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Exclusion with reservoir density ρ on a network G

Fix a density ρ ∈ (0, 1) and a network G = (V , c , κ) consisting of

• a vertex set V with |V | = n;

• a collection of edge rates c : V × V → [0,∞) (symmetric);

• a collection of vertex rates κ : V → [0,∞).

Consider the Markov process on X := {0, 1}V with generator

(L f )(x) :=
1

2

∑
i ,j∈V

c(i , j)
(
f (x i↔j)− f (x)

)
(exchange)

+ ρ
∑
i∈V

κ(i)
(
f (x i ,1)− f (x)

)
(creation)

+ (1− ρ)
∑
i∈V

κ(i)
(
f (x i ,0)− f (x)

)
(annihilation)
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Convergence to equilibrium

• The measure π := ⊗i∈VBer(ρ) is reversible under L .

• L is irreducible as soon as G is connected and κ ̸≡ 0.

Consequently, the resulting process (Xt)t≥0 mixes:

∀x , y ∈ X , Px(Xt = y) −−−→
t→∞

π(y).

Question: how fast?
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Mixing times (see book by Levin, Peres & Wilmer)

TV distance: dtv(t) :=

max
x∈X

max
A⊆X

|Px(Xt ∈ A)− π(A)|

▶ decreasing from nearly 1 to 0

▶ sub-multiplicative: dtv(t + s) ≤ 2dtv(t)dtv(s).

1

t
log dtv(t) −−−→

t→∞

− gap(L )

Relaxation time: trel :=
1

gap(L )

Mixing time: tmix(ε) := min {t ≥ 0: dtv(t) ≤ ε}

Goal: estimate tmix(ε) when ε ∈ (0, 1) is fixed and |X | ≫ 1.
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The cutoff phenomenon (Aldous-Diaconis ’86)

A sequence of Markov chains (indexed by n) exhibits cutoff if

∀ε, ε′ ∈ (0, 1),
t
(n)
mix(ε

′)

t
(n)
mix(ε)

−−−→
n→∞

1

εεε

tmix(ε)tmix(ε)tmix(ε) tmix(ε
′)tmix(ε
′)tmix(ε
′)

ε′ε′ε′

111

000 ttt

dtv(t)dtv(t)dtv(t)
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Known results: exclusion on a segment of length n

▶ No reservoir (Lacoin, 2016):

tmix(ε) =
n2 log n

2π2
+O(n2).

▶ One reservoir (Gantert, Nestoridi & Schmid, 2021):

tmix(ε) =
2n2 log n

π2
+O(n2).

▶ Two reservoirs (Gonçalves, Jara, Marinho & Menezes, 2021):

tmix(ε) =
n2 log n

2π2
+ c(ε, ρ)n2 + o(n2).

▶ Can we go beyond the one-dimensional case?
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▶ Two reservoirs (Gonçalves, Jara, Marinho & Menezes, 2021):

tmix(ε) =
n2 log n

2π2
+ c(ε, ρ)n2 + o(n2).

▶ Can we go beyond the one-dimensional case?



1. Model and questions

2. Results

3. Proof ingredients



Main result: dimensionality reduction

The Laplacian of the network G is the V × V matrix

∆(i , j) :=

{
c(i , j) if i ̸= j
−κ(i)−

∑
k ̸=i c(i , k) if i = j .

Eigenvalues 0 > −λ1 ≥ . . . ≥ −λn, eigenfunctions ϕ1, . . . , ϕn

Ψ(t) := ⟨1, e2t∆1⟩ =
n∑

k=1

e−2λk t⟨ϕk , 1⟩2.

Theorem (S., 2022): on any network G and at any time t ≥ 0,

Ψ(t)

4 + Ψ(t)
≤ dtv(t) ≤

√
exp

[
Ψ(t)

ρ ∧ (1− ρ)

]
− 1

▷ Mixing occurs precisely when Ψ(t) becomes of order 1
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Consequence 1: spectral gap

Any ϕ : V → R can be “lifted” to a function ϕ̂ : {0, 1}V → R via

ϕ̂(x) :=
∑
i∈V

ϕ(i)(xi − ρ),

and L ϕ̂ = ∆̂ϕ. Thus, −λ1, . . . ,−λn are eigenvalues of L .

Remarkably, our upper-bound on dtv(t) shows that the 2n − n
other eigenvalues of L do not deteriorate the spectral gap!

Corollary 1: gap(L ) = λ1.

▷ Non-conservative analogue of Aldous’ spectral gap conjecture,
famously proved by Caputo, Liggett & Richthammer (2010).
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Consequence 2: window and cutoff

Corollary 2: there is a universal constant c(ε, ρ) such that

tmix(ε)− tmix(1− ε) ≤ c(ε, ρ)

gap

In particular, cutoff occurs under the so-called product condition:

gap× tmix ≫ 1

▶ Proposed by Peres ’04 as an effective criterion for cutoff.

▶ Always necessary for cutoff (because tmix(ε) ≥ trel log
1
2ε)

▶ Insufficient in general (even for Abelian random walks...)

▶ Sufficient for birth-death chains (Ding, Lubetzky & Peres ’10)
and for random walks on trees (Basu, Hermon & Peres ’17).
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Consequence 3: mixing-time estimates

Recall that dtv(t) is controlled in a two-sided way by the quantity

Ψ(t) =
n∑

k=1

e−2λk t⟨ϕk , 1⟩2.

The latter is roughly governed by the Perron eigenpair (λ1, ϕ1).

Corollary 3: there is a universal constant c = c(ε, ρ) such that

log⟨ϕ1, 1⟩2 − c

2λ1
≤ tmix(ε) ≤ log n + c

2λ1
.

▷ Cutoff at time log n
2λ1

as soon as ϕ1 is delocalized.

▷ The upper-bound is a huge conjecture in the conservative case...
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Example: exclusion on discrete boxes

Take the network G induced by a box V = [n1]× · · · × [nd ] in Zd .

▶ ϕ1(i1, . . . , id) =
d∏

k=1

√
2

nk + 1
sin

(
πik

nk + 1

)

▶ λ1 = 2
d∑

k=1

[
1− cos

(
π

nk + 1

)]

▶
log n − c(ε, ρ)d

2λ1
≤ tmix(ε) ≤ log n + c(ε, ρ)

2λ1

▶ Cutoff occurs at time
log n

2λ1
as n → ∞.
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1. Model and questions

2. Results

3. Proof ingredients



Perturbation of product measures

• Let X ⋆ = (X ⋆
1 , . . . ,X

⋆
n ) have law π = ⊗1≤i≤nBer(ρ), ρ ≥ 1

2 .

• Let Y ,Z be binary random vectors (noise), independent of X ⋆.

• Let µ be the law of X = (X1, . . . ,Xn) obtained as follows:

Xi :=

{
X ⋆
i if Zi = 0

Yi if Zi = 1

Question: can X be statistically distinguished from X ⋆?

▷ Intuitively, µ should be close to π provided Z is small enough:

dtv(µ, π) ≤ E[Z1] + · · ·+ E[Zn].

▷ But whether Z is localized/delocalized should also play a role!
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Warm-up computation: the independent case

When Z1, . . . ,Zn are independent and Y = (0, . . . , 0), we have

dtv(µ, π) ≤
∥∥∥µ
π
− 1
∥∥∥
L2π

=

√√√√ n∏
i=1

(
1 +

ρE2[Zi ]

1− ρ

)
− 1

≤

√√√√exp

(
1

1− ρ

n∑
i=1

E2[Zi ]

)
− 1,

Note that
∑n

i=1 E2[Zi ] crucially improves over
∑n

i=1 E[Zi ].

Unfortunately, estimating
∥∥µ
π − 1

∥∥
L2π

is hard beyond product

measures (c.f. “information percolation” by Lubetzky & Sly).
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π − 1

∥∥
L2π

is hard beyond product

measures (c.f. “information percolation” by Lubetzky & Sly).
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Negatively-dependent perturbations

Lemma: suppose Z satisfies the negative dependence condition

∀A ⊆ [n], E

[∏
i∈A

Zi

]
≤

∏
i∈A

E [Zi ] .

Then, the same upper-bound as in the product case holds:

∥∥∥µ
π
− 1
∥∥∥
L2π

≤

√√√√exp

(
1

1− ρ

n∑
i=1

E2[Zi ]

)
− 1.

Moreover, when Y = (0, . . . , 0), we have the lower-bound

dtv(µ, π) ≥
∑n

i=1 E2[Zi ]

4 +
∑n

i=1 E2[Zi ]
.

Conclusion: µ is close to π if and only if
∑n

i=1 E2[Zi ] is small.
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Back to the exclusion process with reservoirs

Fix a network G , a density ρ ∈ (0, 1), an initial state x ∈ {0, 1}V .

Theorem: there are {0, 1}V−processes X⋆,X,Y,Z such that

1. X⋆ is a stationary exclusion process with density ρ on G ;

2. X is an exclusion process with density ρ on G and X0 = x ;

3. The pair (Y,Z) is independent of X⋆;

4. X = (1− Z)X⋆ + ZY, coordinate-wise;

5. Z (t) has negative dependence for each t ≥ 0;

6.
∑

i∈V E2[Zi (t)] = Ψ(t) for each t ≥ 0.

Corollary: our main estimate follows immediately!
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Extensions and future work

Refinements (follow easily from our argument):

• Cutoff for dkl(µ||π) and ∥µ
π − 1∥L2π , at the same time as dtv.

• Cutoff for sep(µ||π) and ∥µ
π − 1∥∞, twice later.

• Colored exclusion: the spin space ({0, 1},Ber(ρ)) can be
replaced by any fixed, finite probability space (S, ν).

Challenges (ongoing work):

• Reservoirs with different densities? (1D by Tran, 2022)

• Conservative case? (1D by Lacoin, 2016)
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Thanks!


