Characterising the Gaussian free field Phase Transitions and Correlated Processes, Isaac Newton Institute

10th May 2023

Ellen Powell, Durham University. Based on joint work with Juhan Aru, Nathanaël Berestycki and Gourab Ray.

Gaussian/normal distribution

$$Z \stackrel{(d)}{=} \lim_{n \to \infty} n^{-1/2} \sum_{i=1}^{n} X_i$$
 with $(X_i)_{i \ge 1}$ i.i.d. (cer

Universal random variable

Gaussian/normal distribution

$$Z \stackrel{(d)}{=} \lim_{n \to \infty} n^{-1/2} \sum_{i=1}^{n} X_i$$
 with $(X_i)_{i \ge 1}$ i.i.d. (cer

Universal random variable

Brownian Motion

$$(B_t)_{t \ge 0} \stackrel{(d)}{=} \lim_{n \to \infty} \left(n^{-1/2} \sum_{i=1}^{\lfloor nt \rfloor} X_i \right)_{t \ge 0}$$

Universal random path

Gaussian/normal distribution ullet

$$Z \stackrel{(d)}{=} \lim_{n \to \infty} n^{-1/2} \sum_{i=1}^{n} X_i$$
 with $(X_i)_{i \ge 1}$ i.i.d. (cen

Universal random variable (Od index set i.e. point)

Brownian Motion ullet

$$(B_t)_{t \ge 0} \stackrel{(d)}{=} \lim_{n \to \infty} \left(n^{-1/2} \sum_{i=1}^{\lfloor nt \rfloor} X_i \right)_{t \ge 0}$$

Universal random path (1d index set i.e. time)

Gaussian/normal distribution lacksquare

$$Z \stackrel{(d)}{=} \lim_{n \to \infty} n^{-1/2} \sum_{i=1}^{n} X_i$$
 with $(X_i)_{i \ge 1}$ i.i.d. (cen

Universal random variable (Od index set i.e. point)

Brownian Motion lacksquare

$$(B_t)_{t \ge 0} \stackrel{(d)}{=} \lim_{n \to \infty} \left(n^{-1/2} \sum_{i=1}^{\lfloor nt \rfloor} X_i \right)_{t \ge 0}$$

Universal random path (1d index set i.e. time)

Gaussian free field

Universal random field: *d*-diml index set?

• **GFF** = "random function"

$$\mathbb{P}(h \in df) \propto \exp(-\frac{1}{2}\int_{D} |\nabla f|^{2})$$

• **GFF** = "random function"

$$\mathbb{P}(h \in df) \propto \exp(-\frac{1}{2}\int_{D} |\nabla f|^{2})$$

• \Rightarrow Gaussian "function" (h(x); $x \in D$) centered with covariance

$$\mathbb{E}[h(x)h(y)] = G_{\mathbb{B}}(x, y)$$

• **GFF** = "random function"

$$\mathbb{P}(h \in df) \propto \exp(-\frac{1}{2}\int_{D} |\nabla f|^{2})$$

• \Rightarrow Gaussian "function" (h(x); $x \in D$) centered with covariance

 $\mathbb{E}[h(x)h(y)] = G_{\mathbb{R}}(x, y)$

• G_D Greens' function for Laplacian in D

• **GFF** = "random function"

$$\mathbb{P}(h \in df) \propto \exp(-\frac{1}{2}\int_{D} |\nabla f|^{2})$$

• \Rightarrow Gaussian "function" (h(x); $x \in D$) centered with covariance

 $\mathbb{E}[h(x)h(y)] = G_{\mathbb{R}}(x, y)$

• G_D Greens' function for Laplacian in D

 $G_D(x, y) \sim -\log(|x - y|) \text{ as } x \rightarrow y$

• **GFF** = "random function"

$$\mathbb{P}(h \in df) \propto \exp(-\frac{1}{2}\int_{D} |\nabla f|^{2})$$

• \Rightarrow Gaussian "function" (h(x); $x \in D$) centered with covariance

 $\mathbb{E}[h(x)h(y)] = G_{\mathbb{R}}(x, y)$

• G_D Greens' function for Laplacian in D

 $G_D(x, y) \sim -\log(|x - y|) \text{ as } x \rightarrow y$

To rigorously define the GFF, need to let it live in the space of **random distributions**, or generalised functions

Random Schwartz distribution h such that $(h, f)_{f \in C^{\infty}(\mathbb{B})}$ is centered, Gaussian with

 $\mathbb{E}((h,f)(h,g)) = \iint_{\mathbb{T}^2} f(x)G^{\mathbb{B}}(x,y)g(y)\,dxdy$

for all $f, g \in C_c^{\infty}(\mathbb{B})$

 $G^{\mathbb{B}}$ is the Greens function for the Laplacian with zero boundary conditions in \mathbb{B}

- $G^{\mathbb{B}}(s,t) = s(1-t)$ for $0 \le s < t \le 1$
- \Rightarrow standard Brownian bridge on [0,1]

< 1 ,1]

- $G^{\mathbb{B}}(s,t) = s(1-t)$ for $0 \le s < t \le 1$
- \Rightarrow standard Brownian bridge on [0,1]
- This Schwartz distribution is actuall $d \ge 2$)

This Schwartz distribution is actually a well-defined function (not true for

- $G^{\mathbb{B}}(s,t) = s(1-t)$ for $0 \le s < t \le 1$
- \Rightarrow standard Brownian bridge on [0,1]
- $d \geq 2$)

This Schwartz distribution is actually a well-defined function (not true for

Universal scaling limit of random walks with zero boundary conditions

- $G^{\mathbb{B}}(s,t) = s(1-t)$ for $0 \le s < t \le 1$
- \Rightarrow standard Brownian bridge on [0,1]
- This Schwartz distribution is actuall $d \ge 2$)
- Universal scaling limit of random walks with zero boundary conditions
- Lots of characterisations (at least for Brownian motion)

This Schwartz distribution is actually a well-defined function (not true for

 $G^{\mathbb{B}}(0,z) = -\frac{1}{2\pi} \log|z| \text{ for } z \in \mathbb{B}$

 $G^{\mathbb{B}}(0,z) = -\frac{1}{2\pi} \log|z| \text{ for } z \in \mathbb{B}$

• If $D \subset \mathbb{C}$ is simply connected and $\varphi: D \to \mathbb{B}$ is conformal then

 $G^D(x, y) = G^{\mathbb{B}}(\varphi(x), \varphi(y)) \; \forall x, y \in D$

 $G^{\mathbb{B}}(0,z) = -\frac{1}{2\pi} \log|z| \text{ for } z \in \mathbb{B}$

• If $D \subset \mathbb{C}$ is simply connected and $\varphi: D \to \mathbb{B}$ is conformal then

 $G^D(x,y) = G^{\mathbb{B}}(\varphi(x),\varphi(y)) \; \forall x,y \in D$

 Can define GFF in any simply connected D; conformally invariant

 $G^{\mathbb{B}}(0,z) = -\frac{1}{2\pi} \log|z| \text{ for } z \in \mathbb{B}$

• If $D \subset \mathbb{C}$ is simply connected and $\varphi: D \to \mathbb{B}$ is conformal then

 $G^D(x,y) = G^{\mathbb{B}}(\varphi(x),\varphi(y)) \; \forall x,y \in D$

- Can define GFF in any simply connected D; conformally invariant
- Conjectured/proven to arise as a universal scaling limit

 $G^{\mathbb{B}}(0,z) = -\frac{1}{2\pi} \log |z| \text{ for } z \in \mathbb{B}$

• If $D \subset \mathbb{C}$ is simply connected and $\varphi: D \to \mathbb{B}$ is conformal then

 $G^{D}(x, y) = G^{\mathbb{B}}(\varphi(x), \varphi(y)) \ \forall x, y \in D$

- Can define GFF in any simply connected D; conformally invariant
- Conjectured/proven to arise as a universal scaling limit

Random planar maps

Scaled copy of field + independent harmonic function

$h = h^{a+r\mathbb{B}} + \varphi^{a+r\mathbb{B}}$

Scaled copy of field + independent harmonic function

• $\varphi^{a+r\mathbb{B}}$ is a random Schwarz distribution in \mathbb{B} which a.s. corresponds to a **harmonic function** when restricted to $a + r\mathbb{B}$

 $h = h^{a+r\mathbb{B}} + \varphi^{a+r\mathbb{B}}$

Scaled copy of field + independent harmonic function

- $\varphi^{a+r\mathbb{B}}$ is a random Schwarz distribution in \mathbb{B} which a.s. corresponds to a **harmonic function** when restricted to $a + r\mathbb{B}$

 $h = h^{a+r\mathbb{B}} + \varphi^{a+r\mathbb{B}}$

• The process $(h^{a+r\mathbb{B}}, r^{-d}f(r \cdot + a))_{f \in C^{\infty}(\mathbb{B})}$ is equal in law to $r^{1-\frac{d}{2}}(h, f)_{f \in C^{\infty}(\mathbb{B})}$

Scaled copy of field + independent harmonic function

- $\varphi^{a+r\mathbb{B}}$ is a random Schwarz distribution in \mathbb{B} which a.s. corresponds to a **harmonic function** when restricted to $a + r\mathbb{B}$
- $h^{a+r\mathbb{B}}$ and $\varphi^{a+r\mathbb{B}}$ are independent

 $h = h^{a+r\mathbb{B}} + \varphi^{a+r\mathbb{B}}$

• The process $(h^{a+r\mathbb{B}}, r^{-d}f(r \cdot + a))_{f \in C^{\infty}_{c}(\mathbb{B})}$ is equal in law to $r^{1-\frac{d}{2}}(h, f)_{f \in C^{\infty}_{c}(\mathbb{B})}$

Suppose that h a centred linear stochastic process indexed by test functions on $\mathbb B$ satisfying

Suppose that h a centred linear stochastic process indexed by test functions on $\mathbb B$ satisfying

domain Markov property for balls

Suppose that h a centred linear stochastic process indexed by test functions on \mathbb{B} satisfying

- domain Markov property for balls
- fourth moments: $\mathbb{E}((h, f)^4) < \infty \ \forall f \in C_c^{\infty}(\mathbb{B})$

Suppose that h a centred linear stochastic process indexed by test functions on \mathbb{B} satisfying

- domain Markov property for balls
- fourth moments: $\mathbb{E}((h, f)^4) < \infty \ \forall f \in C_c^{\infty}(\mathbb{B})$
- stochastic continuity and zero boundary conditions

 $(h, f_n) \to 0$ in L^2 for $(f_n)_{n \ge 0}$ smooth & positive, with support $\to \partial \mathbb{B}$ and $\sup_{n} \left(\sup_{r>1} \sup_{x,y \in \partial r\mathbb{B}} |f_n(x)/f_n(y)| + ||f_n||_{L^1(\mathbb{B})} \right) < \infty$

Suppose that h a centred linear stochastic process indexed by test functions on \mathbb{B} satisfying

- domain Markov property for balls
- fourth moments: $\mathbb{E}((h, f)^4) < \infty \ \forall f \in C_c^{\infty}(\mathbb{B})$
- stochastic continuity and zero boundary conditions

 $(h, f_n) \to 0$ in L^2 for $(f_n)_{n>0}$ smooth & positive, with support $\to \partial \mathbb{B}$ and $\sup_{n} \left(\sup_{r>1} \sup_{x,y \in \partial r\mathbb{B}} |f_{n}(x)/f_{n}(y)| + ||f_{n}||_{L^{1}(\mathbb{B})} \right) < \infty \right)$

Then h is a multiple of a GFF on \mathbb{B} with zero boundary conditions

Could this be used to identify scaling limits?

- Could this be used to identify scaling limits?
- **Rotational invariance** is true but not needed!

- Could this be used to identify scaling limits?
- **Rotational invariance** is true but not needed!
- Can probably weaken some assumptions, e.g. exact copy in DMP, moments

- Could this be used to identify scaling limits?
- **Rotational invariance** is true but not needed!
- Can probably weaken some assumptions, e.g. exact copy in DMP, moments
- Harmonicity in the Markov property is key

- Could this be used to identify scaling limits?
- **Rotational invariance** is true but not needed!
- Can probably weaken some assumptions, e.g. exact copy in DMP, moments
- Harmonicity in the Markov property is key
- Are there other interesting fields characterised by a different Markov property? (e.g., stable bridges/fields, CLE nesting field?)

- Could this be used to identify scaling limits?
- **Rotational invariance** is true but not needed!
- Can probably weaken some assumptions, e.g. exact copy in DMP, moments
- Harmonicity in the Markov property is key
- Are there other interesting fields characterised by a different Markov property? (e.g., stable bridges/fields, CLE nesting field?)
- What about **GFFs on other manifolds?**

Idea for the proof

Outline **Two steps**

- Covariance is the Greens' function (simpler step)
- Gaussianity (more challenging)

Key ingredient: Suppose that for $y \in \mathbb{B}$, $k_y(x)$ is a **harmonic** function defined in $\mathbb{B} \setminus \{y\}$, such that $k_y(x) - bs(|x - y|)$ is bounded in a neighbourhood of y for some b > 0 and such that $(k_y, f_n)_{L^2} \to 0$ for any sequence of functions f_n as in our zero boundary condition. Then $k_y(x) = bG^{\mathbb{B}}(x, y)$ for all $x \neq y$; $x, y \in \mathbb{B}$.

Key ingredient: Suppose that for $y \in \mathbb{B}$, $k_y(x)$ is a **harmonic** function defined in $\mathbb{B}\setminus\{y\}$, such that $k_y(x) - bs(|x - y|)$ is bounded in a neighbourhood of yfor some b > 0 and such that $(k_y, f_n)_{L^2} \to 0$ for any sequence of functions f_n as in our zero boundary condition. Then $k_y(x) = bG^{\mathbb{B}}(x, y)$ for all $x \neq y$; $x, y \in \mathbb{B}$.

Harmonicity + scaling + boundary conditions \Rightarrow Greens' function

Key ingredient: Suppose that for $y \in \mathbb{B}$, $k_y(x)$ is a **harmonic** function defined in $\mathbb{B}\setminus\{y\}$, such that $k_y(x) - bs(|x - y|)$ is bounded in a neighbourhood of yfor some b > 0 and such that $(k_y, f_n)_{L^2} \to 0$ for any sequence of functions f_n as in our zero boundary condition. Then $k_y(x) = bG^{\mathbb{B}}(x, y)$ for all $x \neq y$; $x, y \in \mathbb{B}$.

Harmonicity + scaling + boundary conditions \Rightarrow Greens' function

This condition can be checked quite easily using the assumptions (esp. DMP)

$$X_t := \oint_{|x|=e^{-t}} h(x) \, dx''$$

• In 2d, $(X_t)_{t\geq 0}$ is **centered** and has **stationary** and **independent increments** by the domain Markov property

$$X_t := \oint_{|x|=e^{-t}} "h(x) \, dx"$$

- In 2d, $(X_t)_{t\geq 0}$ is **centered** and has **stationary** and **independent increments** by the domain Markov property
- Using the 4th moment assumption, and Kolmogorov's criterion, also has a continuous modification

$$X_t := \oint_{|x|=e^{-t}} "h(x) \, dx"$$

- In 2d, $(X_t)_{t\geq 0}$ is **centered** and has **stationary** and **independent increments** by the domain Markov property
- Using the 4th moment assumption, and Kolmogorov's criterion, also has a continuous modification
- $\Rightarrow X_t$ is Brownian motion \Rightarrow jointly Gaussian

$$X_t := \oint_{|x|=e^{-t}} h(x) \, dx''$$

- In 2d, $(X_t)_{t\geq 0}$ is **centered** and has **stationary** and **independent increments** by the domain Markov property
- Using the 4th moment assumption, and Kolmogorov's criterion, also has a continuous modification
- $\Rightarrow X_t$ is Brownian motion \Rightarrow jointly Gaussian
- In $d \ge 3$ everything is the same except the stationarity. Still get Gaussianity!

Gaussianity **Spherical harmonics**

Let $(\psi_{n,j})_{n \ge 0, 1 \le j \le M_n}$ be an orthonormal basis of spherical harmonics for $L^2(\partial \mathbb{B})$. In particular, $x \mapsto |x|^n \psi_{n,j}(x/|x|)$ is harmonic in \mathbb{B}

©Wikipedia

Example In 2d, $\psi_{n,1} = \sin(n\theta), \psi_{n,2} = \cos(n\theta)$ for $n \geq 1$

Gaussianity **Spherical harmonics**

Let $(\psi_{n,j})_{n \ge 0, 1 \le j \le M_n}$ be an orthonormal basis of spherical harmonics for $L^2(\partial \mathbb{B})$. In particular, $x \mapsto |x|^n \psi_{n,j}(x/|x|)$ is harmonic in \mathbb{B}

The same argument as for the spherical average case then gives that

$$X_r^{n,j} := r^{-n} \int_{|x|=1}^{\infty} |x|^{-1} dx$$

for $r \in (0,1]$ is a Gaussian process

©Wikipedia

Example In 2d, $\psi_{n,1} = \sin(n\theta), \psi_{n,2} = \cos(n\theta)$ for $n \geq 1$

$$h(x)\psi_{n,j}(\frac{x}{|x|})dx$$

=1

Gaussianity $\psi_{n,1} = \sin(n\theta), \psi_{n,2} = \cos(n\theta)$ for **Spherical harmonics**

Let $(\psi_{n,j})_{n \ge 0, 1 \le j \le M_n}$ be an orthonormal basis of spherical harmonics for $L^2(\partial \mathbb{B})$. In particular, $x \mapsto |x|^n \psi_{n,i}(x/|x|)$ is harmonic in \mathbb{B}

The same argument as for the spherical average case then gives that

$$X_r^{n,j} := r^{-n} \int_{|x|=r}^{\infty} |x|=r^{n-1} \int_{|x|=r}^{\infty} |x|=r^{n$$

for $r \in (0,1]$ is a Gaussian process

by the radius and the choice of harmonic $\psi_{n,i}$, is **Gaussian**

©Wikipedia

Example In 2d, $n \geq 1$

$$h(x)\psi_{n,j}(\frac{x}{|x|})dx$$

• Using Markov property again \Rightarrow "spherical harmonic averages", as a process indexed

• There exist radial functions $(f_{n,i})_{i,n\geq 0}$ such that

form an orthonormal basis of $L^2(\mathbb{B})$

$x \mapsto f_{n,i}(|x|) \psi_{n,j}(\frac{x}{|x|})$

• There exist radial functions $(f_{n,i})_{i,n\geq i}$

 $x \mapsto f_n$

- form an orthonormal basis of $L^2(\mathbb{B})$

Such that

$$\int_{n,i} (|x|) \psi_{n,j}(\frac{x}{|x|})$$

• Previous slide $\Rightarrow h$ tested against these functions is jointly Gaussian \Rightarrow Result!

• There exist radial functions $(f_{n,i})_{i,n\geq i}$

 $x \mapsto f_n$

- form an orthonormal basis of $L^2(\mathbb{B})$

Such that

$$f_{n,i}(|x|)\psi_{n,j}(\frac{x}{|x|})$$

• Previous slide $\Rightarrow h$ tested against these functions is jointly Gaussian \Rightarrow Result!

