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Changepoints - a hypercube lattice

Challenge € {Detection, Estimation, Confidence intervals}

Number of changepoints € {One, Many}

Dimension € {Univariate, Multivariate, High}

Change type € {Mean, Covariance, Regression coefficient, Distribution}
Dependence € {None, Spatial, Temporal, ...}

Observation format € {Offline, Online}

Other structure € {Missingness, Network, Functional data, . ..}
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High-dimensional changepoint models <

» The evolution of technology enables the collection of vast amounts of
high-dimensional, time-ordered data:
- Healthcare devices
- Covid case numbers
- Trading data of financial instruments

» Changes in the dynamics of the data streams are frequently of interest.
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Recent trends in changepoints %

e More specialised/realistic data generating mechanisms

Finite-sample bounds on performance, often uniform over classes

Optimality theory via minimax lower bounds

Efficient computation.
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inspect methodology

Tengyao Wang
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Estimating a sparse, high-dimensional mean change P

Assume that X; = (Xq4,. .. ,Xp)t)—r ~ Np(pe, 021,) independently with
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1= =y = [ and  piop1 == lp =@
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Assume that X, = (X1,4,..., X,

)T ~ N,(us, 021,) independently with

g = =M and ey = e = g = p @)

We assume that the vector of change 6 := u(® — (! is sparse in the sense that
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Estimating a sparse, high-dimensional mean change

Assume that X; = (X1.4,...,Xp) " ~ Np(us,021,) independently with

g = =M and ey = e = g = p @)

We assume that the vector of change 6 := u(® — (! is sparse in the sense that
0]l < s < p.

Goal: estimate the changepoint location z.
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Further model assumptions

Assume that
—min(z,n —2) >,
n

and the magnitude of the mean change is such that

16]]2 = 9.

Let P(n,p, s,9,T,02) be the set of distributions of such data matrices X.

Richard J. Samworth
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Projection-based changepoint estimation
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Projection-based changepoint estimation

Fora € SP~1,

a' Xy~ N(ap,c?).

Optimal projection direction is v := 6/]0||5.
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Ba
CUSUM transformation

Define CUSUM transformation 7T, ,, : RP*" — RP*(=1) by

TN = Ty (M) 1= 1) 20 ( S Mir 5 Mo )

.
T (1) +
A +
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SVD of CUSUM transformation >

The entries of A can be given explicitly:

Aje = : - ! _ = (07" ),
\/ 205, ift >z

so the oracle projection direction is the leading left singular vector of the rank 1
matrix A.
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SVD of CUSUM transformation

&

The entries of A can be given explicitly:

t .
1/m(n—2)0‘7 IftSZ
Aje=4 "V — . = (07" ),
729], ift >z
so the oracle projection direction is the leading left singular vector of the rank 1

matrix A.

We could therefore consider estimating v by Omax,s € argmax;ege—1(,) 1T %]z,

and indeed when n > 6, with probability at least 1 — 4(plog n)_l/g,

16+/2 I I
i1 L (B 0, 0) < 6v20 [slog(plogn)
70 n

Richard J. Samworth

10/21



A computationally efficient projection Eg

Computing the s-sparse leading left singular vector of a matrix is NP-hard.

However,
max |ju' T2 = max u' Tw
ueSP—1(s) ueSP—1(s),wesSn—2

max w',T) = max (M, T),
w€SP~L weS" 2 |lullo<s MeM

where M := {M : | M|« = 1,rank(M) = 1, nnzr(M) < s}
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A computationally efficient projection

Computing the s-sparse leading left singular vector of a matrix is NP-hard.

However,
max |ju' T2 = max u' Tw
u€eSP—1(s) ueSP—1(s),weS™—2

max w',T) = max (M, T),
u€eSP~HwesS" 2, |lullo<s MeMm

where M := {M : | M|« = 1,rank(M) = 1, nnzr(M) < s}

For A > 0, we therefore consider computing

M € argmax{(T, M) — \| M|},
MeS

where S := {M € RP*(=1) . || M||, < 1}, using ADMM. We can then let © be
a leading left singular vector of M.
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Projection direction estimator Eg

Let M € argmax;cs{ (I, M) — A[M||; } and & € argmax;cgp—1 M T2 1f
n > 6 and A > 20+/log(plogn), then with probability at least 1 — 4/y/plogn,
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Projection direction estimator %

Let M € argmax;cs{ (I, M) — A[M||; } and & € argmax;cgp—1 M T2 1f
n > 6 and A > 20+/log(plogn), then with probability at least 1 — 4/y/plogn,

32)\/s
T/

sin Z(0,v) <

tth

Let 2 € argmax,c(,,_q] |67 T;|, where T} is the ' column of T..
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Sample-splitting version performance

&

Let o > 0 be known and X ~ P € P(n,p,s,d,T,02). Let 2 be the output of
sample-splitting algorithm with input X, o and A := 20+/log(plogn). There
exist universal constants C, C’ > 0 such that if n > 12, z is even and

Co [s log(plogn) <1
9T n -
then with probability at least 1 — 4{plog(n/2)}~'/? — 17/log(n/2),

- C’o?loglogn

1
E|z—z| - nY?
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Example

projected CUSUM statistics
5

Richard J. Samworth
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MissInspect methodology

Bertille Follain Tengyao Wang
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Changepoint estimation with missing data P

French river temperature in 2018 13C/12C in ocean cores 0-23 Ma
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Problem setup @

» Observed data (X o 2, Q)

- Full data matrix X = (X ;) € RP*"
- Revelation matrix Q = (w;¢) € {0,1}P*": w;, = 1if X;, is observed

and 0 otherwise.
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and 0 otherwise.
» Data distribution:
- Assume X; = (X1 4,... ,Xm)—r ~ Np(ut7J2Ip) independently with

) @

U1 ==, =/ and Pogl =" = lbn = [k

~ Vector of change 6§ := u® — (M) is s-sparse.

Richard J. Samworth

17/21



Problem setup

&

» Observed data (X o 2, Q)
- Full data matrix X = (X ;) € RP*"
- Revelation matrix Q = (w;¢) € {0,1}P*": w;, = 1if X;, is observed
and 0 otherwise.
» Data distribution:
- Assume X; = (X1 4,... ,Xm)—r ~ Np(uhozfp) independently with

) @

Hr = "=Hz=/ and Hzt1 == Hn = [
~ Vector of change 6§ := u® — (M) is s-sparse.
» Missingness mechanism:

- wj ~ Bern(g;) independently, and independent of X.

» Goal: estimate the changepoint location z.
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&

MissCUSUM transform

» Write
t
Lj::= E Wit E Wit, Nji=Ljn+ Rjn.
r=1 j=n—t+1

» The MissCUSUM transformation 7M1 : RPX™ x {0, 1}PX" — RP* (=1 js
defined such that T = TMis$( X, Q) satisfies

L’tR'nft ( 1 - . t )
T S — Js Js X ° Q L., X ° Q
( Q)J’t N] R_j,n—t T:;-l( L g

when min{L;+, R;;} > 0 and 0 otherwise.

» When the data are fully-observed, i.e. €2 is an all-one matrix, TMiss reduces
to the standard CUSUM transformation.
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How to aggregate signal Eg

> To = TMsS(X 00,0) can be viewed as a perturbation of the rank one
matrix (6 o \/q)y ", where ¢ := (q1,..., ).
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How to aggregate signal

> To = TMsS(X 0Q,0) can be viewed as a perturbation of the rank one
matrix (6 o \/a)'y—r, where q := (q1,...,qp) .

» We can estimate 6 o ,/q/||0 o \/q|| via the s-sparse leading left singular
vector of Tq:

max v Tow subject to  ||v]jp < s.
(v,w)EBP xB"—1

» Since this is non-convex and requires knowledge of s, we relax it into a
bi-concave problem:

(0,w) €  argmax {’UTTQ’IU — Al }
(v,w)€EBP xBn—1

» Additional benefit: directly exploits the row sparsity pattern.
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[llustration of the algorithm in action
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Parameters: p = 100, n = 250, z = 100, s = 10, ||f]2 = 2, ¢; = 0.2V j
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Summary %

e We have made remarkable progress in understanding high-dimensional
changepoints over the last 5-10 years!
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