Optical frequency combs in CHI-2 microresonators

Dmitry V. Skryabin University of Bath, England

Bath group and sponsors

Danila Zhiwei Vlad Alberto

Dmitry

Microresonators

50*µm*

*CaF*₂, *SiO*₂ 1000000

Whispering Gallery in StPaul's Cathedral

Lord Rayleigh (~1870)

Soliton-crystals

Soliton crystals in Kerr resonators

Daniel C. Cole^{1,2*}, Erin S. Lamb¹, Pascal Del'Haye^{1,3}, Scott A. Diddams¹ and Scott B. Papp¹

NATURE PHOTONICS | VOL 11 | OCTOBER 2017 | 671-676 |

Dynamics of soliton crystals in optical microresonators

Maxim Karpov^{®1}, Martin H. P. Pfeiffer¹, Hairun Guo^{®1,2}, Wenle Weng¹, Junqiu Liu¹ Tobias J. Kippenberg^{®1*} NATURE PHYSICS | VOL 15 | OCTOBER 2019 | 1071–1077

frequency

 $P = \chi_1 E + \chi_2 E^3$

Microresonators for Astro-Combs

An **Astro-Comb** (HARPS) detects spectral wobbles caused by small *exoplanets*

LETTERS https://doi.org/10.1038/s41550-020-1010-x

A crucial test for astronomical spectrograph calibration with frequency combs

Rafael A. Probst^{1,2*}, Dinko Milaković³, Borja Toledo-Padrón^{4,5}, Gaspare Lo Curto^{3,6}, Gerardo Avila³,

Coherent terabit communications with microresonator Kerr frequency combs

Pfeifle et al, Nature Phot 8, 375 (2014)

Concept of chi-2 combs

Bulk LiNbO3 ring resonators

Breunig, LasPhotonRev 10, 569 (2016)

Ilchenko ..., PRL 92, 043903 (2004) Furst ..., PRL 104, 153901 (2010)

LiNbO₃ $Q \sim 10^8$ finesse ~ 10000 FSR ~ 20 GHz

Linewidth: $\kappa_{a,b} \sim 1 - 10 \text{ MHz}$ Dispersion is normal till around 1.5um

$$e^{iM\theta - i\frac{1}{2}\omega_{p}t}\sum_{\mu}a_{\mu}(t)\Phi_{\mu}(\vec{r}\,)e^{i\mu\theta} + c.c.$$
$$e^{i2M\theta - i\omega_{p}t}\sum_{\mu}b_{\mu}(t)\Psi_{\mu}(\vec{r}\,)e^{i\mu\theta} + c.c.$$

Low-frequency modes

High-frequency modes

 $\mu = ..., -2, -1, 0, +1, +2...$ (relative mode number)

$$c^2 \partial_{\alpha} \partial_{\alpha_1} \mathcal{E}_{\alpha_1} - c^2 \partial_{\alpha_1} \partial_{\alpha_1} \mathcal{E}_{\alpha}$$

$$+ \partial_t^2 \int_{-\infty}^{\infty} \hat{\varepsilon}_{\alpha\alpha_1}(t - t', r, \theta, z) \mathcal{E}_{\alpha_1}(t', \vec{r}) dt' = -\partial_t^2 \mathcal{N}_{\alpha}$$

 $\mathcal{N}_{\alpha} = \chi^{(2)}_{\alpha\alpha_1\alpha_2} \mathcal{E}_{\alpha_1} \mathcal{E}_{\alpha_2}$

$$\begin{split} i\partial_t a_\mu &= \delta_{\mu a} a_\mu - \frac{i\kappa_a}{2} a_\mu \\ &- \gamma_a \sum_{\mu_1 \mu_2} \widehat{\delta}_{\mu,\mu_1 - \mu_2} b_{\mu_1} a_{\mu_2}^* \\ i\partial_t b_\mu &= \delta_{\mu b} b_\mu - \frac{i\kappa_b}{2} \left(b_\mu - \widehat{\delta}_{\mu,\mu'} \mathcal{H} \right) \\ &- \gamma_b \sum_{\mu_1 \mu_2} \widehat{\delta}_{\mu,\mu_1 + \mu_2} a_{\mu_1} a_{\mu_2} \end{split}$$

$$\omega_{b\mu_1} - \omega_{a\mu_2} - \omega_{a\mu}$$

$$\omega_{a\mu_1} + \omega_{a\mu_2} - \omega_{b\mu}$$

DVS ..., JOSA B 37, 2604 (2020)

Phase mismatch and repetition-rate mismatch

Linear spectrum

$$\omega_{\mu a} = \omega_{0a} + \mu D_{1a} + \frac{1}{2} \mu^2 D_{2a}$$
$$\omega_{\mu b} = \omega_{0b} + \mu D_{1b} + \frac{1}{2} \mu^2 D_{2b}$$

 $\mu = 0$ frequency mismatch parameter

$$\epsilon = 2\omega_{0a} - \omega_{0b} = \frac{2Mc}{R} \left(\frac{1}{n_a} - \frac{1}{n_b}\right)$$
$$= 0 \text{ to } \pm 20\text{GHz}$$

Phase velocity and group velocity mismatch

Linear spectrum

$$\omega_{\mu a} = \omega_{0a} + \mu D_{1a} + \frac{1}{2} \mu^2 D_{2a}$$
$$\omega_{\mu b} = \omega_{0b} + \mu D_{1b} + \frac{1}{2} \mu^2 D_{2b}$$

 $\mu = 0$ frequency mismatch parameter

$$\epsilon = 2\omega_{0a} - \omega_{0b} = \frac{2Mc}{R} \left(\frac{1}{n_a} - \frac{1}{n_b}\right)$$
$$= 0 \text{ to } \pm 20\text{GHz}$$

$$D_{1a} - D_{1b} = 1 \, \text{GHz}$$

Difference of linear repetition rates

Comb initiation equations

Rabi flops vs parametric gain (Rabi resonator)

Model to measurements (Freiburg) comparison

Szabados ..., PRL 124, 203902 (2020) Amiune ..., Optics Express 29 (25), 41378 (2022) Amiune ..., arXiv preprint arXiv:2205.12776 (2022)

LiNbO₃

500-1000nm

Parametric resonator: OPO or SHG

$$\mu |D_{1a} - D_{1b}| \gg |\varepsilon|$$

$$i\partial_t a_0 = \kappa_a \Delta_{0a} a_0 - \gamma_a b_0 a_0^*,$$

$$i\partial_t a_\mu = \kappa_a \Delta_{\mu a} a_\mu - \gamma_a b_0 a_{-\mu}^*, \quad \mu \neq 0,$$

$$i\partial_t a_{-\mu} = \kappa_a \Delta_{\mu a} a_{-\mu} - \gamma_a b_0 a_{\mu}^*,$$

$$i\partial_t b_0 = \kappa_b \Delta_{0b} b_0 + \frac{i\kappa_b}{2} \mathcal{H} - \gamma_b a_0^2 - 2\gamma_b \sum_{\mu_1 > 0} a_{\mu_1} a_{-\mu_1}$$

$$A = a_{\mu}e^{i\mu\vartheta + i\omega_{\mu}t} + a_{-\mu}e^{-i\mu\vartheta + i\omega_{-\mu}t},$$

$$B = b_{0}$$

Non-degenerate OPO states can now be found, and even their linear stability can be analysed explicitly

Puzyrev, DVS, Comms Phys **5**, 138 (2022)

Puzyrev, DVS, Comms Phys 5, 138 (2022)

Parametric phase-matching parabola but with steps

Eckhaus instability

Wiktor Eckhaus

Born

28 June 1930^[1] Stanisławów, Poland

1 October 2000 (aged 70) Amstelveen,^[2] Netherlands

Died

Non-staggered Staggered μ μ_{i} -2ν 2v

0

-v

ν

Chi-2 soliton modelocking

Potential benefits:

- Immediate modelocking across octave
- Independence of the dispersion signs
- Low excitation thresholds
- Near Mid IR coverage

Dressed-states formalism: Pockels vs cascaded-Kerr

$$\sqrt{\epsilon_{\mu}^2 + \gamma_a^2 |a_0|^2}$$

Phase-matched or near-phase-matched modes

experience Pockels nonlinearity

$$\sqrt{\epsilon_{\mu}^{2} + \gamma_{a}^{2} |a_{0}|^{2}} \qquad n = n_{0} + n_{P} |a_{0}|$$

Modes far from phase matching experience effective (cascaded) Kerr nonlinearity

$$\sqrt{\epsilon_{\mu}^2 + \gamma_a^2 |a_0|^2}$$

$$n = n_0 + n_{\rm eK} |a_0|^2$$

Puzyrev..., PRA 104, 013520 (2021)

Solitons in "parametric" SHG-resonator

Pankratov, DVS (under consideration)

SHG solitons in "Rabi" resonator

Phase and group velocity matching. All modes experience Pockels effect.

$$D_{1a} - D_{1b} \approx \epsilon \approx 0$$

$$i\partial_t A = \delta A - \frac{1}{2} D_{2a} \partial_\theta^2 A - \gamma_a B A^* - \frac{i\kappa_a}{2} A$$
$$i\partial_t B = (2\delta - \epsilon) B - \frac{1}{2} D_{2b} \partial_\theta^2 B - \gamma_b A^2 - \frac{i\kappa_b}{2} (B - H)$$

$$A = c\psi(\theta)e^{\frac{i\phi}{2}} \qquad \psi = \frac{3\delta}{2\gamma_b}\operatorname{sech}^2\left(\theta\sqrt{\frac{\delta}{2D_{2b}}}\right)$$
$$B = \psi(\theta)e^{i\phi} - iH_0$$

DVS, OptExp 29, 28521 (2021)

Kerr cavity solitons

$$i\partial_t A = \delta A - \frac{1}{2}D_2\partial_\theta^2 A - \gamma |A|^2 A - \frac{i\kappa}{2}(A - H)$$

$$A = \psi(\theta) - iH_0 \qquad \psi = \sqrt{\frac{2\delta}{\gamma}} \operatorname{sech}\left(\theta\sqrt{\frac{\delta}{2D_2}}\right)$$

Thank you for attention