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Online Change-Point Detection
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Increasingly there is the need to detect changes in the features of
(a) data stream(s) in real-time.

This involves repeatedly testing for a change as each new data
point arrives.

We will consider detecting a change in the mean of a single data
stream.
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We can test for a change by
repeatedly using a likelihood
ratio test. ol

We compare evidence for a |
model with no change against a .
model with a different mean
before and after a changepoint 7.

As the changepoint is
unknown, we search over all ° : o
possible Ts.




The Idea of FOCuS
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Naive Implementation

e

FOCuS (Functional Pruning)

:
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FOCuS Algorithm
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Consider Gaussian data, with known pre-change mean (w.l.o.g.
assume this is 0). Page (1954) introduced a sequential change
detection method — it requires you to specify the post-change
mean, [.

It calculates the maximum likelihood ratio statistic for a change
to a mean pu, maximising over all possible change point times.

Pp) = max > {y: = (s — 1)}

This can be done online using the recursion

Py(p) = max{P;_1(n), 0} + {y7 — (ye — n)*}.
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We do not know the post-change mean u. So ideally we would
run Page’s method simultaneously for all p.

If we can do this, then max, P;(u) is the likelihood-ratio statistic.
(Equivalent to maximising over all possible change locations.)

This is what the Functional Online CuSum (FOCuS) algorithm
does.
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The idea is to solve

Py(p) = max{P,1(p), 0} + {yf — (v — 1)},

for the functions P(u) for t = 1,.... Each function P;(u) can be
written as a piecewise quadratic.

We will describe how to solve the recursion for p > 0 (and by
symmetry the same approach can be use for p < 0).
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Cost
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Add Zero line

Cost
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max{ P;_1,0}
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P, = max{P_1, 0} +{y; — (y: — p)*}
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CPU Cost

FEach quadratic goes through the origin, so can be stored as a
pair: the coefficients of ;i and p, together with the region of u
that it is optimal.

We can show that at each iteration the computational cost is
proportional to one plus the number of quadratics that are
removed.

As only one quadratic is added at each iteration — this means the
computational cost of updating the quadratics is, on average,
constant over time.

In practice it is negligible compared to the cost of maximising
Py(p).
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CPU Cost

There is an additional cost of calculating max,, P;(u) at each
iteration.

This involves maximising each quadratic.

The number of quadratics is equal to the number of extremal
points of the convex hull of the random walk (¢, >¢_ x¢).




FOCuS Algorithm
CPU cost
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CPU Cost

The expected number of points on the convex hull for
exchangeable data is well known.

At time T the expected number is bounded by 1 4 log T
(Actually 1+ 1logT.)




Mathematics = Lancaster EE

FOCU-S AlgOl"lthm &Statistics | University %
Number of Quadratics

Ave(# Quadratics)

T T T T T T
0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Time



Mathematics | Lancaster EZA
&Statistics | University ©-2

Extensions
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Unknown pre-change mean

If we do not know the pre-change mean the LR test is:

o (s 35t
T . P

Ho,p1 ER t=1 t=r+1

This is easy to calculate given 7, but involves a maximisation
over T.

However there is a small set of 7 values we need to consider.
These correspond to the values that need to be kept if the
pre-change mean is known, for some value of .

For a positive (negative) change this set is the set of possible
change locations in the limit of py going to —oo (respectively, oo
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Unknown pre-change mean

This means we can use the same pruning algorithm for the
pre-change mean known case. (With some minor tweaks.)

The expected number of quadratics at time 7" is bounded by
1 + log(T) for each of an up and a down change.
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Exponential Family

What if our data is not Gaussian? Instead assume it is from a
one-parameter exponential family model

f(x|0) = exp[a(0) - y(x) — B(0) + () ].

Page’s methods for calculating the LR test statistic for a change
from 6y to 6 has recursion

P,(0) = max {0, P,—1(6)} + 2{[c(6) — (60)]v(z1) — [B(6) — B(60)]}.
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Exponential Family

We could apply the same type of algorithm to compute P;(0) but
with a different form for the curves. These will be of the form

alogf + 0O
for some co-efficient a and b for Poisson and Gamma models, or
alog + blog(1l —0)
for Binomial data.

We can show that the set of 7 values we need to consider are the
same as for FOCuS for Gaussian data applied to data y(x;).

The only thing that changes is the form of the curves and hence
the maximisation step.
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Poisson Data
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Adaptive Maxima Checking

The main computational cost of FOCuS is calculating the
maximum of P;(u), as this involves maximising each curve.

We can reduce this cost substantially by recycling calculations.

The key idea is that the difference between curves is unchanged
as we add new curves. And we can use the maximum of these
differences to bound the overall cost.

We start maximising curves from the most recent to the oldest.
But, once our bound tells us that max P;(p) is below our
threshold we can stop.
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Adaptive Maxima Checking
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Adaptive Maxima Checking
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FOCuS is an algorithm for online change detection that can
efficiently calculate the Likelihood-ratio test statistic for all
possible change locations.
® Essentially the same algorithm applies to any
one-parameter exponential family model for the data.
® [t can deal with both pre-change parameter known or
unknown.
® With adaptive maxima checking it (empirically) has a
constant per-iteration cost (that it is roughly equal to
finding the maximum of one curve).
® The Poisson version of the algorithm is due to be used
within the HERMES cube-satellite software for
detecting gamma ray bursts.




Gamma-ray bursts detection
with FOCuS-Poisson
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Gamma-ray bursts Suppor e i e
Available for everyone, funded by readers Th
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What and why

Science

New frontier for science as astronomers

« Sudden bursts of energetic light. witness neutron stars colliding
 Sources are distant, new-born black holes. Favaiont wavesad g eningdecade-od dtiebont
» Duration between milliseconds and hours.
* Most powerful class of cosmic explosions.
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 From space, with count detectors.
* No two GRBs are the same.
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Histograms of photons counts for extremely bright GRBs detected by BATSE aboard NASA Time since trigger [s]
Compton. There is a whole zoo of shapes and durations.

All of them do appear as a temporary change in rate over a poissonian background.



GRB front

HERMES

High-energy rapid modular ensemble of satellites

| work on this mission.

6+1 CubeSat constellation.

GRB all-sky monitor.

Source localization comparing
photons arrival times between
different spacecrafts.

HORIZON2020/ASI funding.

https://www.hermes-sp.eu/




FOCuS and HERMES

1. Online burst search

Embedded implementation for multiple detectors and energy bands.

Background assessment and forecast through SMA or exponential
smoothing.

Tuned backtesting over archival Fermi-GBM dataset.

Tested over a large library of synthetic GRBs.



Online burst search

Detection Performances
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 We made a software to generate custom, synthetic GRB lightcurves modelled
after real observations (Synthburst).

» Using Synthburst we generated a large library of synthetic lightcurves.

« We ran different algorithms and compared performances.
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* Finally, we compared detection
performances from different algorithms.
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2. Offline burst search So] |
* ML background model trained over archival 5~ J
data from GRB experiment (Riccardo Crupi). & | i
|
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FOCuS and HERMES

2. Offline burst search
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1 2010_1 2010-11-02 819 n2 UNKNOWN: 399 338 0 P
14:16:36 GRB/GF
6 2010_6 2010-11-11 3277 n2 UNKNOWN: GRB 429 581 0 P
13:04:23
7 2010_7*  2010-11-11 1638 n2n4nS UNKNOWN: SF >10 457 0 R
18:58:17
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We made a small catalog of unknown events.



Beyond GRBs

Search for anomalies in streaming data is
ubiquitous in astrophysics!

* Detect and characterize planetary and

stellar occultations.

* Multi-dimensional search over

frequency and energy domains.

* Images source detection.

me (5)

First detected radio burst, Lorimet et al., 2013
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GW170817, Abbott et al., 2017




Thank you!
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CPU cost

Why do we keep changes corresponding to the points on the
convex hull?

There are two key properties

(1) If you join two points on the random walk — the slope
of the line is the mean of the observations between
those time-points.

(2) If you compare the likelihood for a change at s and one
at t with s < t, then the earlier change is better for
post-change means p that are less than twice the mean
of ysi1:4; ie.

0:= 5 < Goria
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CPU cost

We can then work out what values of § = /2 a change at 7 is
better than later changes:

< min vy .
0 < mingri1.
And also better than earlier changes:
> Uper.
02 yaxger
For there to be some 6 > 0 where both hold we need

0 < max . < mMinyriq.¢.
= mas Yt.r or Yr41:t
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CPU cost
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