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•  for G𝔹(s, t) = s(1 − t) 0 ≤ s < t ≤ 1

•  standard Brownian bridge on ⇒ [0,1]

• This Schwartz distribution is actually a well-defined function (not true for 
)d ≥ 2

• Universal scaling limit of random walks with zero boundary conditions

• Lots of characterisations (at least for Brownian motion)
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• Can define GFF in any simply 
connected ; conformally invariant 

• Conjectured/proven to arise as a 
universal scaling limit

G𝔹(0,z) = −
1

2π
log |z | z ∈ 𝔹

D ⊂ ℂ
φ : D → 𝔹

GD(x, y) = G𝔹(φ(x), φ(y)) ∀x, y ∈ D

D

Dimer model
Schramm—Loewner 
evolution

Random matrices

Random planar maps

“Random surfaces” e.g. 
Ginzburg-Landau model
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Then  is a multiple of a GFF on  with zero boundary conditionsh 𝔹
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Comments
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• Could this be used to identify scaling limits? 

• Rotational invariance is true but not needed!

• Can probably weaken some assumptions, e.g. exact copy in DMP, moments

• Harmonicity in the Markov property is key 

• Are there other interesting fields characterised by a  different Markov property? 
(e.g., stable bridges/fields, CLE nesting field?)

• What about GFFs on other manifolds?
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Outline
Two steps

• Covariance is the Greens’ function (simpler step)


• Gaussianity (more challenging)
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Idea of proof

Key ingredient: Suppose that for ,  is a harmonic function defined 
in , such that  is bounded in a  neighbourhood of  
for some  and such that  for any sequence of functions  as 
in our zero boundary condition. Then  for all .

y ∈ 𝔹 ky(x)
𝔹∖{y} ky(x) − bs( |x − y | ) y

b > 0 (ky, fn)L2 → 0 fn
ky(x) = bG𝔹(x, y) x ≠ y ; x, y ∈ 𝔹

Harmonicity + scaling + boundary conditions  Greens’ function⇒

This condition can be checked quite easily using the assumptions (esp. DMP) 
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(Xt)t≥0

• Using the 4th moment assumption, and 
Kolmogorov’s criterion, also has a 
continuous modification

•   is Brownian motion  jointly 
Gaussian
⇒ Xt ⇒

• In  everything is the same except 
the stationarity. Still get Gaussianity!

d ≥ 3

Gaussianity
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r := r−n ∫|x|=r
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• Using Markov property again  “spherical harmonic averages”, as a process indexed 
by the radius and the choice of harmonic , is Gaussian
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