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General setting: MRI as a discrete inverse problems

We are interested in finding solutions of linear inverse problems of the
form:

Ax + e = b, where A ∈ Rm×n.

Here, we assume that:
. the linear operator A and the measurements b are known;
. the additive noise e is Gaussian;
. the input x is unknown.

Magnetic resonance imaging

b = MF(σcu)c + e;
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General setting: discrete inverse problems

Since we deal with ill-posed problems we need regularization to obtain a
meaningful solution. Since we are considering high-dimensional problems,
we consider iterative methods, maybe in combination with variational regu-
larization:

min
x
‖Ax − b‖+ λR(x).

We assume the images space to be the range of a generator:

min
z
‖AGθ(z)− b‖+ λR(Gθ(z), z)

and, in particular, we would like to devise a method that can incorporate
prior information on the solution in Gθ.
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Moving from projections to generators

Can we use the structure of the latent space Z to add appropriate regular-
ization?
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Applications to motion separation in video

We assume that each frame of the video is the output of a generator

xt = Gθ(z1
t , z2

t , z3) ∈ Rn, (1)

where θ, z3 are fixed over time, and z1
t and z2

t are time-dependent.

We “don’t train!”, instead, we minimize over all parameters

θ∗, z∗ = arg min
θ,z

1
K

K−1∑
k=0
‖yk − Gθ(zk)‖2, so x∗(tk) = Gθ∗(z∗

k ),

where zk = [z1
k z2

k z3] and we sometimes assume prior 1d information
on one of the movement types (e.g. z1

k is known).
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Motivational example

The starting example for this work was dynamical MRI data of this form:

Data from the ISMRM reconstruction challenge 2014. 99 frames with
100x100 pixels. Generator: CNN with 7 layers. Latent space has 2 dy-
namic components. No inverse problem.
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Experiments - four chamber view.
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Experiments - short axis view
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Experiments - real data
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Comments

Novelties:
. Untrained generators + latent space disentanglement.
. Full motion separation.

Considerations:
. Cons: initialization dependent, the dynamics splitting depends on the

chosen freezing frame.
. Pros: No data bias (as there is not training!), good extrapolation to

unseen combinations of states, no motion model.
Future:
. More applications: different types of movement and forward

problems.
. Theoretical guarantees (by conditions on the generator).
. Regularization terms for specific latent space disentanglement.
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