Spectral decomposition of protein structures in heterogeneous cryo-EM

Carlos Esteve Yagüe

Cambridge Image Analysis, DAMTP University of Cambridge ce423@cam.ac.uk

March 2022

The cryo-EM problem with continuous heterogeneity

We are given a dataset $\{Y_j\}_{j=1}^n$ with *n* images of the protein:

 $Y_j = \mathcal{F}(R_j u_j) + \xi_j$ for each j = 1, 2, ..., n,

where \mathcal{F} is the forward operator, $R_j \in SO(3)$ and $u_j \in L^2(\mathbb{R}^3)$.

In each image the protein shows a different conformation.

Goal: Determine the atomic structure in each image.

The cryo-EM problem with continuous heterogeneity

Assumptions:

We assume that the set of possible conformations of the protein forms a low-dimension compact manifold, that we denote by M.

We assume that we have solved the homogeneous cryo-EM problem:

- We have the 3-D atomic structure of the average conformation.
- We know the orientation of the protein in each image.

Parametrization of 3-D structures

Goals:

- Construct the manifold of conformations \mathcal{M} .
- Obtermine the 3-D protein structure u[m](·) ∈ L²(ℝ³) corresponding to each conformation m ∈ M.

We represent the 3-D structure of a protein by the spatial position of its C- α atoms:

$$(x_1, x_2, \ldots, x_L) \in \mathbb{R}^{3L},$$

where *L* is the number of C- α atoms in the protein.

< ロ > < 同 > < 回 > < 回 >

From point clouds to densities

$$(x_1, x_2, \ldots, x_L) \in \mathbb{R}^{3L} \longmapsto u(z) = \sum_{i=1}^L \gamma e^{\frac{|z-x_i|^2}{2\sigma^2}}, \quad \text{for } \gamma, \sigma > 0.$$

Parameter space of backbones

$$\mathcal{P} := \mathbb{R}^3 \times SO(3) \times [0, 2\pi)^{L-2} \times [0, \pi)^{L-2}.$$

• $x_0 \in \mathbb{R}^3$ determines the spatial location of the protein;

• $P_0 \in SO(3)$ determines the orientation of the protein;

• $(\Theta, \Psi) \in [0, 2\pi)^{L-2} \times [0, \pi)^{L-2}$ determines the conformation.

Goal: Find a function

$$(\Theta, \Psi) : \mathcal{M} \longrightarrow [0, 2\pi)^{L-2} \times [0, \pi)^{L-2}$$

Approach:

$$heta_i(m) := \sum_{k=0}^{r_i} lpha_{i,k} arphi_k(m) \quad ext{and} \quad \psi_i(m) := \sum_{k=0}^{r_i} eta_{i,k} arphi_k(m), \quad ext{for } i = 1, 2, \dots, L-2,$$

where $\varphi_0(\cdot), \varphi_1(\cdot), \varphi_3(\cdot), \ldots$ are the first eigenfunction of the Laplace-Beltrami operator in \mathcal{M} .

For each $m \in \mathcal{M}$, we define

$$heta_i(m) := \sum_{k=0}^{r_i} lpha_{i,k} \varphi_k(m) \quad ext{and} \quad \psi_i(m) := \sum_{k=0}^{r_i} eta_{i,k} \varphi_k(m), \qquad ext{for } i = 1, 2, \dots, L-2,$$

where $\varphi_0(\cdot), \varphi_1(\cdot), \varphi_3(\cdot), \ldots$ are the first eigenfunctions of the Laplace-Beltrami operator on \mathcal{M} .

Bad news: we do not know $\ensuremath{\mathcal{M}}$

However, we have many samples $\{m_j\}_{j=0}^n \subset \mathcal{M}$ in the dataset of cryo-EM images.

- We can approximate $\varphi_k(m_i)$ by the eigenvectors of the graph Laplacian.
- This relies on the possibility of being able to compare the conformation in each cryo-EM image (we can use low-resolution reconstructions).

・ 同 ト ・ ヨ ト ・ ヨ ト

For each $m \in \mathcal{M}$, we define

$$heta_i(m) := \sum_{k=0}^{r_i} lpha_{i,k} arphi_k(m) \quad ext{and} \quad \psi_i(m) := \sum_{k=0}^{r_i} eta_{i,k} arphi_k(m), \qquad ext{for } i = 1, 2, \dots, L-2,$$

where $\varphi_0(\cdot), \varphi_1(\cdot), \varphi_3(\cdot), \ldots$ are the first eigenfunctions of the Laplace-Beltrami operator on \mathcal{M} .

Good news: we can use prior knowledge about the protein to choose r_i

- r_i is related to the variability of the parameters θ_i and ψ_i in \mathcal{M} .
- We may choose r_i small (even $r_i = 0$) at the C- α which are in stable parts of the protein (for instance at α -helices).

Let us define the maps

$$egin{array}{cccc} X: & \mathcal{P} & \longrightarrow & \mathbb{R}^{3L} \ & (x_0, \mathcal{P}_0, \Theta, \Psi) & \longmapsto & (x_1, x_2, \dots, x_L) \end{array}$$

and

$$U: \qquad \mathbb{R}^{3L} \qquad \longrightarrow \qquad L^2(\mathbb{R}^3)$$
$$(x_1, x_2, \dots, x_L) \qquad \longmapsto \qquad u(z) = \sum_{i=1}^L \gamma e^{\frac{|z-x_i|^2}{2\sigma^2}},$$

Assuming that we have already estimated the orientations $\{P_j\}_{j=1}^n$ of the images in the dataset, we obtain the coefficients $\alpha = \{\alpha_{i,k}\}$ and $\beta = \{\beta_{i,k}\}$ as

$$\underset{\alpha,\beta}{\text{minimize}} \sum_{j=1}^{n} \|Y_j - \mathcal{F}U(X(0, P_j, \Theta_j(\alpha), \Psi_j(\beta)))\|_{L^2}^2,$$

where $\Theta_j(\alpha) = \varphi_j(\alpha)$ and $\Psi(\beta) = \varphi_j(\beta)$ are obtained as the (approximated) spectral decomposition presented above.

伺 と く ヨ と く ヨ と

- We aim to reconstruct 2-d images from 1-d noisy tomographic projections.
- The structure has two moving arms and a square that can bend sidewise.
- We use 2000 tomographic projections of the structure taken from arbitrary directions.

Figure: Original images

- We aim to reconstruct 2-d images from 1-d noisy tomographic projections.
- The structure has two moving arms and a square that can bend sidewise.
- We use 2000 tomographic projections of the structure taken from arbitrary directions.

Figure: Clean tomographic projections

- We aim to reconstruct 2-d images from 1-d noisy tomographic projections.
- The structure has two moving arms and a square that can bend sidewise.
- We use 2000 tomographic projections of the structure taken from arbitrary directions.

Figure: Noisy tomographic projections

We not only reconstruct the image, but also obtain the atomic structure

We not only reconstruct the image, but also obtain the atomic structure

We not only reconstruct the image, but also obtain the atomic structure

Thanks for the attention!