Subglacial soft matter

Kasia Warburton¹, Jerome A. Neufeld^{2,3,4}, Duncan Hewitt⁵

¹Thayer School of Engineering, Dartmouth College, NH ²Institute of Theoretical Geophysics, DAMTP, University of Cambridge ³Department of Earth Sciences, Bullard Laboratories, University of Cambridge ⁴Centre for Environmental and Industrial Flows, University of Cambridge ⁵Department of Mathematics, University College London

DARTMOUTH

Natural Environment Research Council

Motivation: understanding ice sheets

"The ice sheets on Greenland and Antarctica contain most of the fresh water on the Earth's surface. As a consequence, they have the greatest potential to cause changes in sea level."

Mass change of the Greenland and Antarctic Ice Sheets IPCC 2019 – Special Report on Oceans and Cryosphere in a Changing Climate

Metres of ice lost per year since 2003 Smith et al. (2020) Science

- 🖾 Kasia.Warburton@dartmouth.edu
- 🍯 @KasiaWarburton

Large uncertainties

"There is a need to better understand the evolution of polar glaciers and ice sheets, and their influences on global sea level."

- IPCC 2019

Glaciers and ice streams

(c) Ice deformation (U_F), basal sliding (U_S) and subglacial deformation (U_n)

From Boulton (1996)

- 🖾 Kasia.Warburton@dartmouth.edu
- 🍯 @KasiaWarburton

Ice sheet boundary conditions

- Huge model domain 4500km wide
- Small scale features detailed topography, shear bands on 1km scale
- Need to summarise sliding into a convenient function

$$u_b = f(\tau_b, N)$$

• How do we understand the dynamics sediment to translate into this functional form? What are the key parameters?

(c) Ice deformation (U_F), basal sliding (U_S) and subglacial deformation (U_D)

From Boulton (1996)

🖾 Kasia.Warburton@dartmouth.edu

🍠 @KasiaWarburton

Subglacial till

Some extremely large clasts

Evans et al. (2006) Earth Sci Rev

A majority of finer particles sands, clays

Beneath ice:
water-saturated
(close to
pressure-melting
point)

Grain size	Abundance
Clays (<63µm)	~60%
Sand (63µm-2mm)	~30%
Gravel (>2mm)	~10%

Approximate grain size distribution, core samples from Western Amundsen Sea Smith et al. (2011) Quart Sci Rev

Experimental data

6 hour time-lapse of till under ice Hansen & Zoet (2022) JGR

@KasiaWarburton

82° W 84' W 82° W 84° W 77.5° S 78° S 78.5' 5 79' S 50 km 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -0.30 -0.15 0.00 0.15 0.30 Horizontal speed (m/day) Along-flow tidal variability (m/day) ent (m) 10 20 25 15 30 35 Time (days)

Surface velocity variations – in time and space

Tidal variation of the Rutford Ice Stream Minchew et al. (2017) JGR Other uncertainties – ice rheology, topography, etc

Modelled surface velocities in Antarctica Athern et al. (2015) JGR

🖾 Kasia.Warburton@dartmouth.edu

🍯 @KasiaWarburton

Borehole (in-situ) data

Ice surface velocity and borehole pressure head, Sermeq Kujalleq Doyle et al. (2021) J. Glac.

Profiles of till displacement at hourly intervals, Breidamerkurjokull Boulton & Dobbie (1998) PRSA

Spatially limited information – expensive field campaigns

Formerly glaciated regions

Bedforms in the Amundsen Sea Embayment Hogan et al. (2020) Cryosphere

A snapshot in time – must reconstruct ice conditions

Subglacial till – a water-saturated granular material

Want to capture:

- Steady rheology
- Response to time-dependent forcing
- Flow of water through granular matrix
- Profiles of pressure, porosity, and displacement
- Continuum description

Viscous granular rheology

• Viscous inertial number parametrises friction coefficient and solid fraction

$$I_
u = rac{\eta \dot{\gamma}}{N}$$

- Yield stress linear in effective pressure
- Shear rate increases with shear stress above yield

 $\tau = \mu_1 N + M \sqrt{\eta \dot{\gamma} N}$

Solid fraction decreases with shear rate

$$\phi = \frac{\phi_m}{1 + b\sqrt{\frac{\eta \dot{\gamma}}{N}}}$$

Comparison to subglacial till

- Yield stress linear in effective pressure
- Shear rate increases with shear above yield stress

$$\tau = \mu_1 N + f(\dot{\gamma}, N) \implies \dot{\gamma} = F(\tau - \mu_1 N, N)$$

lverson (2010) J. Glac.

Use depth profiles to fit rheological parameters

🖾 Kasia.Warburton@dartmouth.edu

Boulton & Dobbie (1998) PRSA

🍯 @KasiaWarburton

Dilatant strengthening

Modelling shear dilation

• Shear rate/effective pressure sets change in solid fraction

$$\phi = \phi(I_{\nu})$$

• Water flows into the changing pore space

$$\frac{\partial \phi}{\partial t} + \frac{\partial}{\partial z} \left(v_s \phi \right) = 0$$

• Darcy's law links flow to water pressure

$$-\frac{k}{\eta(1-\phi)}\left(\frac{\partial p_w}{\partial z} - \rho_f g\right) = (v_f - v_s)$$

• Water pressure alters effective pressure and feeds back into shear rate through rheology

Model results

Response to periodic forcing

Obtain a timedependent sliding law (small amplitude case is diffusional)

🖾 Kasia.Warburton@dartmouth.edu

(a)KasiaWarburton

Jamming under compaction

- Compaction drives water out of pore space
- Higher water pressure, lower N
- Initially flow sustained near constant rate

- Shutdown happens rapidly
- Complex pattern of behaviour from simple forcing

Slip-stick motion at Whillans

- ~30 mins of rapid motion per day
- Elasticity of both grain contacts and ice may play a role
- Modelling very sensitive to mean effective pressure potential for sudden ice stream speed-up

Tidally-paced slip-stick motion of the Whillans Ice Stream Winbury et al. (2014) J.Glac.

Erosion and bedforms

- Relatively* accessible record of past deformation and till transport
- Beginning to get corresponding record from present-day glaciers (radar etc)
- Quantitative test of till deformation models
 - Wide range of different patterns (flow aligned and cross-flow)
 - Strong wavelength selection

Drumlins Sookhan et al. (2021) Q. Sci Rev

🖾 Kasia.Warburton@dartmouth.edu

@KasiaWarburton

Hogan et al. (2020) Cryosphere

Water flow and till erosion

- How do mega-scale lineations form?
- New hydrology data from below active ice streams

Crests appear to be a wetter or softer material Muto et al. (2019) EPSL

Clear wavelength – instability mechanism? Spagnolo et al. (2017) JGR

Sediment flux can be non-monotonic in effective pressure Hansen & Zoet (2022) JGR

- 🖾 Kasia.Warburton@dartmouth.edu
- 🈏 @KasiaWarburton

Phase change within till

Where is the bed of an ice stream?

The ice-till interface is not a simple region

Model for frozen fringe depth in static sediment Meyer et al. (2019) EPSL

Fringe growth in ring shear device Hansen & Zoet (2022) JGR

Frozen fringe influences bed strength, permeability, sediment transport

Feedback between bed and ice

- Classical result: ice sheets are unstable to runaway retreat
- Topographic pinning drag reduces ice flux and thinning
- Till transport towards grounding line develops into a wedge
- Wedge may help to stabilise ice depending on strength

Internal structure of a grounding zone wedge Batchelor & Dowdeswell (2015) Marine Geology

Viscous model of wedge formation Kowal and Worster (2020) JFM

Tidal landforms

Ribbed ridges at the Thwaites grounding line Graham et al. (2022) Nature Geosci.

Ongoing modelling work with Kelly Hogan (BAS) and Ali Graham (USF)

- Apparent signature of extremely rapid tidally-modulated ice sheet retreat
- Formation mechanism how do we think about sediment behaviour on these timescales
 - Erosion (dunes)?
 - Deposition (grounding zone wedges)?
 - Extrusion (footprints, moraines)?

Tiny structures – 6m wide, 50cm tall 14-landform periodicity to spacing and amplitude

Kasia.Warburton@dartmouth.edu

Final thoughts

- Ideas from fluid dynamics/ granular flows have natural applications in glaciology
- Rapidly increasing data availability in fast-changing climate
- Important impact for understanding ice sheet futures

With thanks to: Jerome Neufeld, Duncan Hewitt, Brent Minchew, Ali Graham, Kelly Hogan

