
E�cient Online Detection of Changes in

Data Streams: The FOCuS Algorithm

Paul Fearnhead and Giuseppe Dilillo
Lancaster University and INAF-IAPS

Joint work with Gaetano Romano, Guillem Rigaill, Kes Ward
and Idris Eckley

Online Change-Point Detection

Online Change Detection

Increasingly there is the need to detect changes in the features of
(a) data stream(s) in real-time.

This involves repeatedly testing for a change as each new data
point arrives.

We will consider detecting a change in the mean of a single data
stream.

Likelihood Ratio Test

We can test for a change by
repeatedly using a likelihood
ratio test.

We compare evidence for a
model with no change against a
model with a di↵erent mean
before and after a changepoint ⌧ .

As the changepoint is
unknown, we search over all
possible ⌧s.

0 5 10 15

−1
0

−5
0

5

t

 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

The Idea of FOCuS

������

1DLYH�,PSOHPHQWDWLRQ)2&X6��)XQFWLRQDO�3UXQLQJ�

,WH
UD

WLR
QV

������

FOCuS Algorithm

Page’s method

Consider Gaussian data, with known pre-change mean (w.l.o.g.
assume this is 0). Page (1954) introduced a sequential change
detection method – it requires you to specify the post-change
mean, µ.

It calculates the maximum likelihood ratio statistic for a change
to a mean µ, maximising over all possible change point times.

Pt(µ) = max
⌧=1,...,t

tX

s=⌧

{y2s � (ys � µ)2}.

This can be done online using the recursion

Pt(µ) = max{Pt�1(µ), 0}+ {y2t � (yt � µ)2}.

FOCuS Algorithm

We do not know the post-change mean µ. So ideally we would
run Page’s method simultaneously for all µ.

If we can do this, then maxµ Pt(µ) is the likelihood-ratio statistic.
(Equivalent to maximising over all possible change locations.)

This is what the Functional Online CuSum (FOCuS) algorithm
does.

FOCuS Algorithm

The idea is to solve

Pt(µ) = max{Pt�1(µ), 0}+ {y2t � (yt � µ)2},

for the functions Pt(µ) for t = 1, Each function Pt(µ) can be
written as a piecewise quadratic.

We will describe how to solve the recursion for µ > 0 (and by
symmetry the same approach can be use for µ < 0).

FOCuS Algorithm

Pt�1

0.0 0.2 0.4 0.6 0.8

−0
.5

0.
0

0.
5

1.
0

1.
5

mu

C
os
t

FOCuS Algorithm

Add Zero line

0.0 0.2 0.4 0.6 0.8

−0
.5

0.
0

0.
5

1.
0

1.
5

mu

C
os
t

FOCuS Algorithm

max{Pt�1, 0}

0.0 0.2 0.4 0.6 0.8

−0
.5

0.
0

0.
5

1.
0

1.
5

mu

C
os
t

FOCuS Algorithm

Pt = max{Pt�1, 0}+{y2t � (yt�µ)2}

0.0 0.2 0.4 0.6 0.8

−0
.5

0.
0

0.
5

1.
0

1.
5

mu

C
os
t

FOCuS Algorithm

CPU Cost

Each quadratic goes through the origin, so can be stored as a
pair: the coe�cients of µ2 and µ, together with the region of µ
that it is optimal.

We can show that at each iteration the computational cost is
proportional to one plus the number of quadratics that are
removed.

As only one quadratic is added at each iteration – this means the
computational cost of updating the quadratics is, on average,
constant over time.

In practice it is negligible compared to the cost of maximising
Pt(µ).

FOCuS Algorithm

CPU Cost

There is an additional cost of calculating maxµ Pt(µ) at each
iteration.

This involves maximising each quadratic.

The number of quadratics is equal to the number of extremal
points of the convex hull of the random walk (t,

Pt
i=1 xt).

FOCuS Algorithm

CPU cost

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mu

G
au

ss
ia

n
C

os
t

0 2000 6000 10000

−4
0

−2
0

0
20

40

t

C
um

ul
at

ive
 S

um

FOCuS Algorithm

CPU Cost

The expected number of points on the convex hull for
exchangeable data is well known.

At time T the expected number is bounded by 1 + log T .
(Actually 1 + 1

2 log T .)

FOCuS Algorithm

Number of Quadratics

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

4
5

6
7

Time

Av
e(

Q

ua
dr

at
ic

s)

Extensions

FOCuS Algorithm

Unknown pre-change mean

If we do not know the pre-change mean the LR test is:

max
⌧2{1,...,n�1}

µ0,µ12R

(
⌧X

t=1

(xt � µ0)
2 +

nX

t=⌧+1

(xt � µ1)
2

)
�max

µ

nX

t=1

(xt �µ)2.

This is easy to calculate given ⌧ , but involves a maximisation
over ⌧ .

However there is a small set of ⌧ values we need to consider.
These correspond to the values that need to be kept if the
pre-change mean is known, for some value of µ0.

For a positive (negative) change this set is the set of possible
change locations in the limit of µ0 going to �1 (respectively, 1)

FOCuS Algorithm

Unknown pre-change mean

This means we can use the same pruning algorithm for the
pre-change mean known case. (With some minor tweaks.)

The expected number of quadratics at time T is bounded by
1 + log(T) for each of an up and a down change.

FOCuS Algorithm

Exponential Family

What if our data is not Gaussian? Instead assume it is from a
one-parameter exponential family model

f(x | ✓) = exp
⇥
↵(✓) · �(x)� �(✓) + �(x)

⇤
.

Page’s methods for calculating the LR test statistic for a change
from ✓0 to ✓ has recursion

Pt(✓) = max {0, Pt�1(✓)}+2
�
[↵(✓)�↵(✓0)]�(xt)� [�(✓)��(✓0)]

.

FOCuS Algorithm

Exponential Family

We could apply the same type of algorithm to compute Pt(✓) but
with a di↵erent form for the curves. These will be of the form

a log ✓ + b✓

for some co-e�cient a and b for Poisson and Gamma models, or

a log ✓ + b log(1� ✓)

for Binomial data.

We can show that the set of ⌧ values we need to consider are the
same as for FOCuS for Gaussian data applied to data �(xt).

The only thing that changes is the form of the curves and hence
the maximisation step.

FOCuS Algorithm

Poisson Data

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

1.
0

mu

G
au

ss
ia

n
C

os
t

1.0 1.5 2.0 2.5 3.0 3.5

0.
0

1.
0

mu

Po
is

so
n

C
os

t

FOCuS Algorithm

Adaptive Maxima Checking

The main computational cost of FOCuS is calculating the
maximum of Pt(µ), as this involves maximising each curve.

We can reduce this cost substantially by recycling calculations.

The key idea is that the di↵erence between curves is unchanged
as we add new curves. And we can use the maximum of these
di↵erences to bound the overall cost.

We start maximising curves from the most recent to the oldest.
But, once our bound tells us that maxPt(µ) is below our
threshold we can stop.

FOCuS Algorithm

Adaptive Maxima Checking

0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

θ1

Q
ua

dr
at

ic
 D

iff
er

en
ce

s

0.0 1.0 2.0
0.

0
0.

5
1.

0
1.

5
2.

0

θ1

Q
T(
θ 1
)

FOCuS Algorithm

Adaptive Maxima Checking

FOCuS

FOCuS is an algorithm for online change detection that can
e�ciently calculate the Likelihood-ratio test statistic for all
possible change locations.

• Essentially the same algorithm applies to any
one-parameter exponential family model for the data.

• It can deal with both pre-change parameter known or
unknown.

• With adaptive maxima checking it (empirically) has a
constant per-iteration cost (that it is roughly equal to
finding the maximum of one curve).

• The Poisson version of the algorithm is due to be used
within the HERMES cube-satellite software for
detecting gamma ray bursts.

Giuseppe Dilillo (INAF-IAPS)
Statistical Scalability for Data Streams,
London
2023-04-20

Gamma-ray bursts detection
with FOCuS-Poisson

Gamma-ray bursts
What and why

• Sudden bursts of energetic light.

• Sources are distant, new-born black holes.

• Duration between milliseconds and hours.

• Most powerful class of cosmic explosions.

How GRBs look
and how to detect them

• From space, with count detectors.

• No two GRBs are the same.

Histograms of photons counts for extremely bright GRBs detected by BATSE aboard NASA
Compton. There is a whole zoo of shapes and durations.

All of them do appear as a temporary change in rate over a poissonian background.

background count-rates increasing due

to satellite motion through low-Earth

orbit radiation environment

High-energy rapid modular ensemble of satellites

I work on this mission.

• 6+1 CubeSat constellation.

• GRB all-sky monitor.

• Source localization comparing  
photons arrival times between  
different spacecrafts.

• HORIZON2020/ASI funding.

https://www.hermes-sp.eu/

HERMES

FOCuS and HERMES
1. Online burst search

• Embedded implementation for multiple detectors and energy bands.

• Background assessment and forecast through SMA or exponential
smoothing.

• Tuned backtesting over archival Fermi-GBM dataset.

• Tested over a large library of synthetic GRBs.

Online burst search
Detection Performances

• We made a software to generate custom, synthetic GRB lightcurves modelled
after real observations (Synthburst).

• Using Synthburst we generated a large library of synthetic lightcurves.

• We ran different algorithms and compared performances.

REAL

SIMULATED

Detection Performances

• Finally, we compared detection
performances from different algorithms.

Results:

• Ideal detection performances for
approximated FOCuS-Poisson
implementation over short bursts.

• Best performances over long bursts yet
limited by automatic background
assessment.

• Half the computational cost of the best
benchmark we could come up with.

Online burst search

short G
RB

long GRB

• ML background model trained over archival
data from GRB experiment (Riccardo Crupi).

• Used FOCuS to detect transients.

• We found multiple transients which were
previously not known!  

ArXiv: https://arxiv.org/pdf/2303.15936

 github: https://github.com/rcrupi/deepgrb

2. Offline burst search
FOCuS and HERMES

FOCuS and HERMES
2. Offline burst search

known

unknown

… 
We made a small catalog of unknown events.

Beyond GRBs

Occultation from hot Jupyter exoplanet HAT-P-13b. From Buhler et al., 2013.

First detected radio burst, Lorimet et al., 2013

GW170817, Abbott et al., 2017

Search for anomalies in streaming data is
ubiquitous in astrophysics!

• Detect and characterize planetary and
stellar occultations.

• Multi-dimensional search over
frequency and energy domains.

• Images source detection.

Thank you!

References

Crupi, Dilillo, Bissaldi, Fiore and Bari (2023) Searching for long faint

astronomical high energy transients: A data driven approach arXiv:2303.15936

Page (1954) Continuous inspection schemes Biometrika

Romano, Eckley, Fearnhead and Rigaill (2023) Fast Online Changepoint

Detection via Functional Pruning CUSUM statistics. Journal of Machine
Learning Research

Ward, Dilillo, Eckley and Fearnhead (2022) Poisson-FOCuS: A fast and

e�cient algorithm for detecting gamma ray bursts by cube-satellites.
arXiv:2208.01494

Ward, Romano, Eckley and Fearnhead (2023) A Constant-per-Iteration

Likelihood Ratio Test for Online Changepoint Detection for Exponential

Family Models arXiv:2302.04743

R code is available from https://github.com/gtromano/FOCuS; code for

GRBs from https://github.com/rcrupi/deepgrb

FOCuS Algorithm

CPU cost

Why do we keep changes corresponding to the points on the
convex hull?

There are two key properties

(1) If you join two points on the random walk – the slope
of the line is the mean of the observations between
those time-points.

(2) If you compare the likelihood for a change at s and one
at t with s < t, then the earlier change is better for
post-change means µ that are less than twice the mean
of ys+1:t; i.e.

✓ :=
µ

2
 ȳs+1:t

FOCuS Algorithm

CPU cost

We can then work out what values of ✓ = µ/2 a change at ⌧ is
better than later changes:

✓  min
t>⌧

ȳ⌧+1:t.

And also better than earlier changes:

✓ � max
t<⌧

ȳt:⌧ .

For there to be some ✓ > 0 where both hold we need

0  max
t<⌧

ȳt:⌧ < min
t>⌧

ȳ⌧+1:t.

FOCuS Algorithm

CPU cost

0 200 400 600 800 1000

−1
0

0
10

20

t

C
um

ul
at

ive
 S

um

