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CVD risk prediction

• ’Cardiovascular diseases (CVDs) are the number 1 cause of death
globally, taking an estimated 17.9 million lives each year.’ [World
Health Organization]

• Cardiovascular diseases that we consider are: nonfatal or fatal events
of coronary heart disease (including myocardial infarction and
angina), stroke, and transient ischemic attack.

• Primary prevention strategy is composed of periodic risk assessment
and risk management through habit/diet modification and/or
lipid-lowering medication.



CVD risk assessment around the world

Strategy Risk calculator Outcome

UK Unstratified QRISK 10-year CVD

USA Unstratified Pooled Cohort 10-year ASCVD
Equation

Europe Gender-based SCORE 10-year fatal CVD

Australia Risk-based Framingham 5-year CVD

New Zealand Risk, gender and Framingham 5-year CVD
ethnicity-based

’Risk assessment is not a one-time event; it should be repeated, for
example, every 5 years, although there are no empirical data to guide
intervals.’ 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice



Scheduling of CVD screening

Lindbohm et al. 5-year versus risk-category-specific screening intervals for
cardiovascular disease prevention: a cohort study. Lancet Public Health
2019.

“... suggesting that uniform 5-year screening intervals for low-risk,
intermediate-low-risk, and intermediate-high-risk categories ... leads to
unnecessarily long delays in detection of high-risk individuals.”

Chiolero et al. Screening interval: a public health blind spot. Lancet
Public Health 2019

“the standard . . . blind, uninformed approach is simple but surely not
efficient, calling for a more informed, data-driven, screening strategy”



Data: Clinical Practice Research Datalink (CPRD)

• Primary care data from the UK

• Covering approximately 6.9% of the UK population

• Broadly representative of the UK general population with respect to
age, sex, and ethnicity.

• One of the largest databases of longitudinal medical records from
primary care in the world.



Table of Contents

1 Application: Cardiovascular disease

2 Landmarking for dynamic prediction

3 Dynamic risk prediction for cardiovascular disease

4 Scheduling cardiovascular disease risk assessments

5 A Net Benefit approach



Dynamic risk prediction
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Landmarking
van Houwelingen and Putter, 2012

• Select prediction times {tpred}

• Select only those still alive at each tpred

• At each tpred predict Ŷi(tpred) from past measurements Yij

• At each tpred fit separate survival model to future time-to-event
data

hi(t) = h0(t) exp
(
α Ŷi(tpred) + γT XT ,i

)
, t ≥ tpred

• Censor survival follow-up at (tpred + L)
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Using repeat measurements
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Landmark analysis of CPRD data
Paige et al, 2018



CPRD results: C-index declines with age
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Overall C-index = 0.769
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Scheduling of CVD screening

Q: When should I have my next cardiovascular risk 
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Scheduling of CVD screening
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Scheduling of CVD screening
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Incremental Net Benefit (INB)

Decision-theoretic approach to weigh up benefits and costs of screening
schedules, motivated by Bebu et al, 2018.

Benefits

EFLYNS = Event-free life years without taking statins
EFLYS = Event-free life years while taking statins

Costs

cs × EFLYS = Cost of statins
cν × E [Number of visits] = Cost of risk assessments



Incremental Net Benefit (INB)

Net benefit

NB = λ(EFLYNS + uSEFLYS)− cSEFLYS − cνE [Number of visits]

Incremental net benefit

INB = NB(τ )− NBref

where τ denotes the visit schedule, e.g. 2-y, 3-yr, 4-yr, ...

In what follows we use the following parameter settings:
λ = 25, 000 £/yr, us = 0.997, cs = 150 £/yr, cν=18.39£/visit



Calculating the INB

Using the previous landmarking approach we estimate the expected time
to crossing the treatment threshold t∗ for each individual at each
landmark time.

Based on the schedule τ we assume statin prescription at the first visit
after crossing the threshold, at time τ∗k .

Then

E [EFLYNS ] =

∫ τ∗k

0
SNS(t)dt

E [EFLYS ] =

∫ 10

τ∗k
SS(t)dt

We assume a HR for time to first CVD event of θ = 0.8, based on a
meta-analysis of treatment effects from clinical trials (Baigent et al, 2005).



INB results
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Figure 2. Number of participants in each landmark cohort for men (top row) and women
(bottom row) across all landmark ages, in the derivation set. Each color represents the
estimated 5-year CVD risk at the landmark age.



30 Biometrics, December 2008

40 45 50 55 60 65 70 75 80

H
igh risk

M
ed−

high risk
M

ed−
low

 risk
Low

 risk

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Optimal 
time 
between 
visits

1
2
3
4
5
6
7
8
9
10

A) Optimal risk−assessment distribution for women

Figure 4. Proportions of optimal risk-assessment schedule per each landmark age, for
women.
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B) Optimal risk−assessment distribution for men

Figure 5. Proportions of optimal risk-assessment schedule per each landmark age, for men.



Summary

Statistical approach to building a CVD risk prediction tool using data
from electronic health records

• Landmarking for dynamic risk prediction

• Mixed effects models for repeated measurements of risk factors

• Net benefit approach for scheduling of CVD risk assessments

Extensions to these models could

• Model longitudinal trajectories more flexibly

• Distinguish non-fatal and fatal CVD events

Future work

• Exploring uncertainty

• Identifying individual biomarkers for remeasurement
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Figure 5: Estimates of Brier Score, BSs(w) where s = La ∈ {40, 45, .., 80} and w = 10. Each
BSLa

(10) is represented through a colored dot (blue dots for men and red dots for women).
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Figure 6: Estimated c-indices for the first landmark model for women (left panel) and men
(right panels) for different values of starting time s. Each point represents a c-index computed
for a specific s ∈ PLa

and w = 5, since we are interested in the discrimination accuracy of the
5-year CVD risk. We associate a specific color to each landmark set. All points in light blue are
associated with La = 40, and from the first point from the left we have s ∈ {40, 41, 42, .., 50}.The
dashed red line at 0.5 represents the minimum sensible value of the c-index. Values lower than
0.5 are recorded at older ages, for the latest time-windows (i.e., 83-88, 84-89, 85-90 in orange for
men, 88-93, 89-94, 90-95 in violet for men).
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Figure 7: Estimates of Brier Score, BSs(w) where s ∈ PLa
and w = 5. EachBSs(5) is represented

through a colored dot (each landmark age is associated to a specific color). BS associated to
women are reported in the left panel, while the BS associated to men are reported in the right
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Figure 6. Sensitivity analysis of λ (panel A), cs (panel B), us (panel C). In the y-axis of
all panels we represent the proportion of the cohort. In panel A, the value of λ is reported
in the x-axis and it ranges in [20, 000; 30, 000] £/year. us = 0.997, cs = 150 £/year, and
cν = 18.39 £/visit. In panel B, the value of us is reported in the x-axis and it ranges in
[0.997; 1]. λ = 25, 000 £/year, cs = 150 £/year, and cν = 18.39 £/visit. In panel C, the value
of cs is reported in the x-axis and it ranges in [4; 320] £/year. λ = 25, 000 £/year, us = 0.997,
and cν = 18.39 £/visit.
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