Active Phase Separation (in two dimensions)

Leticia F. Cugliandolo

Sorbonne Université Institut Universitaire de France

leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia

Work in collaboration with

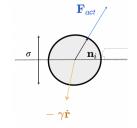
- C. Caporusso, G. Gonnella, P. Digregorio & I. Petrelli (Bari, Italia)
- A. Suma (Trieste, Italia, Philadelphia, USA & Bari, Italia)
- D. Levis & I. Pagonabarraga (Barcelona, España & Lausanne, Suisse)

Cambridge 2022

Active Brownian Disks in 2d

(Overdamped) Langevin equations (the standard model)

Active force $\mathbf{F}_{\mathrm{act}}$ along $\mathbf{n}_i = (\cos \theta_i, \sin \theta_i)$



$$m\ddot{\mathbf{r}}_i + \gamma \dot{\mathbf{r}}_i = F_{\text{act}} \mathbf{n}_i - \nabla_i \sum_{j(\neq i)} U_{\text{Mie}}(r_{ij}) + \boldsymbol{\xi}_i , \qquad \dot{\theta}_i = \eta_i ,$$

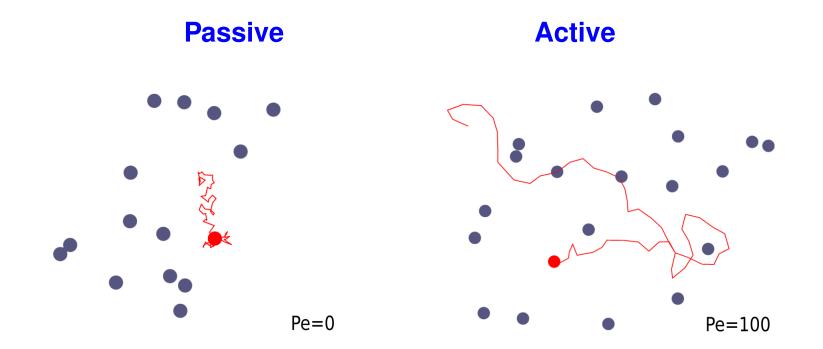
 \mathbf{r}_i position of *i*th particle & $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ inter-part distance,

 $U_{
m Mie}$ short-range **repulsive** Mie potential, over-damped limit $m \ll \gamma$

 ξ and η zero-mean Gaussian noises with $\langle \xi_i^a(t) \, \xi_j^b(t') \rangle = 2\gamma k_B T \delta_{ij}^{ab} \delta(t-t')$ and $\langle \eta_i(t) \, \eta_j(t') \rangle = 2D_{\theta} \delta_{ij} \delta(t-t')$ The units of length, time and energy are given by σ , $\tau_p = D_{\theta}^{-1}$ and ε $D_{\theta} = 3k_B T/(\gamma \sigma^2)$ controls persistence, $\gamma/m = 10$ and $k_B T = 0.05$ Péclet number Pe = $F_{\rm act} \sigma/(k_B T)$ and $\phi = \pi \sigma^2 N/(4S)$, measures activity

Active Brownian disks

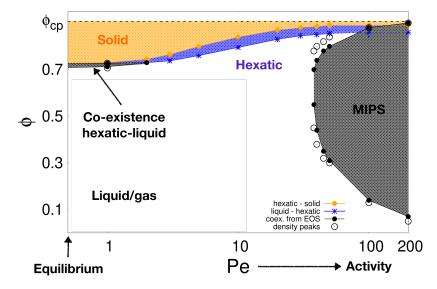
The typical motion of particles in interaction



The active force induces a **persistent random motion** due to $\langle \mathbf{F}_{\mathrm{act}}(t) \cdot \mathbf{F}_{\mathrm{act}}(t') \rangle \propto F_{\mathrm{act}}^2 e^{-(t-t')/\tau_p}$ with $\tau_p = D_{\theta}^{-1} \sim 60$

Active Brownian disks

Phase diagram with solid, hexatic, liquid, co-existence and MIPS



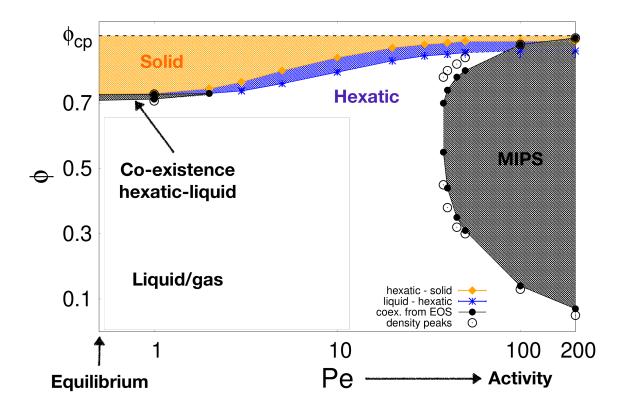
1st order hexatic-liquid close to Pe = 0
KT-HNY solid-hexatic
universal dislocation unbinding
Breakdown of KT-HNY hexatic-liquid picture
disclination unbinding within the liquid phase
percolation of defect clusters in the liquid

Pressure $P(\phi, \text{Pe})$ (EoS), correlations $G_T(r)$, $G_6(r)$, distributions of ϕ_i , and $|\psi_{6i}|$, defect identification & their densities

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018) Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)

Active Brownian disks

Phase diagram with solid, hexatic, liquid, co-existence and MIPS



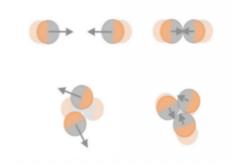
Motility induced phase separation (MIPS) gas & dense Cates & Tailleur Ann. Rev. CM 6, 219 (2015) Farage, Krinninger & Brader PRE 91, 042310 (2015)

Pressure $P(\phi, \text{Pe})$ (EOS), correlations $G_T(r)$, $G_6(r)$, and distributions of ϕ_i , $|\psi_{6i}|$

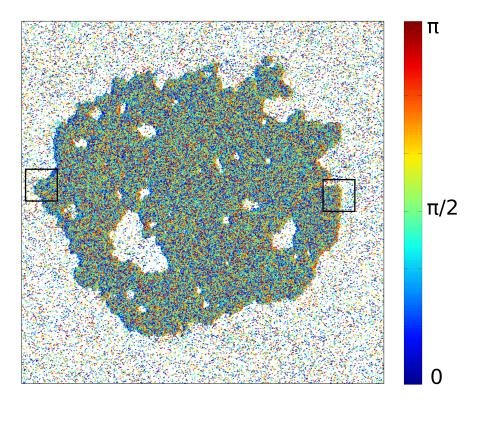
Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

Motility Induced Phase Separation

The basic mechanism



Particles collide heads-on and cluster even in the absence of attractive forces

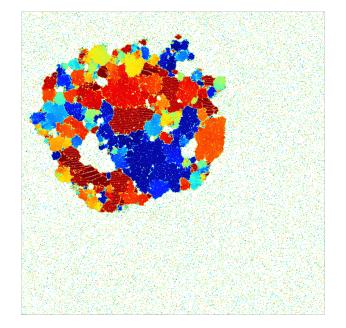


 $\rightarrow \textbf{blue 0} \qquad \qquad \leftarrow \textbf{red } \pi$

The colours indicate the direction along which the particles are pushed by the active force $m{F}_{
m act}$

The dense phase

Hexatic patches, defects & interfaces, bubbles



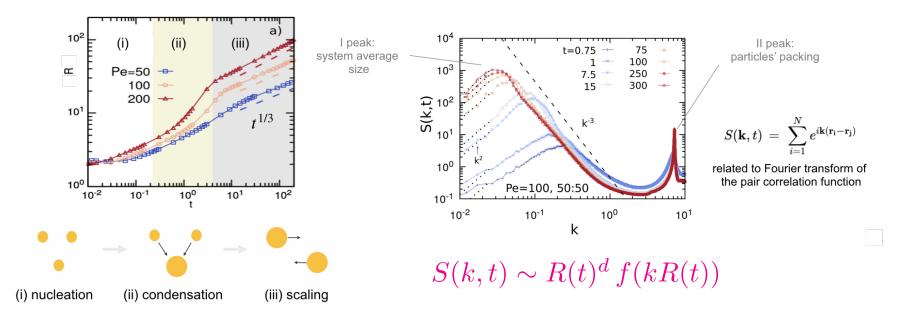
Dense/dilute separation¹ For low packing fraction ϕ a single round droplet Growth^{2,3} of a mosaic of hexatic orders² with gas bubbles^{2,4,5} & defects⁶

¹Cates & Tailleur, Annu. Rev. Cond. Matt. Phys. 6, 219 (2015)
 ²Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)
 ³Caporusso, LFC, Digregorio, Gonnella, Levis & Suma, in preparation
 ⁴Tjhung, Nardini & Cates, PRX 8, 031080 (2018)
 ⁵Shi, Fausti, Chaté, Nardini & Solon, PRL 125, 168001 (2020)
 ⁶Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)

The growth law

Scaling of the structure factor and growth regimes

Different Pe

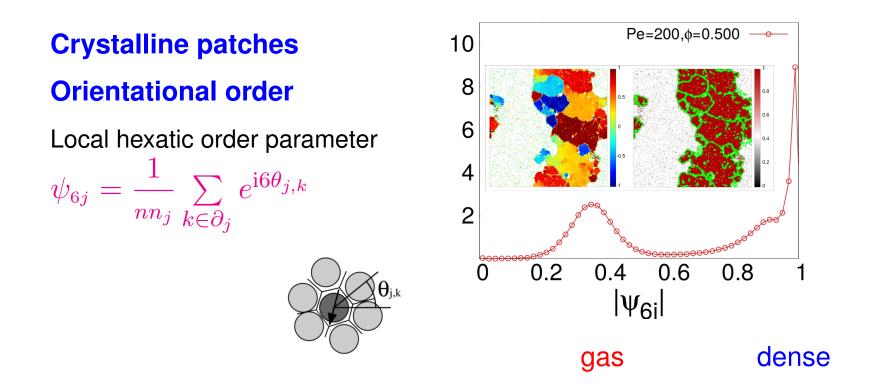


In scaling regime $t^{1/3}$ like in Lifshitz-Slyozov-Wagner, scalar phase separation

The main subject of this talk

The coloured patches

Local hexatic order parameter: macro vs. micro

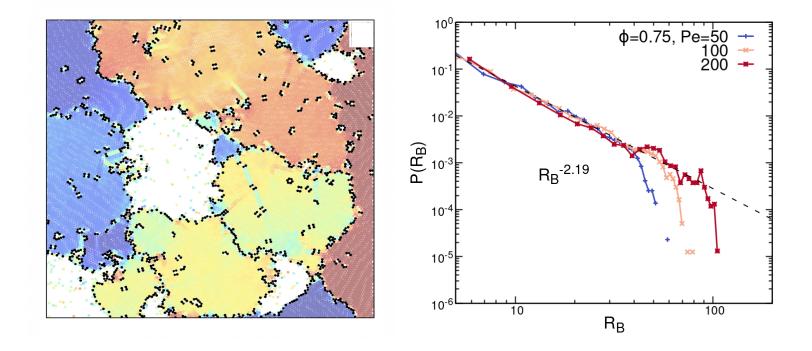


Macro vs. Micro while $R(t) \rightarrow aL$ the hexatic saturates $R_H(t) \rightarrow R_H^s$ finite

- Approximately exponential distribution of hexatic cluster sizes
- Clusters of defects along the interfaces

Bubbles in cavitation

At the internal interfaces dynamic bubbles pop up



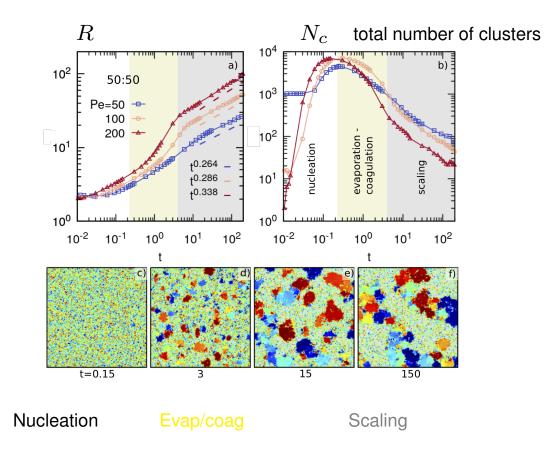
Bubbles appear and disappear at the interfaces between hexatic patches

Algebraic distribution of bubble sizes with a Pe-dependent exponential cut-off

Growth of dense components

Formation of dense clusters

Multinucleation, evaporation/coagulation, scaling regime, saturation



On the averaged scaling regime : Redner, Hagan & Baskaran, PRL 110, 055701 (2013) Stenhammar, Marenduzzo, Allen & Cates, Soft Matter 10, 1489 (2014) Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)

Goals:

better understand the **mechanisms** for the growth process

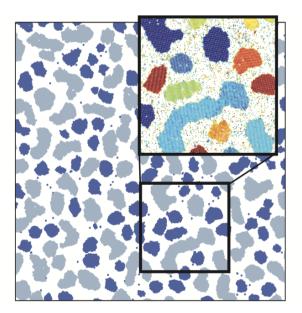
like the one undergone by a system of **passive attractive particles**?

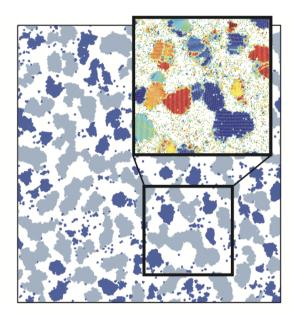
Dense clusters

Instantaneous configurations (DBSCAN)

Passive

Active





Parameters such that R(t) is the same

Caporusso, LFC, Digregorio, Gonnella, Levis & Suma, soon in arXiv

Dense clusters

Visual facts about the instantaneous configurations

Similarities

- Large variety of shapes and sizes (masses)

Co-existence of

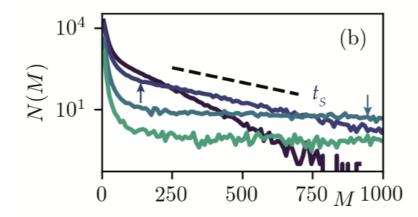
small regular (dark blue) and large elongated (gray) clusters

Differences

- Rougher interfaces in active
- Homogeneous (passive) vs. heterogeneous (active) orientational order

Dense active clusters

Instantaneous distribution of cluster masses



ABP clusters

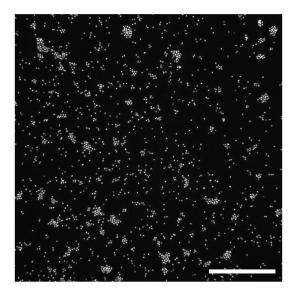
Curves at different times

Exponential at short t

Slow decay for M>200

Janus particles

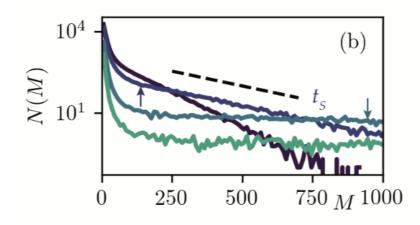
Ginot, Theurkauff, Detcheverry, Ybert & Cottin-Bizonne 18



Smaller clusters than ours Much lower ϕ and shorter t

Dense active clusters

Instantaneous distribution of cluster masses

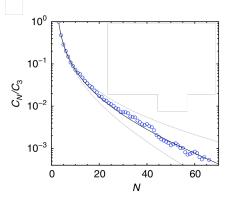


ABP clusters

Curves at different times Exponential at short tSlow decay for M > 200In the scaling regime More structure to study

Janus particles

Ginot, Theurkauff, Detcheverry, Ybert & Cottin-Bizonne 18



Similar exponential up to $M\sim 60$

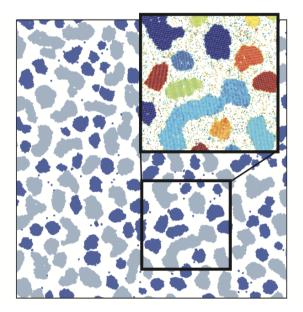
Smaller clusters than ours Much lower ϕ and shorter t

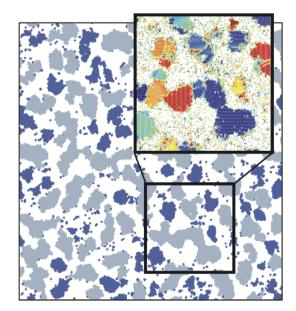
Formation of dense clusters

Ostwald ripening vs. cluster-cluster aggregation - videos

Passive

Active





Dense clusters

Visual facts about the cluster dynamics

In both cases, **Ostwald ripening** features

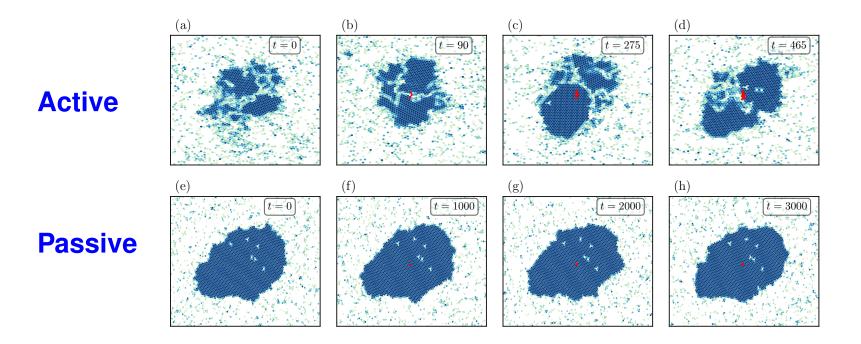
- small clusters evaporate
- gas particles attach to large clusters

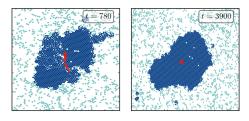
In the active system

- clusters displace much more & sometimes aggregate
- they also break & recombine

like in diffusion limited cluster-cluster aggregation

Tracking of individual cluster motion - video



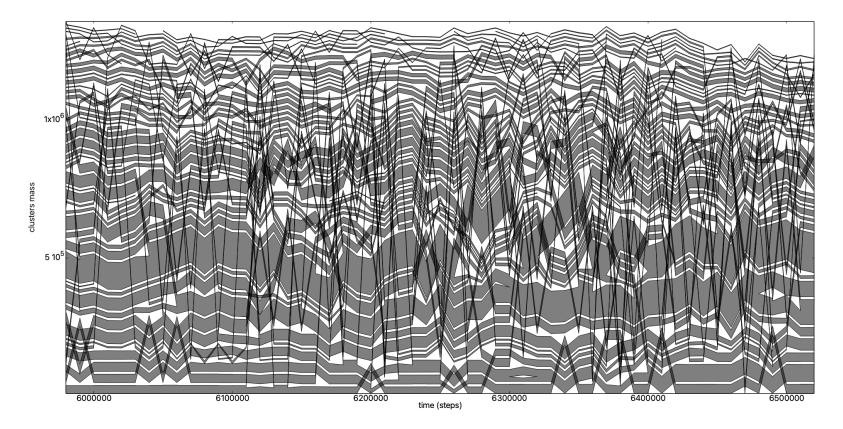


Active is much faster than passive

Tracking of individual cluster motion – mass - time maps

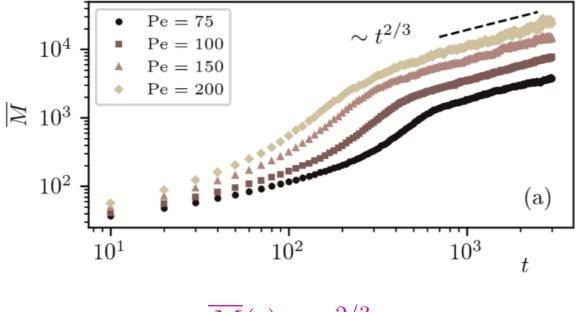
Non-trivial numerical task:

identify and follow each cluster in the bulk



Caporusso, LFC, Digregorio, Gonnella, Levis, Suma, soon in arXiv

Tracking of individual cluster motion – averaged cluster mass



 $\overline{M}(t) \sim t^{2/3}$

Tracking of individual cluster motion

Non-trivial numerical task:

identify and follow each cluster in the bulk

Caporusso, LFC, Digregorio, Gonnella, Levis, Suma, soon in arXiv

Forces

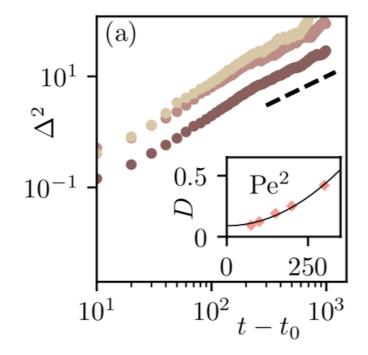
- Total active force correlations $\langle F(t) \cdot F(0) \rangle = F^2 e^{-t/\tau_p}$ with $F^2 \propto (M/m) F_{act}^2$ and single particle τ_p
- Very weak torque

Evolution

- Enhanced diffusion, center of mass mean square displacement $\Delta^2 \Rightarrow D(M, {\rm Pe}) \sim M^{-\alpha} \ {\rm Pe}^2$ with $\alpha \sim 1/2$
- No rotational motion

Active cluster evolution

Averaged long times c.o.m. mean square displacement



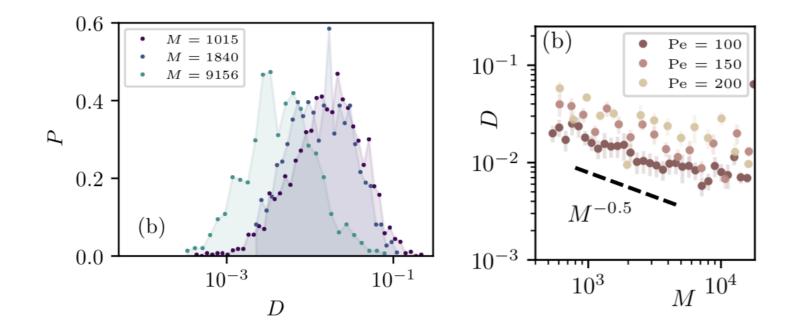
 $\Delta^2(t, t_0) = \frac{1}{N_c} \sum_{k=1}^{N_c} \left[\mathbf{r}_{\text{c.o.m.}}^{(k)}(t) - \mathbf{r}_{\text{c.o.m.}}^{(k)}(t_0) \right]^2 \sim 2d D(\text{Pe}) \left(t - t_0 \right)$

with the global diffusion coefficient $\,D({
m Pe}) \propto {
m Pe}^2$

Fixed ϕ

Active cluster evolution

Enhanced diffusion: mass dependence of ${\cal D}$



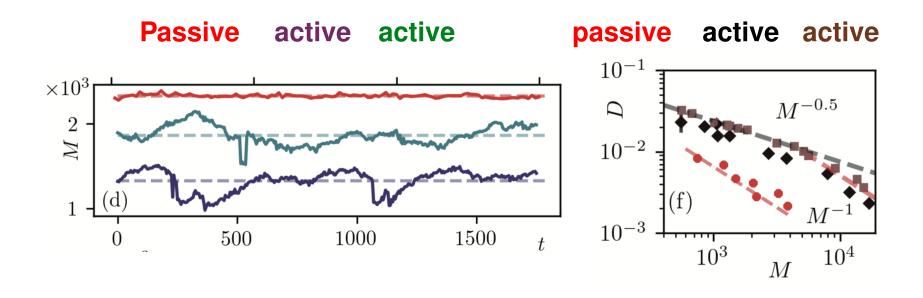
 $\Delta_k^2(t, t_0) = [\mathbf{r}_{c.o.m.}^{(k)}(t) - \mathbf{r}_{c.o.m.}^{(k)}(t_0)]^2 \sim 2d D(M_k, \text{Pe}) (t - t_0)$ with the mass dependent diffusion coefficient $D(M, \text{Pe}) \sim M^{-1/2} \text{Pe}^2$

A sum of random forces yields M^{-1}

Active cluster evolution

Enhanced diffusion: mass dependence of ${\cal D}$

Clusters extracted from the bulk



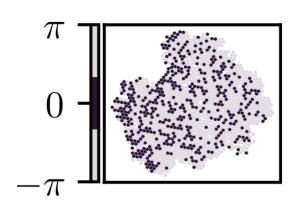
 $\Delta_k^2(t, t_0) = [\mathbf{r}_{\text{c.o.m.}}^{(k)}(t) - \mathbf{r}_{\text{c.o.m.}}^{(k)}(t_0)]^2 \sim 2d D(M_k, \text{Pe}) (t - t_0)$

Passive & very heavy active behave as $D \sim M^{-1}$

Extracted clusters

Enhanced diffusion: mass dependence of ${\cal D}$

Clusters extracted from the bulk



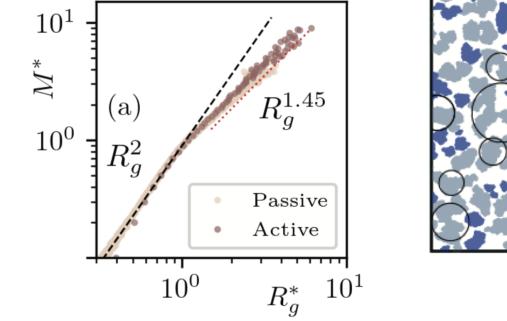
Local active force alignment

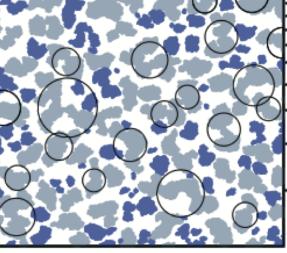
passive active active 10^{-1} 10^{-2} 10^{-2} 10^{-3} 10^{-3} $M^{-0.5}$ $M^{-0.5}$ M^{-1} M^{-1} M^{-1} M^{-1} M^{-1}

with direction of motion

Passive & very heavy active clusters behave as $D \sim M^{-1}$ Interpretation: surface effects lose importance

Scatter plots: small regular - large fractal





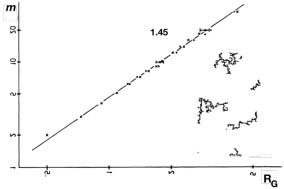
 $\text{Cluster mass } M^*(t) = \frac{M_k(t)}{\overline{M}(t)} \quad \text{Gyration radius } R^*_g(t) = \frac{R_{g_k}(t)}{\overline{R_g}(t)}$

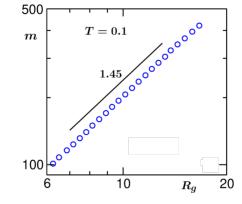
Data sampled in the scaling regime $t = 10^3 - 10^5$ every 10^3 time steps

 $\overline{M}(t) = rac{1}{N_c(t)} \sum_{k=1}^{N_c(t)} M_k(t)$ and $N_c(t)$ the total number of clusters at time t

Scatter plots: small regular - large fractal







The ABP system

Caporusso et al. 22

Diffusion limited cluster-cluster aggregation

Kolb, Botet & Jullien, PRL 51, 1123 (1983)

Passive Lennard-Jones

Paul, Bera & S. K. Das, Soft Matter 17, 645 (2021)

Fractal dimension $d_f \sim 1.45$

holes of all sizes (algebraic pdf) – bubbles elongated form

Cluster-cluster aggregation

Extended Smoluchowski argument

From $\overline{R}_g \sim t^{1/z}$ and using $D(M) \sim M^{-\alpha}$ Smoluchowski eq. $\Rightarrow z = d_f(1 + \alpha) - (d - d_w)$

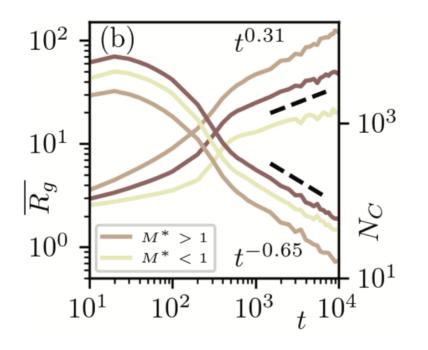
 $\begin{array}{ll} \mbox{Regular clusters } M < M^* & \mbox{Fractal clusters } M > M^* \\ d_f = d = d_w = 2 & \mbox{$d_f = 1.45$, $d = 2$ and $d_w \sim 2$} \\ \alpha = 0.5 & \mbox{$\alpha = 0.5$ in the bulk$} \\ z = 2(1+0.5) = 3 & z = 1.45(1+0.5) = 2.18 < 3 \end{array}$

Reviews on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)

Regular vs fractal clusters

Radius of gyration and number



regular $z \gtrsim 3$

fractal $z \lesssim 3$ average $z = 1/0.31 \sim 3$

Cluster-cluster aggregation

Extended Smoluchowski argument

From $\overline{R}_g \sim t^{1/z}$ and using $D(M) \sim M^{-\alpha}$ Smoluchowski eq. $\Rightarrow z = d_f(1+\alpha) - (d-d_w)$

 $\begin{array}{ll} \mbox{Regular clusters } M < M^* & \mbox{Fractal clusters } M > M^* \\ d_f = d = d_w = 2 & \mbox{$d_f = 1.45$, $d = 2$ and $d_w \sim 2$} \\ \alpha = 0.5 & \mbox{if, instead, } \boxed{\alpha = 1} \\ z = 2(1+0.5) = 3 & z = 1.45(1+1) \sim 3 \end{array}$

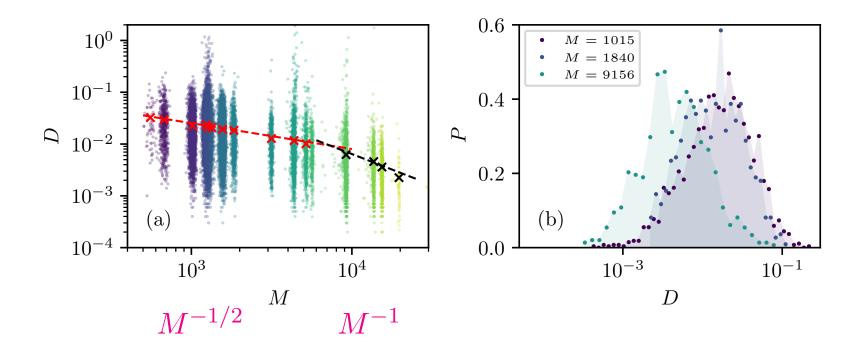
Reviews on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)

Extracted clusters

Recall mass dependence of the diffusion coefficient

Cluster extracted from the bulk and set in contact with the same active gas

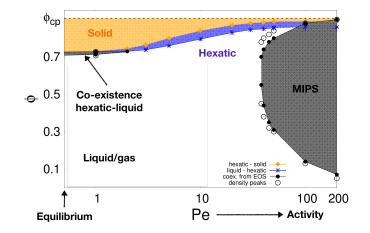


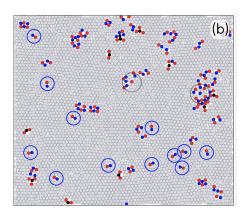
The very large ones cross over to $D\sim M^{-1}$ at $M\sim \overline{M}$

Interpretation: surface effects lose importance

Results I

We established the full phase diagram of ABPs solid, hexatic, liquid & MIPS

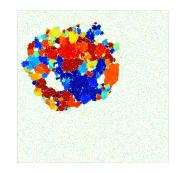




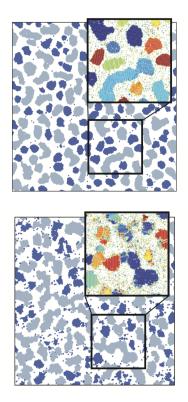
We clarified the role played by point-like (dislocations & disclinations) and clustered defects in passive & active 2d models.

In MIPS

Micro vs. macro: hexatic patches & bubbles



Results II



Difference between

Passive

Active

growth

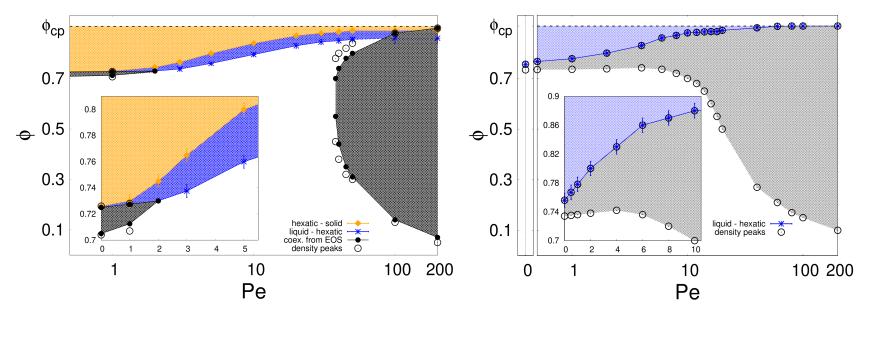
Ostwald ripening & cluster-cluster aggregation in active case cluster-cluster aggregation almost not present in passive

Co-existence of regular and fractal clusters

Heterogeneous orientational order in large active clusters

Beyond disks

Phase diagrams & plenty of interesting facts

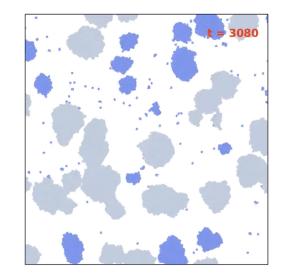


Disks

Dumbbells

Active dumbbells

Phase separating dynamics



2d Ising Model

Kawasaki dynamics – growing length & dynamic exponent

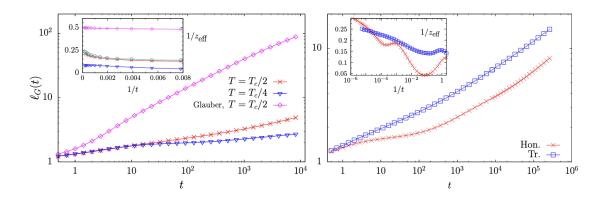
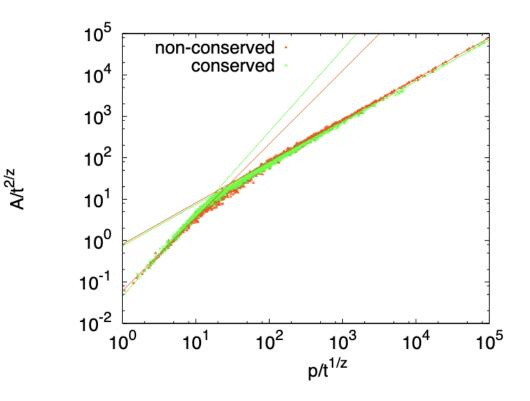


Figure 6: Local Kawasaki dynamics of the 2dIM with balanced densities of the two species. The excess-energy growing length $\ell_G(t) = 1/\epsilon(t)$ against time following a sudden quench. Left panel: model defined on a square lattice with linear size L = 640 quenched to $T = T_c/2$ (red curve) and $T = T_c/4$ (blue curve) and, for comparison, data for NCOP dynamics at $T_c/2$ (purple curve). Right panel: growing length for Kawasaki dynamics on honeycomb and triangular lattices, with linear size L = 320, quenched to $T_c/2$. In the insets, we show the effective growth exponent, $1/z_{\text{eff}}(t)$, computed as the logarithmic derivative of the function $\ell_G(t)$, plotted as a function of 1/t. In the inset of the left panel, we also include the effective growth exponent estimated from the scaling of $\langle \theta^2 \rangle$ (circles).

2d Ising Model

Kawasaki dynamics - scatter plot & fractal dimension



Topological defects

Summary of results

Solid - hexatic à la BKT-HNY even quantitatively (ν value) and independently of the activity (Pe) Universality

• Hexatic - liquid very few disclinations and not even free.

Breakdown of the BKT-HNY picture for all Pe (even zero)

- Close to, but in the liquid, percolation of *clusters of defects* with properties of uncorrelated critical percolation ($d_{\rm f}, \tau$)
- In MIPS, network of defects on top of the interfaces between hexatically ordered regions, interrupted by the *gas bubbles in cavitation*

Tracking of individual cluster motion

Non-trivial numerical task: identify and follow each cluster

Effective Active Brownian center of mass evolution?

- Total active force correlations $\langle \mathbf{U}_{\mathbf{a}}(t) \cdot \mathbf{U}_{\mathbf{a}}(0) \rangle \Rightarrow \tau_p$
- Center of mass mean square disp $\Delta^2 \Rightarrow D(m_c, {\rm Pe}) \sim m_c^{-\alpha} {\rm Pe}^2$
- No rotational motion \sim vanishing torque

Smoluchowski description of the $R \sim t^{1/z}$ with z = 3 growth?

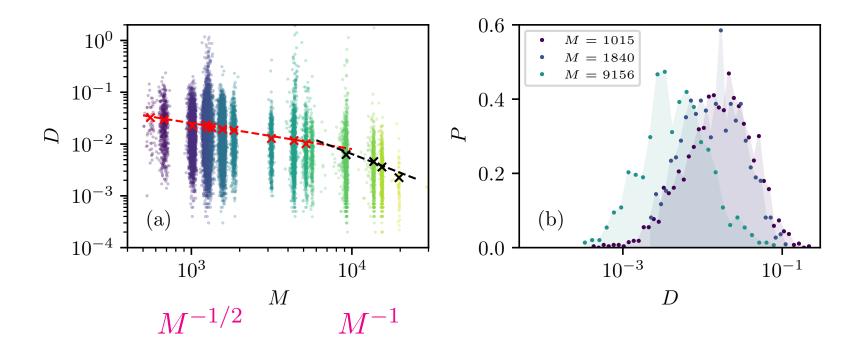
- Regular and fractal geometry $m_c = R_{G_c}{}^{d_f}$
- Cluster-cluster aggregation $z = d_f(1 + \alpha) (d d_w)$ d_w dimension of trajectory

Caporusso, LFC, Digregorio, Gonnella, Levis & Suma work in progress

Extracted clusters

Enhanced diffusion: mass dependence of ${\cal D}$

Cluster extracted from the bulk and set in contact with the same active gas



The very large ones cross over to $D\sim M^{-1}$ at $M\sim \overline{M}$

Interpretation: surface effects lose importance