

In-host modelling of SARS-CoV-2

The intersection of epidemiological and immunological domains

Thomas Finnie
Emergency Preparedness, Resilience and Response, UKHSA, Porton Down, UK

In host modelling

Human challenge and in-host model

Disease process overview

→ time

Disease process overview

Symptomatic period distribution

Human challenge data

Human challenge data

In host model

Tissue Cells

Virus

Immune effector cells

$$\frac{dT}{dt} = -\beta T V_{\text{inf}}$$

$$\frac{dE}{dt} = \beta T V_{\text{inf}} - kE$$

$$\frac{dI}{dt} = kE - \delta I - k_C C I$$

$$\frac{dV_{\text{inf}}}{dt} = p_{\text{inf}} I - c_{\text{inf}} V_{\text{inf}}$$

$$\frac{dV_{\text{tot}}}{dt} = p_{\text{tot}} I - c_{\text{tot}} V_{\text{tot}}$$

$$\frac{dC}{dt} = \frac{rC V_{\text{tot}}}{V_{\text{tot}} + s} - \delta_C C$$

Parameter estimation

- An Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC)
 - Parameter sets are sampled from the intermediate distribution of the previous generation and perturbed using a multivariate normal kernel
 - An adaptive algorithm is used to decrease acceptance tolerance
 - Solutions of the mathematical model are compared to human challenge data using the distance function:

$$d(\mathsf{MM},\mathsf{HC})^2 = \sum_{t \in \mathcal{T}} \left[\log_{10}(V_{\mathsf{inf}}^{(\mathsf{MM})}(t)) - \log_{10}(V_{\mathsf{inf}}^{(\mathsf{HC})}(t)) \right]^2 + \left[\log_{10}(V_{\mathsf{tot}}^{(\mathsf{MM})}(t)) - \log_{10}(V_{\mathsf{tot}}^{(\mathsf{HC})}(t)) \right]^2$$

- \bullet Fix $\delta_C=0$ and k=3 day $^{ extsf{-1}}$
- Prior distributions:

$$\begin{split} \log_{10}\beta \sim U(-7,-2) & \delta \sim U(0,5) & \log_{10}p_{\text{inf}} \sim U(-1,3) & \log_{10}p_{\text{tot}} \sim U(1,6) \\ c_{\text{inf}} \sim U(0,50) & c_{\text{tot}} \sim U(0,10) & r \sim U(0,2) & \log_{10}k_C \sim U(-5,-2) \end{split}$$

An aside on model selection

- A second model without immune response was built (omitting the ODE on effector cells)
- Models compared at end of each ABC generation using Bayes factor
 - Six individuals very strong evidence for including immune response
 - One individual there was positive evidence for inclusion
 - Nine participants there was not sufficient evidence in favour of either model
- Model with immune response used

Posterior predictions

From individual to experimental population

Construct a mixture distribution:

$$m(oldsymbol{ heta}) = \sum_{i=1}^P w_i f_i(oldsymbol{ heta})$$

Mixture distribution posteriors

Comparing experimental population to general

- Challenge study participants unusual compared to general population
- Compare modelled viral dynamics to those observed in a study (ATACCC*)of the wider population

Existing model parameterisation with fit to ATACCC data

Timescales of infection

Where next?

Mid to late epidemic question

How much more disease is there going to be?

 How many more healthcare admissions and deaths does this disease have the potential to cause?

Genetic vs. Immunological space

Viral genetic space

Immunological space

Genetic vs. Immunological space

Viral genetic space

Immunological space

Genetic space

```
unique-id: denture-daughter
phe-label: VOC-20DEC-01
who-label: Alpha
alternate-names:
- VOC202012/01
- UK variant
- Kent variant

    VOC1

belongs-to-lineage:
- PANGO: B.1.1.7
- nextstrain: N501Y.V1
description: This variant became widespread in the UK in the Winter of 2021 and is characterised by increased transmissibility.
information-sources:
- https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201
- https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
variants:
- gene: S
  one-based-reference-position: 21764
  protein: surface glycoprotein
  reference-base: ATACATG
  type: deletion
  variant-base: A
- gene: S
  one-based-reference-position: 21990
  protein: surface glycoprotein
  reference-base: TTTA
  type: deletion
  variant-base: T
- amino-acid-change: N501Y
  codon-change: AAT-TAT
  one-based-reference-position: 23063
```

Immunological space

T-Cell Repertoire

TRAV	TRA-CDR3	TRAJ	TRAC	TRBV	TRB-CDR3	TRBJ	TRBC	Ratio
TRAV26-1	CIVRSPTGDSWGKLQF	TRAJ24	TRAC	TRBV4-1	CASSQDRGNMNTEAFF	TRBJ1-1	TRBC1	0.44%
TRAV8-3	CAVGAKGYQKVTF	TRAJ13	TRAC	TRBV27	CASSLSNPRDEQFF	TRBJ2-1	TRBC2	0.37%
TRAV27	CAGHNAGNNRKLIW	TRAJ38	TRAC	TRBV4-1	CASSQGLAGANEQFF	TRBJ2-1	TRBC2	0.29%
TRAV16	CALSRGSNYKLTF	TRAJ53	TRAC	TRBV5-6	CASSPWRLDSLWGGYTF	TRBJ1-2	TRBC1	0.18%
TRAV27	CAGAKGNNDMRF	TRAJ43	TRAC	TRBV13	CASSFQGRGTEAFF	TRBJ1-1	TRBC1	0.18%
TRAV3	CADYYGQNFVF	TRAJ26	TRAC	TRBV28	CASSFQGFTEAFF	TRBJ1-1	TRBC1	0.17%
TRAV1-2	CAVWDSNYQLIW	TRAJ33	TRAC	TRBV6-2	CASSYGGDTGELFF	TRBJ2-2	TRBC2	0.15%
TRAV5	CAESIRRDKIIF	TRAJ30	TRAC	TRBV4-1	CASSWDPTGNTEAFF	TRBJ1-1	TRBC1	0.15%
TRAV20	CAVLSGAGSYQLTF	TRAJ28	TRAC	TRBV9	CASSVESGTGWGKLFF	TRBJ1-4	TRBC1	0.13%
TRAV10	CVVSGGGADGLTF	TRAJ45	TRAC	TRBV29-1	CSGTGANSYEQYF	TRBJ2-7	TRBC2	0.11%

Receptor binding affinity vs. viral genetics

Discrete space model

$$\frac{dT}{dt} = \lambda T \left(1 - \frac{T + I_0 + I_1}{K} \right) - \beta T V_0 - \beta T V_1
\frac{dI_0}{dt} = \beta T V_0 \mu_{0,0} + \beta T V_1 \mu_{1,0} - \delta I_0 - k_0 I_0 A_0
\frac{dI_1}{dt} = \beta T V_1 \mu_{1,1} + \beta T V_0 \mu_{0,1} - \delta I_1 - k_1 I_1 A_1
\frac{dV_0}{dt} = p_0 I_0 - c V_0
\frac{dV_1}{dt} = p_1 I_1 - c V_1
\frac{dA_0}{dt} = r A_0 \frac{V_0}{h + V_0} - \gamma A_0
\frac{dA_1}{dt} = r A_1 \frac{V_1}{h + V_1} - \gamma A_1$$

Discrete space model – updated for multiple loci

$$\frac{dT}{dt} = \lambda T \left(1 - \frac{T + \sum_{j=0}^{N}}{K} \right) - \beta T \sum_{i=0}^{N} s_i I_i$$

$$\frac{dI_i}{dt} = \beta T \sum_{j=0}^{N} s_j \mu_{j,i} I_j - \delta I_i - k_i I_i A_i$$

$$\frac{dA_i}{dt} = r A_i \frac{I_i}{h + I_i} - \gamma A_i$$

Viral evolution

Further development

- Increased genetic realism
- Increased immunological realism
- Lessons from influenza (but it is a very different system)

Final Thoughts

- In-host dynamics matter
 - Sometimes worth considering them directly
- Big, open questions remain on SARS-CoV-2
- How much is transferable to the "next" one?

Thanks to...

- Jonathan Carruthers
- Jingsi Xu
- Ian Hall
- Declan Bays
- Matt Pindar
- Johnathon Taylor
- Brodie Walker
- Hannah Williams
- Nick Gent
- UKHSA JMT
- PROTECT project