A Quick Look at My Research

Image Reconstruction /Continuous Parameter Tuning e.g. Optimisation + Reinforcement Learning

Techniques e.g. Motion Estimation + Reconstruction + SuperResolution

Multi-Task Learning

Unsupervised Image Registration & Segmentation

e.g. for diagnosis, improving reconstruction

SSL Medical Image Classification e.g. Cancer Diagnosis, COVID diagnosis, Parasite detection in thin blood smear images etc

Self-Supervised / Semi-Supervised techniques. e.g. prognosis and diagnosis of Alzheimer Disease

We tackle a major challenge in medical imaging – the need for manual parameter tuning

Another major challenge in medical imaging – the need for a large and well-representative labelled set

Multi-Modal Data: Diagnosis and Prognosis of Alzheimer's Disease

e.g. (ICCV, MICCAI19, MICCAI20, TIP20a,b, MedIA20, ICML20 (Outstanding Paper Award), MedIA21a, MedIA21b, Inverse Problems21, TIP21, Radiology21, Pattern Recognition22, JMLR22, MICCAI22...)

Hybrid Models... For Multi-Modal Data?

GraphXNet /CREPE-Model / LaplaceNet /
Deep Walkers/GraphXCOVID

e.g., (AI Aviles-Rivero et al, 2019), (AI Aviles-Rivero et al, 2020), (P Sellars, AI Aviles-Rivero et al, 2021), (AI Aviles-Rivero et al, 2022)

EXISTING HYBRID AND DL TECHNIQUES:

Focus on designing better
Network Mechanisms
*using existing energy models

OUR WORK:

To develop better energy models and analyse their theoretical properties

(AI Aviles-Rivero et al, 2021b)

What is the Goal of this Flash Talk?

We introduce a novel semi-supervised hypergraph learning framework for Alzheimer's disease diagnosis

- ✓ We introduce a self-supervised dual multi-modal embedding strategy. The manifold that lies the imaging data and the space of the hyper graph structure
- ✓ We introduce a more robust diffusion-model. It is based on the Rayleigh quotient for hypegraph p-Laplacian and follows a semi-explicit flow
- ✓ Comparison with SOTA SSL hypergraph/graph techniques for a major multi-modal dataset.

AI Aviles-Rivero, C Runkel, N Papadakis, Z Kourtzi & CB Schönlieb. Multi-Modal Hypergraph Diffusion Network with Dual Prior for Alzheimer Classification, MICCAI 2022. (arXiv:2204.02399)

Our setting: Hybrid HyperGraph Based SSL

Problem Statement – Semi-Supervised Learning Setting

Given a set of samples $X = (x_1, ..., x_l, x_{l+1}, ..., x_n)$ where $x_i \in \mathcal{X}$, we assume that a tiny subset is labelled $X_L = \{(x_i, y_i)\}_{i=1}^l$ with provided labels $\{y_i\}_{i=1}^l \in \mathcal{L} = \{1, ..., L\}$ for L classes, and a large subset is unlabelled $X_u = \{x_i\}_{i=l+1}^n$ such that $X_L << X_u$. We then seek to infer a function $f: \mathcal{X} \mapsto \mathcal{L}$ such that f gets a good estimate for $\{x_i\}_{i=l+1}^n$ with minimum generalisation error.

Part I: Our self-supervised dual embedding strategy

Part II: Our dynamically updated Diffusion Model

(AI Aviles-Rivero et al, 2022)

Part II: A Hybrid Model – Energy Model + Deep Nets

Dynamically Adjusted Hypergraph

Keys Ideas:

To produce Pseudo-Labels directly from our energy model not a Network.

To mitigate network calibration and the confirmation bias in pseudo-labelling.

Part II: A Hybrid Model – Energy Model + Deep Nets

This is the big picture – Details in *(AI Aviles-Rivero et al, MICCAI 2022)

Experimental Results

The Alzheimer's disease Neuroimaging Initiative (ADNI) dataset

We consider 500 patients using MRI, PET, demographics and Apolipoprotein E (APOE). 4 Categories (NC, EMCI, LMCI, AD)

Techniques using 20% of Labels

Technique	AD vs NC			EMCI vs LMCI		
	ACC	SEN	PPV	SEN	PPV	ACC
GNNs 19	$81.60{\pm}2.81$	83.20 ± 3.10	$80.62{\pm}2.30$	75.60 ± 2.50	75.20 ± 3.02	$75.80{\pm}2.45$
HF <mark>[24</mark>]	$87.20{\pm}2.10$	$88.01 {\pm} 2.15$	$86.60{\pm}2.60$	$80.40{\pm}2.02$	$82.41 {\pm} 2.14$	$79.23{\pm}2.60$
HGSCCA 25	$85.60 {\pm} 2.16$	$87.20 \!\pm\! 3.11$	$84.40{\pm}2.15$	$76.01{\pm}2.16$	$75.21 {\pm} 2.01$	$76.42 {\pm} 2.22$
HGNN 🔟	$88.01 {\pm} 2.60$	$90.40 {\pm} 2.16$	87.59 ± 2.42	$80.60{\pm}2.05$	$81.60 {\pm} 2.54$	$79.60{\pm}2.51$
DHGNN [16]	$89.90{\pm}2.40$	$89.60 {\pm} 2.15$	90.21 ± 2.45	80.80 ± 2.47	$82.40 {\pm} 2.41$	$79.80{\pm}2.76$
Ours	92.11 ± 2.03	$92.80{\pm}2.16$	91.33 ± 2.43	85.22 ± 2.25	$86.40{\pm}2.11$	84.02 ± 2.45

Performance comparison for the four classes case.

Sneak Peak to the Results Due to time constrains - Details in *(AI Aviles-Rivero et al, MICCAI 2022)

Higher Order Graph Learning: Multi-Modal Hypergraph Diffusion Networks for Alzheimer Classification

ANGELICA I AVILES-RIVERO

Department of Applied Mathematics and Theoretical Physics (DAMPT)
University of Cambridge

ai323@cam.ac.uk

Joint work with: C Runkel, N Papadakis, Z Kourtzi and CB Schönlieb

Tuesday, July 26th 2022