}\left(X_{t} \in A\right)-\pi(A)\right|$

- decreasing from nearly 1 to 0
- sub-multiplicative: $\mathrm{d}_{\mathrm{TV}}(t+s) \leq 2 \mathrm{~d}_{\mathrm{TV}}(t) \mathrm{d}_{\mathrm{TV}}(s)$.

$$
\frac{1}{t} \log d_{\mathrm{TV}}(t) \xrightarrow[t \rightarrow \infty]{ } \quad-\operatorname{gap}(\mathscr{L})
$$

Relaxation time: $\mathrm{t}_{\mathrm{REL}}:=\frac{1}{\operatorname{gap}(\mathscr{L})}$

Mixing times (see book by Levin, Peres \& Wilmer)

TV distance: $\mathrm{d}_{\mathrm{TV}}(t):=\max _{x \in \mathscr{X}} \max _{A \subseteq \mathscr{X}}\left|\mathbb{P}_{x}\left(X_{t} \in A\right)-\pi(A)\right|$

- decreasing from nearly 1 to 0
- sub-multiplicative: $\mathrm{d}_{\mathrm{TV}}(t+s) \leq 2 \mathrm{~d}_{\mathrm{TV}}(t) \mathrm{d}_{\mathrm{TV}}(s)$.

$$
\frac{1}{t} \log d_{\mathrm{TV}}(t) \xrightarrow[t \rightarrow \infty]{ } \quad-\operatorname{gap}(\mathscr{L})
$$

Relaxation time: $\mathrm{t}_{\mathrm{REL}}:=\frac{1}{\operatorname{gap}(\mathscr{L})}$
Mixing time: $\mathrm{t}_{\mathrm{MIX}}(\varepsilon):=\min \left\{t \geq 0: \mathrm{d}_{\mathrm{TV}}(t) \leq \varepsilon\right\}$

Mixing times (see book by Levin, Peres \& Wilmer)

TV distance: $\mathrm{d}_{\mathrm{TV}}(t):=\max _{x \in \mathscr{X}} \max _{A \subseteq \mathscr{X}}\left|\mathbb{P}_{x}\left(X_{t} \in A\right)-\pi(A)\right|$

- decreasing from nearly 1 to 0
- sub-multiplicative: $\mathrm{d}_{\mathrm{TV}}(t+s) \leq 2 \mathrm{~d}_{\mathrm{TV}}(t) \mathrm{d}_{\mathrm{TV}}(s)$.

$$
\frac{1}{t} \log \mathrm{~d}_{\mathrm{TV}}(t) \xrightarrow[t \rightarrow \infty]{ } \quad-\operatorname{gap}(\mathscr{L})
$$

Relaxation time: $\mathrm{t}_{\mathrm{REL}}:=\frac{1}{\operatorname{gap}(\mathscr{L})}$
Mixing time: $\mathrm{t}_{\text {MIX }}(\varepsilon):=\min \left\{t \geq 0: \mathrm{d}_{\mathrm{TV}}(t) \leq \varepsilon\right\}$
Goal: estimate $\mathrm{t}_{\mathrm{MIX}}(\varepsilon)$ when $\varepsilon \in(0,1)$ is fixed and $|\mathscr{X}| \gg 1$.

The cutoff phenomenon (Aldous-Diaconis '86)

[^0]
The cutoff phenomenon (Aldous-Diaconis '86)

A sequence of Markov chains (indexed by n) exhibits cutoff if

$$
\forall \varepsilon, \varepsilon^{\prime} \in(0,1), \quad \frac{\mathrm{t}_{\mathrm{MIX}}^{(n)}\left(\varepsilon^{\prime}\right)}{\mathrm{t}_{\mathrm{MIX}}^{(n)}(\varepsilon)} \xrightarrow[n \rightarrow \infty]{ } 1
$$

The cutoff phenomenon (Aldous-Diaconis '86)

A sequence of Markov chains (indexed by n) exhibits cutoff if

$$
\forall \varepsilon, \varepsilon^{\prime} \in(0,1), \quad \frac{\mathrm{t}_{\mathrm{MIX}}^{(n)}\left(\varepsilon^{\prime}\right)}{\mathrm{t}_{\mathrm{MIX}}^{(n)}(\varepsilon)} \xrightarrow[n \rightarrow \infty]{ } 1
$$

Known results: exclusion on a segment of length n

Known results: exclusion on a segment of length n

- No reservoir (Lacoin, 2016):

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)=\frac{n^{2} \log n}{2 \pi^{2}}+\mathcal{O}\left(n^{2}\right)
$$

Known results: exclusion on a segment of length n

- No reservoir (Lacoin, 2016):

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)=\frac{n^{2} \log n}{2 \pi^{2}}+\mathcal{O}\left(n^{2}\right)
$$

- One reservoir (Gantert, Nestoridi \& Schmid, 2021):

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)=\frac{2 n^{2} \log n}{\pi^{2}}+\mathcal{O}\left(n^{2}\right)
$$

Known results: exclusion on a segment of length n

- No reservoir (Lacoin, 2016):

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)=\frac{n^{2} \log n}{2 \pi^{2}}+\mathcal{O}\left(n^{2}\right)
$$

- One reservoir (Gantert, Nestoridi \& Schmid, 2021):

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)=\frac{2 n^{2} \log n}{\pi^{2}}+\mathcal{O}\left(n^{2}\right)
$$

- Two reservoirs (Gonçalves, Jara, Marinho \& Menezes, 2021):

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)=\frac{n^{2} \log n}{2 \pi^{2}}+c(\varepsilon, \rho) n^{2}+o\left(n^{2}\right)
$$

Known results: exclusion on a segment of length n

- No reservoir (Lacoin, 2016):

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)=\frac{n^{2} \log n}{2 \pi^{2}}+\mathcal{O}\left(n^{2}\right)
$$

- One reservoir (Gantert, Nestoridi \& Schmid, 2021):

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)=\frac{2 n^{2} \log n}{\pi^{2}}+\mathcal{O}\left(n^{2}\right)
$$

- Two reservoirs (Gonçalves, Jara, Marinho \& Menezes, 2021):

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)=\frac{n^{2} \log n}{2 \pi^{2}}+c(\varepsilon, \rho) n^{2}+o\left(n^{2}\right)
$$

- Can we go beyond the one-dimensional case?

1. Model and questions

2. Results
3. Proof ingredients

Main result: dimensionality reduction

Main result: dimensionality reduction

The Laplacian of the network G is the $V \times V$ matrix

$$
\Delta(i, j):= \begin{cases}c(i, j) & \text { if } i \neq j \\ -\kappa(i)-\sum_{k \neq i} c(i, k) & \text { if } i=j\end{cases}
$$

Main result: dimensionality reduction

The Laplacian of the network G is the $V \times V$ matrix

$$
\Delta(i, j):= \begin{cases}c(i, j) & \text { if } i \neq j \\ -\kappa(i)-\sum_{k \neq i} c(i, k) & \text { if } i=j\end{cases}
$$

Eigenvalues $0>-\lambda_{1} \geq \ldots \geq-\lambda_{n}$, eigenfunctions $\phi_{1}, \ldots, \phi_{n}$

Main result: dimensionality reduction

The Laplacian of the network G is the $V \times V$ matrix

$$
\Delta(i, j):= \begin{cases}c(i, j) & \text { if } i \neq j \\ -\kappa(i)-\sum_{k \neq i} c(i, k) & \text { if } i=j\end{cases}
$$

Eigenvalues $0>-\lambda_{1} \geq \ldots \geq-\lambda_{n}$, eigenfunctions $\phi_{1}, \ldots, \phi_{n}$

$$
\Psi(t):=\left\langle\mathbf{1}, e^{2 t \Delta} \mathbf{1}\right\rangle=\sum_{k=1}^{n} e^{-2 \lambda_{k} t}\left\langle\phi_{k}, 1\right\rangle^{2}
$$

Main result: dimensionality reduction

The Laplacian of the network G is the $V \times V$ matrix

$$
\Delta(i, j):= \begin{cases}c(i, j) & \text { if } i \neq j \\ -\kappa(i)-\sum_{k \neq i} c(i, k) & \text { if } i=j\end{cases}
$$

Eigenvalues $0>-\lambda_{1} \geq \ldots \geq-\lambda_{n}$, eigenfunctions $\phi_{1}, \ldots, \phi_{n}$

$$
\Psi(t):=\left\langle\mathbf{1}, e^{2 t \Delta} \mathbf{1}\right\rangle=\sum_{k=1}^{n} e^{-2 \lambda_{k} t}\left\langle\phi_{k}, 1\right\rangle^{2}
$$

Theorem (S., 2022): on any network G and at any time $t \geq 0$,

$$
\frac{\Psi(t)}{4+\Psi(t)} \leq \mathrm{d}_{\mathrm{TV}}(t) \leq \sqrt{\exp \left[\frac{\Psi(t)}{\rho \wedge(1-\rho)}\right]-1}
$$

Main result: dimensionality reduction

The Laplacian of the network G is the $V \times V$ matrix

$$
\Delta(i, j):= \begin{cases}c(i, j) & \text { if } i \neq j \\ -\kappa(i)-\sum_{k \neq i} c(i, k) & \text { if } i=j\end{cases}
$$

Eigenvalues $0>-\lambda_{1} \geq \ldots \geq-\lambda_{n}$, eigenfunctions $\phi_{1}, \ldots, \phi_{n}$

$$
\Psi(t):=\left\langle\mathbf{1}, e^{2 t \Delta} \mathbf{1}\right\rangle=\sum_{k=1}^{n} e^{-2 \lambda_{k} t}\left\langle\phi_{k}, 1\right\rangle^{2}
$$

Theorem (S., 2022): on any network G and at any time $t \geq 0$,

$$
\frac{\Psi(t)}{4+\Psi(t)} \leq \mathrm{d}_{\mathrm{TV}}(t) \leq \sqrt{\exp \left[\frac{\Psi(t)}{\rho \wedge(1-\rho)}\right]-1}
$$

\triangleright Mixing occurs precisely when $\Psi(t)$ becomes of order 1

Consequence 1: spectral gap

Consequence 1: spectral gap

Any $\phi: V \rightarrow \mathbb{R}$ can be "lifted" to a function $\widehat{\phi}:\{0,1\}^{V} \rightarrow \mathbb{R}$ via

$$
\widehat{\phi}(x):=\sum_{i \in V} \phi(i)\left(x_{i}-\rho\right),
$$

and $\mathscr{L} \widehat{\phi}=\widehat{\Delta \phi}$.

Consequence 1: spectral gap

Any $\phi: V \rightarrow \mathbb{R}$ can be "lifted" to a function $\widehat{\phi}:\{0,1\}^{V} \rightarrow \mathbb{R}$ via

$$
\widehat{\phi}(x):=\sum_{i \in V} \phi(i)\left(x_{i}-\rho\right),
$$

and $\mathscr{L} \widehat{\phi}=\widehat{\Delta \phi}$. Thus, $-\lambda_{1}, \ldots,-\lambda_{n}$ are eigenvalues of \mathscr{L}.

Consequence 1: spectral gap

Any $\phi: V \rightarrow \mathbb{R}$ can be "lifted" to a function $\widehat{\phi}:\{0,1\}^{V} \rightarrow \mathbb{R}$ via

$$
\widehat{\phi}(x):=\sum_{i \in V} \phi(i)\left(x_{i}-\rho\right),
$$

and $\mathscr{L} \widehat{\phi}=\widehat{\Delta \phi}$. Thus, $-\lambda_{1}, \ldots,-\lambda_{n}$ are eigenvalues of \mathscr{L}.
Remarkably, our upper-bound on $\mathrm{d}_{\mathrm{TV}}(t)$ shows that the $2^{n}-n$ other eigenvalues of \mathscr{L} do not deteriorate the spectral gap!

Consequence 1: spectral gap

Any $\phi: V \rightarrow \mathbb{R}$ can be "lifted" to a function $\widehat{\phi}:\{0,1\}^{V} \rightarrow \mathbb{R}$ via

$$
\widehat{\phi}(x):=\sum_{i \in V} \phi(i)\left(x_{i}-\rho\right),
$$

and $\mathscr{L} \widehat{\phi}=\widehat{\Delta \phi}$. Thus, $-\lambda_{1}, \ldots,-\lambda_{n}$ are eigenvalues of \mathscr{L}.
Remarkably, our upper-bound on $\mathrm{d}_{\mathrm{TV}}(t)$ shows that the $2^{n}-n$ other eigenvalues of \mathscr{L} do not deteriorate the spectral gap!

Corollary 1: $\operatorname{gap}(\mathscr{L})=\lambda_{1}$.

Consequence 1: spectral gap

Any $\phi: V \rightarrow \mathbb{R}$ can be "lifted" to a function $\widehat{\phi}:\{0,1\}^{V} \rightarrow \mathbb{R}$ via

$$
\widehat{\phi}(x):=\sum_{i \in V} \phi(i)\left(x_{i}-\rho\right),
$$

and $\mathscr{L} \widehat{\phi}=\widehat{\Delta \phi}$. Thus, $-\lambda_{1}, \ldots,-\lambda_{n}$ are eigenvalues of \mathscr{L}.
Remarkably, our upper-bound on $\mathrm{d}_{\mathrm{TV}}(t)$ shows that the $2^{n}-n$ other eigenvalues of \mathscr{L} do not deteriorate the spectral gap!

Corollary 1: $\operatorname{gap}(\mathscr{L})=\lambda_{1}$.
\triangleright Non-conservative analogue of Aldous' spectral gap conjecture, famously proved by Caputo, Liggett \& Richthammer (2010).

Consequence 2: window and cutoff

Consequence 2: window and cutoff

Corollary 2: there is a universal constant $c(\varepsilon, \rho)$ such that

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)-\mathrm{t}_{\mathrm{MIX}}(1-\varepsilon) \leq \frac{c(\varepsilon, \rho)}{\text { gap }}
$$

Consequence 2: window and cutoff

Corollary 2: there is a universal constant $c(\varepsilon, \rho)$ such that

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)-\mathrm{t}_{\mathrm{MIX}}(1-\varepsilon) \leq \frac{c(\varepsilon, \rho)}{\text { gap }}
$$

In particular, cutoff occurs under the so-called product condition:

$$
\operatorname{gap} \times \mathrm{t}_{\text {MIX }} \gg 1
$$

Consequence 2: window and cutoff

Corollary 2: there is a universal constant $c(\varepsilon, \rho)$ such that

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)-\mathrm{t}_{\mathrm{MIX}}(1-\varepsilon) \leq \frac{c(\varepsilon, \rho)}{\text { gap }}
$$

In particular, cutoff occurs under the so-called product condition:

$$
\operatorname{gap} \times \mathrm{t}_{\text {MIX }} \gg 1
$$

- Proposed by Peres '04 as an effective criterion for cutoff.

Consequence 2: window and cutoff

Corollary 2: there is a universal constant $c(\varepsilon, \rho)$ such that

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)-\mathrm{t}_{\mathrm{MIX}}(1-\varepsilon) \leq \frac{c(\varepsilon, \rho)}{\text { gap }}
$$

In particular, cutoff occurs under the so-called product condition:

$$
\operatorname{gap} \times \mathrm{t}_{\mathrm{MIX}} \gg 1
$$

- Proposed by Peres '04 as an effective criterion for cutoff.
- Always necessary for cutoff (because $\mathrm{t}_{\text {MIX }}(\varepsilon) \geq \mathrm{t}_{\text {REL }} \log \frac{1}{2 \varepsilon}$)

Consequence 2: window and cutoff

Corollary 2: there is a universal constant $c(\varepsilon, \rho)$ such that

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)-\mathrm{t}_{\mathrm{MIX}}(1-\varepsilon) \leq \frac{c(\varepsilon, \rho)}{\text { gap }}
$$

In particular, cutoff occurs under the so-called product condition:

$$
\operatorname{gap} \times \mathrm{t}_{\text {MIX }} \gg 1
$$

- Proposed by Peres '04 as an effective criterion for cutoff.
- Always necessary for cutoff (because $\mathrm{t}_{\text {MIX }}(\varepsilon) \geq \mathrm{t}_{\text {REL }} \log \frac{1}{2 \varepsilon}$)
- Insufficient in general (even for Abelian random walks...)

Consequence 2: window and cutoff

Corollary 2: there is a universal constant $c(\varepsilon, \rho)$ such that

$$
\mathrm{t}_{\mathrm{MIX}}(\varepsilon)-\mathrm{t}_{\mathrm{MIX}}(1-\varepsilon) \leq \frac{c(\varepsilon, \rho)}{\text { gap }}
$$

In particular, cutoff occurs under the so-called product condition:

$$
\text { gap } \times \mathrm{t}_{\text {MIX }} \gg 1
$$

- Proposed by Peres '04 as an effective criterion for cutoff.
- Always necessary for cutoff (because $\mathrm{t}_{\text {MIX }}(\varepsilon) \geq \mathrm{t}_{\text {REL }} \log \frac{1}{2 \varepsilon}$)
- Insufficient in general (even for Abelian random walks...)
- Sufficient for birth-death chains (Ding, Lubetzky \& Peres '10) and for random walks on trees (Basu, Hermon \& Peres '17).

Consequence 3: mixing-time estimates

Consequence 3: mixing-time estimates

Recall that $\mathrm{d}_{\mathrm{TV}}(t)$ is controlled in a two-sided way by the quantity

$$
\Psi(t)=\sum_{k=1}^{n} e^{-2 \lambda_{k} t}\left\langle\phi_{k}, \mathbf{1}\right\rangle^{2}
$$

Consequence 3: mixing-time estimates

Recall that $\mathrm{d}_{\mathrm{TV}}(t)$ is controlled in a two-sided way by the quantity

$$
\Psi(t)=\sum_{k=1}^{n} e^{-2 \lambda_{k} t}\left\langle\phi_{k}, \mathbf{1}\right\rangle^{2}
$$

The latter is roughly governed by the Perron eigenpair $\left(\lambda_{1}, \phi_{1}\right)$.

Consequence 3: mixing-time estimates

Recall that $\mathrm{d}_{\mathrm{TV}}(t)$ is controlled in a two-sided way by the quantity

$$
\Psi(t)=\sum_{k=1}^{n} e^{-2 \lambda_{k} t}\left\langle\phi_{k}, \mathbf{1}\right\rangle^{2}
$$

The latter is roughly governed by the Perron eigenpair $\left(\lambda_{1}, \phi_{1}\right)$.
Corollary 3: there is a universal constant $c=c(\varepsilon, \rho)$ such that

$$
\frac{\log \left\langle\phi_{1}, \mathbf{1}\right\rangle^{2}-c}{2 \lambda_{1}} \leq \mathrm{t}_{\mathrm{MIX}}(\varepsilon) \leq \frac{\log n+c}{2 \lambda_{1}}
$$

Consequence 3: mixing-time estimates

Recall that $\mathrm{d}_{\mathrm{TV}}(t)$ is controlled in a two-sided way by the quantity

$$
\Psi(t)=\sum_{k=1}^{n} e^{-2 \lambda_{k} t}\left\langle\phi_{k}, \mathbf{1}\right\rangle^{2}
$$

The latter is roughly governed by the Perron eigenpair $\left(\lambda_{1}, \phi_{1}\right)$.
Corollary 3: there is a universal constant $c=c(\varepsilon, \rho)$ such that

$$
\frac{\log \left\langle\phi_{1}, \mathbf{1}\right\rangle^{2}-c}{2 \lambda_{1}} \leq \mathrm{t}_{\mathrm{MIX}}(\varepsilon) \leq \frac{\log n+c}{2 \lambda_{1}}
$$

\triangleright Cutoff at time $\frac{\log n}{2 \lambda_{1}}$ as soon as ϕ_{1} is delocalized.

Consequence 3: mixing-time estimates

Recall that $\mathrm{d}_{\mathrm{TV}}(t)$ is controlled in a two-sided way by the quantity

$$
\Psi(t)=\sum_{k=1}^{n} e^{-2 \lambda_{k} t}\left\langle\phi_{k}, \mathbf{1}\right\rangle^{2}
$$

The latter is roughly governed by the Perron eigenpair $\left(\lambda_{1}, \phi_{1}\right)$.
Corollary 3: there is a universal constant $c=c(\varepsilon, \rho)$ such that

$$
\frac{\log \left\langle\phi_{1}, \mathbf{1}\right\rangle^{2}-c}{2 \lambda_{1}} \leq \mathrm{t}_{\mathrm{MIX}}(\varepsilon) \leq \frac{\log n+c}{2 \lambda_{1}}
$$

\triangleright Cutoff at time $\frac{\log n}{2 \lambda_{1}}$ as soon as ϕ_{1} is delocalized.
\triangleright The upper-bound is a huge conjecture in the conservative case...

Example: exclusion on discrete boxes

[^1]
Example: exclusion on discrete boxes

Take the network G induced by a box $V=\left[n_{1}\right] \times \cdots \times\left[n_{d}\right]$ in \mathbb{Z}^{d}.

Example: exclusion on discrete boxes

Take the network G induced by a box $V=\left[n_{1}\right] \times \cdots \times\left[n_{d}\right]$ in \mathbb{Z}^{d}.

$$
\phi_{1}\left(i_{1}, \ldots, i_{d}\right)=\prod_{k=1}^{d} \sqrt{\frac{2}{n_{k}+1}} \sin \left(\frac{\pi i_{k}}{n_{k}+1}\right)
$$

Example: exclusion on discrete boxes

Take the network G induced by a box $V=\left[n_{1}\right] \times \cdots \times\left[n_{d}\right]$ in \mathbb{Z}^{d}.

$$
\begin{aligned}
& \text { - } \phi_{1}\left(i_{1}, \ldots, i_{d}\right)=\prod_{k=1}^{d} \sqrt{\frac{2}{n_{k}+1}} \sin \left(\frac{\pi i_{k}}{n_{k}+1}\right) \\
& >\lambda_{1}=2 \sum_{k=1}^{d}\left[1-\cos \left(\frac{\pi}{n_{k}+1}\right)\right]
\end{aligned}
$$

Example: exclusion on discrete boxes

Take the network G induced by a box $V=\left[n_{1}\right] \times \cdots \times\left[n_{d}\right]$ in \mathbb{Z}^{d}.

$$
\begin{aligned}
& \text { - } \phi_{1}\left(i_{1}, \ldots, i_{d}\right)=\prod_{k=1}^{d} \sqrt{\frac{2}{n_{k}+1}} \sin \left(\frac{\pi i_{k}}{n_{k}+1}\right) \\
& \lambda_{1}=2 \sum_{k=1}^{d}\left[1-\cos \left(\frac{\pi}{n_{k}+1}\right)\right]
\end{aligned}
$$

$$
-\frac{\log n-c(\varepsilon, \rho) d}{2 \lambda_{1}} \leq \mathrm{t}_{\mathrm{MIX}}(\varepsilon) \leq \frac{\log n+c(\varepsilon, \rho)}{2 \lambda_{1}}
$$

Example: exclusion on discrete boxes

Take the network G induced by a box $V=\left[n_{1}\right] \times \cdots \times\left[n_{d}\right]$ in \mathbb{Z}^{d}.

- $\phi_{1}\left(i_{1}, \ldots, i_{d}\right)=\prod_{k=1}^{d} \sqrt{\frac{2}{n_{k}+1}} \sin \left(\frac{\pi i_{k}}{n_{k}+1}\right)$
- $\lambda_{1}=2 \sum_{k=1}^{d}\left[1-\cos \left(\frac{\pi}{n_{k}+1}\right)\right]$
- $\frac{\log n-c(\varepsilon, \rho) d}{2 \lambda_{1}} \leq \mathrm{t}_{\mathrm{MIX}}(\varepsilon) \leq \frac{\log n+c(\varepsilon, \rho)}{2 \lambda_{1}}$
- Cutoff occurs at time $\frac{\log n}{2 \lambda_{1}}$ as $n \rightarrow \infty$.

Example: exclusion on discrete boxes

Take the network G induced by a box $V=\left[n_{1}\right] \times \cdots \times\left[n_{d}\right]$ in \mathbb{Z}_{+}^{d}.

- $\phi_{1}\left(i_{1}, \ldots, i_{d}\right)=\prod_{k=1}^{d} \sqrt{\frac{2}{2 n_{k}+1}} \sin \left(\frac{\pi i_{k}}{2 n_{k}+1}\right)$
- $\lambda_{1}=2 \sum_{k=1}^{d}\left[1-\cos \left(\frac{\pi}{2 n_{k}+1}\right)\right]$
- $\frac{\log n-c(\varepsilon, \rho) d}{2 \lambda_{1}} \leq \mathrm{t}_{\mathrm{MIX}}(\varepsilon) \leq \frac{\log n+c(\varepsilon, \rho)}{2 \lambda_{1}}$
- Cutoff occurs at time $\frac{\log n}{2 \lambda_{1}}$ as $n \rightarrow \infty$.

1. Model and questions

2. Results
3. Proof ingredients

Perturbation of product measures

Perturbation of product measures

- Let $X^{\star}=\left(X_{1}^{\star}, \ldots, X_{n}^{\star}\right)$ have law $\pi=\otimes_{1 \leq i \leq n} \operatorname{Ber}(\rho), \rho \geq \frac{1}{2}$.

Perturbation of product measures

- Let $X^{\star}=\left(X_{1}^{\star}, \ldots, X_{n}^{\star}\right)$ have law $\pi=\otimes_{1 \leq i \leq n} \operatorname{Ber}(\rho), \rho \geq \frac{1}{2}$.
- Let Y, Z be binary random vectors (noise), independent of X^{\star}.

Perturbation of product measures

- Let $X^{\star}=\left(X_{1}^{\star}, \ldots, X_{n}^{\star}\right)$ have law $\pi=\otimes_{1 \leq i \leq n} \operatorname{Ber}(\rho), \rho \geq \frac{1}{2}$.
- Let Y, Z be binary random vectors (noise), independent of X^{\star}.
- Let μ be the law of $X=\left(X_{1}, \ldots, X_{n}\right)$ obtained as follows:

Perturbation of product measures

- Let $X^{\star}=\left(X_{1}^{\star}, \ldots, X_{n}^{\star}\right)$ have law $\pi=\otimes_{1 \leq i \leq n} \operatorname{Ber}(\rho), \rho \geq \frac{1}{2}$.
- Let Y, Z be binary random vectors (noise), independent of X^{\star}.
- Let μ be the law of $X=\left(X_{1}, \ldots, X_{n}\right)$ obtained as follows:

$$
X_{i}:= \begin{cases}X_{i}^{\star} & \text { if } Z_{i}=0 \\ Y_{i} & \text { if } Z_{i}=1\end{cases}
$$

Perturbation of product measures

- Let $X^{\star}=\left(X_{1}^{\star}, \ldots, X_{n}^{\star}\right)$ have law $\pi=\otimes_{1 \leq i \leq n} \operatorname{Ber}(\rho), \rho \geq \frac{1}{2}$.
- Let Y, Z be binary random vectors (noise), independent of X^{\star}.
- Let μ be the law of $X=\left(X_{1}, \ldots, X_{n}\right)$ obtained as follows:

$$
X_{i}:= \begin{cases}X_{i}^{\star} & \text { if } Z_{i}=0 \\ Y_{i} & \text { if } Z_{i}=1\end{cases}
$$

Question: can X be statistically distinguished from X^{\star} ?

Perturbation of product measures

- Let $X^{\star}=\left(X_{1}^{\star}, \ldots, X_{n}^{\star}\right)$ have law $\pi=\otimes_{1 \leq i \leq n} \operatorname{Ber}(\rho), \rho \geq \frac{1}{2}$.
- Let Y, Z be binary random vectors (noise), independent of X^{\star}.
- Let μ be the law of $X=\left(X_{1}, \ldots, X_{n}\right)$ obtained as follows:

$$
X_{i}:= \begin{cases}X_{i}^{\star} & \text { if } Z_{i}=0 \\ Y_{i} & \text { if } Z_{i}=1\end{cases}
$$

Question: can X be statistically distinguished from X^{\star} ?
\triangleright Intuitively, μ should be close to π provided Z is small enough:

Perturbation of product measures

- Let $X^{\star}=\left(X_{1}^{\star}, \ldots, X_{n}^{\star}\right)$ have law $\pi=\otimes_{1 \leq i \leq n} \operatorname{Ber}(\rho), \rho \geq \frac{1}{2}$.
- Let Y, Z be binary random vectors (noise), independent of X^{\star}.
- Let μ be the law of $X=\left(X_{1}, \ldots, X_{n}\right)$ obtained as follows:

$$
X_{i}:= \begin{cases}X_{i}^{\star} & \text { if } Z_{i}=0 \\ Y_{i} & \text { if } Z_{i}=1\end{cases}
$$

Question: can X be statistically distinguished from X^{\star} ?
\triangleright Intuitively, μ should be close to π provided Z is small enough:

$$
\mathrm{d}_{\mathrm{TV}}(\mu, \pi) \leq \mathbb{E}\left[Z_{1}\right]+\cdots+\mathbb{E}\left[Z_{n}\right]
$$

Perturbation of product measures

- Let $X^{\star}=\left(X_{1}^{\star}, \ldots, X_{n}^{\star}\right)$ have law $\pi=\otimes_{1 \leq i \leq n} \operatorname{Ber}(\rho), \rho \geq \frac{1}{2}$.
- Let Y, Z be binary random vectors (noise), independent of X^{\star}.
- Let μ be the law of $X=\left(X_{1}, \ldots, X_{n}\right)$ obtained as follows:

$$
X_{i}:= \begin{cases}X_{i}^{\star} & \text { if } Z_{i}=0 \\ Y_{i} & \text { if } Z_{i}=1\end{cases}
$$

Question: can X be statistically distinguished from X^{*} ?
\triangleright Intuitively, μ should be close to π provided Z is small enough:

$$
\mathrm{d}_{\mathrm{TV}}(\mu, \pi) \leq \mathbb{E}\left[Z_{1}\right]+\cdots+\mathbb{E}\left[Z_{n}\right]
$$

\triangleright But whether Z is localized/delocalized should also play a role!

Warm－up computation：the independent case

Warm-up computation: the independent case

When Z_{1}, \ldots, Z_{n} are independent and $Y=(0, \ldots, 0)$, we have

Warm-up computation: the independent case

When Z_{1}, \ldots, Z_{n} are independent and $Y=(0, \ldots, 0)$, we have

$$
\mathrm{d}_{\mathrm{TV}}(\mu, \pi) \leq\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}}
$$

Warm-up computation: the independent case

When Z_{1}, \ldots, Z_{n} are independent and $Y=(0, \ldots, 0)$, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{TV}}(\mu, \pi) & \leq\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}} \\
& =\sqrt{\prod_{i=1}^{n}\left(1+\frac{\rho \mathbb{E}^{2}\left[Z_{i}\right]}{1-\rho}\right)-1}
\end{aligned}
$$

Warm-up computation: the independent case

When Z_{1}, \ldots, Z_{n} are independent and $Y=(0, \ldots, 0)$, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{TV}}(\mu, \pi) & \leq\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}} \\
& =\sqrt{\prod_{i=1}^{n}\left(1+\frac{\rho \mathbb{E}^{2}\left[Z_{i}\right]}{1-\rho}\right)-1} \\
& \leq \sqrt{\exp \left(\frac{1}{1-\rho} \sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]\right)-1}
\end{aligned}
$$

Warm-up computation: the independent case

When Z_{1}, \ldots, Z_{n} are independent and $Y=(0, \ldots, 0)$, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{TV}}(\mu, \pi) & \leq\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}} \\
& =\sqrt{\prod_{i=1}^{n}\left(1+\frac{\rho \mathbb{E}^{2}\left[Z_{i}\right]}{1-\rho}\right)-1} \\
& \leq \sqrt{\exp \left(\frac{1}{1-\rho} \sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]\right)-1}
\end{aligned}
$$

Note that $\sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]$ crucially improves over $\sum_{i=1}^{n} \mathbb{E}\left[Z_{i}\right]$.

Warm-up computation: the independent case

When Z_{1}, \ldots, Z_{n} are independent and $Y=(0, \ldots, 0)$, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{TV}}(\mu, \pi) & \leq\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}} \\
& =\sqrt{\prod_{i=1}^{n}\left(1+\frac{\rho \mathbb{E}^{2}\left[Z_{i}\right]}{1-\rho}\right)-1} \\
& \leq \sqrt{\exp \left(\frac{1}{1-\rho} \sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]\right)-1}
\end{aligned}
$$

Note that $\sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]$ crucially improves over $\sum_{i=1}^{n} \mathbb{E}\left[Z_{i}\right]$.
Unfortunately, estimating $\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}}$ is hard beyond product measures (c.f. "information percolation" by Lubetzky \& Sly).

Negatively-dependent perturbations

Negatively-dependent perturbations

Lemma: suppose Z satisfies the negative dependence condition

$$
\forall A \subseteq[n], \quad \mathbb{E}\left[\prod_{i \in A} z_{i}\right] \leq \prod_{i \in A} \mathbb{E}\left[z_{i}\right] .
$$

Negatively-dependent perturbations

Lemma: suppose Z satisfies the negative dependence condition

$$
\forall A \subseteq[n], \quad \mathbb{E}\left[\prod_{i \in A} z_{i}\right] \leq \prod_{i \in A} \mathbb{E}\left[z_{i}\right] .
$$

Then, the same upper-bound as in the product case holds:

$$
\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}} \leq \sqrt{\exp \left(\frac{1}{1-\rho} \sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]\right)-1}
$$

Negatively-dependent perturbations

Lemma: suppose Z satisfies the negative dependence condition

$$
\forall A \subseteq[n], \quad \mathbb{E}\left[\prod_{i \in A} z_{i}\right] \leq \prod_{i \in A} \mathbb{E}\left[z_{i}\right] .
$$

Then, the same upper-bound as in the product case holds:

$$
\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}} \leq \sqrt{\exp \left(\frac{1}{1-\rho} \sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]\right)-1}
$$

Moreover, when $\mathbf{Y}=(0, \ldots, 0)$, we have the lower-bound

$$
\mathrm{d}_{\mathrm{TV}}(\mu, \pi) \geq \frac{\sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]}{4+\sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]}
$$

Negatively-dependent perturbations

Lemma: suppose Z satisfies the negative dependence condition

$$
\forall A \subseteq[n], \quad \mathbb{E}\left[\prod_{i \in A} z_{i}\right] \leq \prod_{i \in A} \mathbb{E}\left[z_{i}\right] .
$$

Then, the same upper-bound as in the product case holds:

$$
\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}} \leq \sqrt{\exp \left(\frac{1}{1-\rho} \sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]\right)-1}
$$

Moreover, when $\mathbf{Y}=(0, \ldots, 0)$, we have the lower-bound

$$
\mathrm{d}_{\mathrm{TV}}(\mu, \pi) \geq \frac{\sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]}{4+\sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]}
$$

Conclusion: μ is close to π if and only if $\sum_{i=1}^{n} \mathbb{E}^{2}\left[Z_{i}\right]$ is small.

Back to the exclusion process with reservoirs

Back to the exclusion process with reservoirs

Fix a network G, a density $\rho \in(0,1)$, an initial state $x \in\{0,1\}^{V}$.

Back to the exclusion process with reservoirs

Fix a network G, a density $\rho \in(0,1)$, an initial state $x \in\{0,1\}^{V}$.
Theorem: there are $\{0,1\}^{\vee}$-processes $\mathbf{X}^{\star}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ such that

Back to the exclusion process with reservoirs

Fix a network G, a density $\rho \in(0,1)$, an initial state $x \in\{0,1\}^{V}$.
Theorem: there are $\{0,1\}^{\vee}$-processes $\mathbf{X}^{\star}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ such that

1. X^{\star} is a stationary exclusion process with density ρ on G;

Back to the exclusion process with reservoirs

Fix a network G, a density $\rho \in(0,1)$, an initial state $x \in\{0,1\}^{V}$.
Theorem: there are $\{0,1\}^{\vee}$-processes $\mathbf{X}^{\star}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ such that

1. X^{\star} is a stationary exclusion process with density ρ on G;
2. X is an exclusion process with density ρ on G and $X_{0}=x$;

Back to the exclusion process with reservoirs

Fix a network G, a density $\rho \in(0,1)$, an initial state $x \in\{0,1\}^{V}$.
Theorem: there are $\{0,1\}^{\vee}$-processes $\mathbf{X}^{\star}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ such that

1. X^{\star} is a stationary exclusion process with density ρ on G;
2. X is an exclusion process with density ρ on G and $X_{0}=x$;
3. The pair (\mathbf{Y}, \mathbf{Z}) is independent of \mathbf{X}^{\star};

Back to the exclusion process with reservoirs

Fix a network G, a density $\rho \in(0,1)$, an initial state $x \in\{0,1\}^{V}$.
Theorem: there are $\{0,1\}^{\vee}$-processes $\mathbf{X}^{\star}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ such that

1. X^{\star} is a stationary exclusion process with density ρ on G;
2. X is an exclusion process with density ρ on G and $X_{0}=x$;
3. The pair (\mathbf{Y}, \mathbf{Z}) is independent of \mathbf{X}^{\star};
4. $\mathbf{X}=(\mathbf{1}-\mathbf{Z}) \mathbf{X}^{\star}+\mathbf{Z Y}$, coordinate-wise;

Back to the exclusion process with reservoirs

Fix a network G, a density $\rho \in(0,1)$, an initial state $x \in\{0,1\}^{V}$.
Theorem: there are $\{0,1\}^{\vee}$-processes $\mathbf{X}^{\star}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ such that

1. X^{\star} is a stationary exclusion process with density ρ on G;
2. X is an exclusion process with density ρ on G and $X_{0}=x$;
3. The pair (\mathbf{Y}, \mathbf{Z}) is independent of \mathbf{X}^{\star};
4. $\mathbf{X}=(\mathbf{1}-\mathbf{Z}) \mathbf{X}^{\star}+\mathbf{Z Y}$, coordinate-wise;
5. $Z(t)$ has negative dependence for each $t \geq 0$;

Back to the exclusion process with reservoirs

Fix a network G, a density $\rho \in(0,1)$, an initial state $x \in\{0,1\}^{V}$.
Theorem: there are $\{0,1\}^{\vee}$ - processes $\mathbf{X}^{\star}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ such that

1. X^{\star} is a stationary exclusion process with density ρ on G;
2. X is an exclusion process with density ρ on G and $X_{0}=x$;
3. The pair (\mathbf{Y}, \mathbf{Z}) is independent of \mathbf{X}^{\star};
4. $\mathbf{X}=(\mathbf{1}-\mathbf{Z}) \mathbf{X}^{\star}+\mathbf{Z Y}$, coordinate-wise;
5. $Z(t)$ has negative dependence for each $t \geq 0$;
6. $\sum_{i \in V} \mathbb{E}^{2}\left[Z_{i}(t)\right]=\psi(t)$ for each $t \geq 0$.

Back to the exclusion process with reservoirs

Fix a network G, a density $\rho \in(0,1)$, an initial state $x \in\{0,1\}^{V}$.
Theorem: there are $\{0,1\}^{\vee}$-processes $\mathbf{X}^{\star}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ such that

1. X^{\star} is a stationary exclusion process with density ρ on G;
2. X is an exclusion process with density ρ on G and $X_{0}=x$;
3. The pair (\mathbf{Y}, \mathbf{Z}) is independent of \mathbf{X}^{\star};
4. $\mathbf{X}=(\mathbf{1}-\mathbf{Z}) \mathbf{X}^{\star}+\mathbf{Z Y}$, coordinate-wise;
5. $Z(t)$ has negative dependence for each $t \geq 0$;
6. $\sum_{i \in V} \mathbb{E}^{2}\left[Z_{i}(t)\right]=\psi(t)$ for each $t \geq 0$.

Corollary: our main estimate follows immediately!

Extensions and future work

Extensions and future work

Refinements (follow easily from our argument):

Extensions and future work

Refinements (follow easily from our argument):

- Cutoff for $\mathrm{d}_{\mathrm{KL}}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}}$, at the same time as d_{TV}.

Extensions and future work

Refinements (follow easily from our argument):

- Cutoff for $\mathrm{d}_{\mathrm{KL}}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}}$, at the same time as d_{TV}.
- Cutoff for $\operatorname{sep}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{\infty}$, twice later.

Extensions and future work

Refinements (follow easily from our argument):

- Cutoff for $\mathrm{d}_{\mathrm{KL}}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}}$, at the same time as d_{TV}.
- Cutoff for $\operatorname{sep}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{\infty}$, twice later.
- Colored exclusion: the spin space $(\{0,1\}, \operatorname{Ber}(\rho))$ can be replaced by any fixed, finite probability space (\mathcal{S}, ν).

Extensions and future work

Refinements (follow easily from our argument):

- Cutoff for $\mathrm{d}_{\mathrm{KL}}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}}$, at the same time as d_{TV}.
- Cutoff for $\operatorname{sep}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{\infty}$, twice later.
- Colored exclusion: the spin space $(\{0,1\}, \operatorname{Ber}(\rho))$ can be replaced by any fixed, finite probability space (\mathcal{S}, ν).

Challenges (ongoing work):

Extensions and future work

Refinements (follow easily from our argument):

- Cutoff for $\mathrm{d}_{\mathrm{KL}}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}}$, at the same time as d_{TV}.
- Cutoff for $\operatorname{sep}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{\infty}$, twice later.
- Colored exclusion: the spin space $(\{0,1\}, \operatorname{Ber}(\rho))$ can be replaced by any fixed, finite probability space (\mathcal{S}, ν).

Challenges (ongoing work):

- Reservoirs with different densities? (1D by Tran, 2022)

Extensions and future work

Refinements (follow easily from our argument):

- Cutoff for $\mathrm{d}_{\mathrm{KL}}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{L_{\pi}^{2}}$, at the same time as d_{TV}.
- Cutoff for $\operatorname{sep}(\mu \| \pi)$ and $\left\|\frac{\mu}{\pi}-1\right\|_{\infty}$, twice later.
- Colored exclusion: the spin space $(\{0,1\}, \operatorname{Ber}(\rho))$ can be replaced by any fixed, finite probability space (\mathcal{S}, ν).

Challenges (ongoing work):

- Reservoirs with different densities? (1D by Tran, 2022)
- Conservative case? (1D by Lacoin, 2016)

Thanks！

4ロ4司〉4 三

[^0]:

[^1]:

