Automated Quality Control of Chest X-Rays

Ian Selby

CMIH Academic Engagement Event 26th July 2022

The Problem

 ¹ Roberts, M., Driggs, D., et al.: Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence 3(3), 199–217 (2021).
 ² DeGrave, A.J., Janizek, J.D., Lee, S.I.: Al for radiographic COVID-19 detection selects shortcuts over signal. Nature Machine Intelligence 2021 3:7 3(7), 610–619 (May 2021).

• Radiological artificial intelligence models have not been of clinical use during the COVID-19 pandemic due to methodological flaws and biases¹. • Shortcut learning is a significant reason why CXR models fail to generalise².

A Solution?

\sim \sim \sim	Dataset	CXRs	Patients	Centres	Partition
	NCCID ³	22,606	6,977	22 (UK)	Development
Dinaling of tools to:	BIMCV ⁴	25,447	9,072	11 (Spain)	Development
Pipeline of tools to:	CUH⁵	13,952	5,299	1 (UK)	Validation
1. Standardise or reject	Brixia ⁶	4,695	2,351	1 (Italy)	Validation
chest X-rays (CXBs)	RICORD-1c ⁷	1,257	361	4 (US/CA/BR/TR)	Validation
Chest Aridys (CARS)	TOTAL	67,957	24,060	39 (7 countries)	-
 2. Provide labels for identifying confounders 2. Provide labels for identifying confounders 4. Improve model generalisation. 4. Assist developers in identifying potential shortcuts. 4. Promote ethical AI. 4. Facilitate faster model development 			Statis and/c Convo netwo	tical techniques or olutional neural orks (CNNs)	
	\searrow				

Auto-QC Pipeline

Initial Pixel Standardisation: LUTs / Rescaling / Windowing applied if available Greyscale Inversion (D): Image inverted according to DICOM header if available. Al model checks images, inverting if necessary. [Sens./spec. for inversion = 94% / 98%]

Image Quality: Scored using the range of pixel values in full CXR & the centre

Annotations (): Mask created using thresholding & filters. Annotations removed by in-painting. Digital annotations fully removed & image not adversely affected in 97% Cropping: Padding surrounding the CXR is removed

Aspect Ratio: Images with a width height ratio < 0.77 or > 1.30 are flagged for

Example of a Downstream Experiment

- A classifier was trained to distinguish CXR frontal view:
 - Anteroposterior (AP) vs. Posteroanterior (PA)
- Saliency maps used to understand the features and biases

Any Questions?

ias49@cam.ac.uk

covid19ai.maths.cam.ac.uk