A Quick Look at My Research

Image Reconstruction /Continuous Parameter Tuning e.g. Optimisation + Reinforcement Learning

Multi-Task Learning Techniques
e.g. Motion Estimation

+ Reconstruction + SuperResolution

Unsupervised Image Registration \& Segmentation e.g. for diagnosis, improving reconstruction
 Tencent AI Lab

GT: COVID-19

> SSL Medical Image Classification e.g. Cancer Diagnosis, COVID diagnosis, Parasite detection in thin blood smear images etc

We tackle a major challenge in medical imaging - the need for manual parameter tuning

اı|l ByteDance
Microsoft

Another major challenge in medical imaging - the need for a large and well-representative labelled set

Self-Supervised / Semi-Supervised techniques.
e.g. prognosis and diagnosis of Alzheimer Disease

Multi-Modal Data: Diagnosis and Prognosis of Alzheimer's Disease
e.g. (ICCV, MICCAI19, MICCAI20, TIP20a,b, MedIA20, ICML20 (Outstanding Paper Award), MedIA21a, MedIA21b, Inverse Problems21, TIP21, Radiology21, Pattern Recognition22, JMLR22, MICCAI22...)

Hybrid Models... For Multi-Modal Data?

GraphXNet /CREPE-Model / LaplaceNet / Deep Walkers/GraphXCOVID

e.g., (AI Aviles-Rivero et al, 2019), (AI Aviles-Rivero et al, 2020), (P Sellars, AI Aviles-Rivero et al, 2021),
(AI Aviles-Rivero et al, 2022)

Existing Hybrid and DL
 Techniques:

Focus on designing better
Network Mechanisms
*using existing energy models

> Our Work:

To develop better energy models and analyse their theoretical properties

What is the Goal of this Flash Talk?

We introduce a novel semi-supervised hypergraph learning framework for Alzheimer's disease diagnosis

\checkmark We introduce a self-supervised dual multi-modal embedding strategy. The manifold that lies the imaging data and the space of the hyper graph structure
\checkmark We introduce a more robust diffusion-model. It is based on the Rayleigh quotient for hypegraph p-Laplacian and follows a semi-explicit flow
\checkmark Comparison with SOTA SSL hypergraph/graph techniques for a major multi-modal dataset.

Our setting: Hybrid HyperGraph Based SSL

Problem Statement - Semi-Supervised Learning Setting

Given a set of samples $X=\left(x_{1}, \ldots, x_{l}, x_{l+1}, \ldots, x_{n}\right)$ where $x_{i} \in \mathcal{X}$, we assume that a tiny subset is labelled $X_{L}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{l}$ with provided labels $\left\{y_{i}\right\}_{i=1}^{l} \in \mathcal{L}=\{1, . ., L\}$ for L classes, and a large subset is unlabelled $X_{u}=$ $\left\{x_{i}\right\}_{i=l+1}^{n}$ such that $X_{L} \ll X_{u}$. We then seek to infer a function $f: \mathcal{X} \mapsto \mathcal{L}$ such that f gets a good estimate for $\left\{x_{i}\right\}_{i=l+1}^{n}$ with minimum generalisation error.

Part I: Our self-supervised dual embedding strategy

Part II: Our dynamically updated Diffusion Model

Part II: A Hybrid Model - Energy Model + Deep Nets

Dynamically Adjusted Hypergraph

Keys Ideas:

" To produce Pseudo-Labels directly from our energy model not a Network.To mitigate network calibration and the confirmation bias in pseudo-labelling.

Part II: A Hybrid Model - Energy Model + Deep Nets

Initialisation: $\mathcal{L}_{\mathcal{S}}\left(X_{L}, Y_{L} ; \theta\right)$

This is the big picture - Details in *(AI Aviles-Rivero et al, MICCAI 2022)

Experimental Results

The Alzheimer's disease Neuroimaging
Initiative (ADNI) dataset
We consider 500 patients using MRI, PET, demographics and Apolipoprotein E (APOE). 4 Categories (NC, EMCI, LMCI, AD)

Techniques using 20\% of Labels

| TECHNIQUE | AD vs NC | | | | EMCI vs LMCI | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ACC | SEN | PPV | | SEN | PPV | ACC |
| GNNs [19] | 81.60 ± 2.81 | 83.20 ± 3.10 | 80.62 ± 2.30 | | 75.60 ± 2.50 | 75.20 ± 3.02 | 75.80 ± 2.45 |
| HF [24] | 87.20 ± 2.10 | 88.01 ± 2.15 | 86.60 ± 2.60 | | 80.40 ± 2.02 | 82.41 ± 2.14 | 79.23 ± 2.60 |
| HGSCCA [25] | 85.60 ± 2.16 | 87.20 ± 3.11 | 84.40 ± 2.15 | | 76.01 ± 2.16 | 75.21 ± 2.01 | 76.42 ± 2.22 |
| HGNN [11] | 88.01 ± 2.60 | 90.40 ± 2.16 | 87.59 ± 2.42 | | 80.60 ± 2.05 | 81.60 ± 2.54 | 79.60 ± 2.51 |
| DHGNN [16] | 89.90 ± 2.40 | 89.60 ± 2.15 | 90.21 ± 2.45 | | 80.80 ± 2.47 | 82.40 ± 2.41 | 79.80 ± 2.76 |
| Ours | 92.11 ± 2.03 | 92.80 ± 2.16 | 91.33 ± 2.43 | | 85.22 ± 2.25 | 86.40 ± 2.11 | 84.02 ± 2.45 |

Performance comparison for the four classes case.

Sneak Peak to the Results Due to time constrains - Details in *(AI Aviles-Rivero et al, MICCAI 2022)

LeUNIVERSITY OF CAMBRIDGE

Higher Order Graph Learning: Multi-Modal Hypergraph Diffusion Networks for Alzheimer Classification

ANGELICA I AVILES-RIVERO

Department of Applied Mathematics and Theoretical Physics (DAMPT) University of Cambridge

ai323@cam.ac.uk

C Runkel, N Papadakis, Z Kourtzi and CB Schönlieb

Tuesday, July $26^{\text {th }} 2022$

