

Integrating genomics and multi-omics at population scale for disease insights

Professor Adam Butterworth BHF Cardiovascular Epidemiology Unit Department of Public Health & Primary Care

CMIH Academic Engagement Event

26th July 2022

asb38@medschl.cam.ac.uk

@aidanbutty

Associating genetic variants with risk of disease

Associating genetic variants with quantitative molecular traits

Linking genomic regions with coronary artery disease

Genome-wide association study (GWAS) of coronary artery disease involving >1M participants

- >11 million variants tested
- 279 signals with p<5x10e-08
- 68 novel (in green)
- ~900 signals at 1% FDR

Effect sizes for most variants are very small!

New polygenic risk score (PRS) improves prediction of first-onset and recurrent CAD risk

Challenge: enhanced methods to improve PRS?

- Combine multiple existing PRS methods?
- Allow for interaction effects?
- Combine PRS for risk factors with PRS for disease?
- Translate PRS across ethnicities

Linking genomic regions with coronary artery disease

Integrating predictive features to identify ~200 potential causal effector genes

Challenge: better strategies for causal gene prediction?

- Weighting different predictors differently?
- Incorporate predictions from CVD risk factors (e.g. blood pressure, lipids)
- Machine-learning approaches like OpenTargets?

Integrating genomics and multi-omics to understand disease aetiology

- 1. Colocalisation with disease GWAS signals
- 2. Mendelian randomisation (both specific & wide-angle)

INTERVAL – a 50,000 person multi-omics cohort

GWAS of ~3500 plasma proteins

Linking genomic regions with coronary artery disease

Coronary disease variants also associate with plasma SWAP70 protein levels

Statistical colocalisation testing

Pairwise conditional colocalisation (PwCoCo) testing

Zheng et al, Nature Genetics, 2021

Systolic blood pressure signal at SWAP70 colocalises too..... once the independent neighbouring signal is conditioned out

Challenge: enhancing colocalisation methods?

- Methods that account for multiple independent associations?
- Methods that appropriately handle >3 traits?
- Methods that handle different patterns of linkage disequilibrium (between-variant correlation)?

Mendelian randomisation to infer causality of molecular risk factors

MR suggests inverse causal association of plasma matrix metalloproteinase-12 levels with CAD

- Plasma MMP-12 levels are <u>positively</u> associated with risk of first-onset or recurrent CAD events
- Suggests that MMP-12 is likely to be a <u>protective biomarker</u>, produced in response to vascular damage

Integrating genomics, transcriptomics, proteomics and COVID-19 outcomes

- Cis-MR for eQTLs and pQTLs
- Integrate with
 COVID-HGI GWAS
 summary statistics
- Test colocalization to avoid confounding by LD

Gaziano et al, Nature Medicine, 2021

Summary

 Large-scale genetic studies are revealing links between molecular risk factors and disease aetiology

 Despite small effect sizes of individual variants, useful predictive tools and causal pathways can be derived

• Genetic epidemiologists are still (largely) using very basic statistical models - huge scope for improvements through enhanced approaches.....

Acknowledgements

- Current and former members of <u>my group</u>, especially those who led the projects described (Praveen Surendran, Tao Jiang, Liam Gaziano, Ben Sun, Savita Karthikeyan, Emily Kawabata)
- Members of the <u>BHF Cardiovascular Epidemiology Unit</u>, particularly Yu Xu, Mike Inouye, Jimmy Peters, Emanuele di Angelantonio, John Danesh, Clare Oliver-Williams, Dirk Paul
- Collaborators from across the <u>HDR-UK Multiomics Cohorts Consortium</u>, particularly Maik Pietzner, Isobel Stewart, Claudia Langenberg, Aroon Hingorani, Ioanna Tzoulaki, Chris Yau, Emily Jefferson, Chris Orton
- International collaborators, including Johannes Kettunen, Minna Karjalainen, Krishna Aragam, Sam Lessard, Yannis Hara, Juan-Pablo Casas, CARDIoGRAMplusC4D Consortium, SCALLOP Consortium
- <u>Funders</u>, especially the British Heart Foundation, Health Data Research UK, UKRI and industry funders/collaborators