Universal cutoff for exclusion with reservoirs

Justin Salez (Université Paris-Dauphine)
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Exclusion with reservoir density p on a network G
Fix a density p € (0,1) and a network G = (V/, ¢, k) consisting of

e a vertex set V with |V| = n;
e a collection of edge rates c: V x V — [0, 00) (symmetric);

e a collection of vertex rates x: V — [0, 00).

Consider the Markov process on 2" := {0,1}" with generator

(ZF)(x) = %Zc(u) (F(<"¥) = £(x))  (exchange)

ijev
+ pi{(i) (f(xi‘l) — f(x)) (creation)
eV
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Convergence to equilibrium

e The measure 7 := @;cyBer(p) is reversible under .

e 7 is irreducible as soon as G is connected and x # 0.

Consequently, the resulting process (X;):>o mixes:

Vx,y € ', Py(Xt=y)
Question: how fast?

e )
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Mixing times (see book by Levin, Peres & Wilmer)

xe2 ACZ

TV distance: d,(t) := max max ]P (Xt € A) — m(A)]
» decreasing from nearly 1 to 0

» sub-multiplicative: d(t + s) < 2dy(t)dpy(s)

n log dTV(t)

——

— gap(.2)
(oo}
Relaxation time: tyy;

1
gap(.2)

Mixing time: ty,x(c) := min{t > 0: d,(t) < &}

Goal: estimate tx(¢) when ¢ € (0,1) is fixed and |27 > 1
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2
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Known results: exclusion on a segment of length n

» No reservoir (Lacoin, 2016):

n?logn
tMIX(g) = 27T§ +(9(n2).

» One reservoir (Gantert, Nestoridi & Schmid, 2021):
2n®logn 5
tMIX(5) = 2 + (’)(n )

» Two reservoirs (Gongalves, Jara, Marinho & Menezes, 2021)

2
n<logn
tMIX(s) = &

272

+ c(e, p)n* + o(n?).

» Can we go beyond the one-dimensional case?
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Main result: dimensionality reduction

The Laplacian of the network G is the V' x V matrix
N c(i,j)
A(iLj) = { —k(i) —

>

if i #j
Eigenvalues 0 > —)\; An, eigenfunctions ¢1,

—2)
Z e gy, 1)

Theorem (S., 2022): on any network G and at any time ¢t > 0

TR A A S

v(t)

_ 2tA1

< ®n

44+ V(t) (1-p)

p
> Mixing occurs precisely when W(t) becomes of order 1
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Consequence 1: spectral gap

Any ¢: V — R can be “lifted” to a function ngS: {0,1}V = R via

o(x) = D ali)xi—p),

eV
and ,‘fcg = &Z) Thus, —\1,...,—A\, are eigenvalues of .Z.

Remarkably, our upper-bound on d(t) shows that the 27 — n
other eigenvalues of . do not deteriorate the spectral gap!

Corollary 1: gap(.Z) = A;.

> Non-conservative analogue of Aldous’ spectral gap conjecture,
famously proved by Caputo, Liggett & Richthammer (2010).
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Consequence 2: window and cutoff

Corollary 2: there is a universal constant c(z, p) such that

c(, p)

Tarx — turx (1 — <
Mlx(g) MI}\( 5) = o2

In particular, cutoff occurs under the so-called product condition:
gap X tyx > 1

» Proposed by Peres '04 as an effective criterion for cutoff.
» Always necessary for cutoff (because tyx(g) > trp log 2%)
» Insufficient in general (even for Abelian random walks...)

» Sufficient for birth-death chains (Ding, Lubetzky & Peres '10)
and for random walks on trees (Basu, Hermon & Peres '17).
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Consequence 3: mixing-time estimates

Recall that d(t) is controlled in a two-sided way by the quantity
n
W) = 3 e, 1)2
k=1

The latter is roughly governed by the Perron eigenpair (A1, ¢1).

Corollary 3: there is a universal constant ¢ = c(e, p) such that

|Og<¢1v 1>2 —C

logn+c
2\ '

< tMIx(E) 2M

IN

> Cutoff at time ';’%\1” as soon as ¢ is delocalized.

> The upper-bound is a huge conjecture in the conservative case...
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Take the network G induced by a box V = [n1] x --- x [ng] in Z¢
> ¢1(i1, ..

) :ﬁ 2 (i

o = |

i 1 ne+1 ne+1
d

> )\1:25

o logn+c(e p)
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d

2 . 7Tik
7/d) - H\)nk+15|n<nk+1>
k=1
d
> /\122{1—&5(
k=1

T
ny + 1
> log n — c(e, p)d
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d .
) . 2 ) Ty
> .. = \/
¢1(117 7Id) H 2nk+1SIn <2nk+1>
d s
> A\ =2 1-—
1 Z{ cos <2nk+1>]
k=1
> logn — c(e, p)d

2)1

Take the network G induced by a box V = [n1] x - - x [ng] in Z¢

< tl\rux(g) <

log n + c(e, p)
» Cutoff occurs at time
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Perturbation of product measures

o Let X* = (X{,....X}) have law 7 = @1<;<,Ber(p), p > 3.
e Let Y, Z be binary random vectors (noise), independent of X*.

e Let 11 be the law of X = (Xi,...,X,) obtained as follows:

Xr ifZ=0
Xi = {Y,- if Z =1

Question: can X be statistically distinguished from X*?
> Intuitively, 1 should be close to 7 provided Z is small enough:
dTV(,LL-/ 7T) < IE’:[Zl] +-+ E[Zn]-

> But whether Z is localized/delocalized should also play a role!
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Warm-up computation: the independent case
When 77,

Z,, are independent and Y

=(0,...,0), we have
i) < [
. E2[Z;
i=1 P
<

I oy
exp <1—p ;E [Z,-]) —

Note that Y7 | E2[Z] crucially improves over > 7, E[Z]]

n .
Unfortunately, estimating H% — 1HL2 is hard beyond product
measures (c.f. “information percolation

by Lubetzky & Sly)
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Negatively-dependent perturbations

Lemma: suppose Z satisfies the negative dependence condition
VA C [n],

E

12

i€EA

< [IEz1.

i€eA
Then, the same upper-bound as in the product case holds:
£, s
T L2

1 n
exp| — ) E2[zZ]]| -1
(5]
Moreover, when Y = (0,

.,0), we have the lower-bound
" E?[Z;
d’[‘\!(/q@ ﬂ') 2 ZI:]. [ ]

44> E?[Z)]

Conclusion: 1 is close to 7 if and only if Y7 E2[Z] is small.
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Back to the exclusion process with reservoirs

Fix a network G, a density p € (0, 1), an initial state x € {0,1}.
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Back to the exclusion process with reservoirs

Fix a network G, a density p € (0, 1), an initial state x € {0,1}.

Theorem: there are {0, 1} —processes X*, X, Y, Z such that
1. X* is a stationary exclusion process with density p on G;
2. X is an exclusion process with density p on G and Xy = x;
3. The pair (Y, Z) is independent of X*;

4. X =(1—Z)X* + ZY, coordinate-wise;
5. Z(t) has negative dependence for each t > 0;

6. > .\ E?[Zi(t)] = W(t) for each t > 0.

Corollary: our main estimate follows immediately!
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Refinements (follow easily from our argument):
e Cutoff for dy, (p|[7) and |2 —1[|,2, at the same time as d.
o Cutoff for sep(p||7) and ||[£ — 1||, twice later.

e Colored exclusion: the spin space ({0,1}, Ber(p)) can be
replaced by any fixed, finite probability space (S, ).

Challenges (ongoing work):
e Reservoirs with different densities? (1D by Tran, 2022)

o Conservative case? (1D by Lacoin, 2016)
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