Lessons from zoonoses – future emerging threats & how to respond to them

Dr James Wood
@jw132

University of Cambridge

Zoonoses are important for human disease

- 60% human infectious diseases have 'zoonotic origins'
 - 75% of *emerging* infectious diseases (EIDs) are zoonotic (Taylor)
- 61% of EIDs are zoonotic
 - 72% of these have wildlife source (and % increasing) (Jones)

Taylor et al *Phil Trans* 2001; Jones et al *Nature* 2008

Emerging Zoonotic Pathogens from Wildlife

Approaches to mitigating future pandemic impacts

- Vaccination
 - Reactively develop rapid novel, safe vaccines more rapidly even than in 2020
 - Develop cross-reactive vaccines against pathogens known to exist in animals
- Novel medical treatments
 - Need more and novel antimicrobials (viral and bacterial) to protect against a range of pathogens
- Immediate implementation of non-pharmaceutical measures in face of emerging infection outbreaks
 - How fast is fast enough?
 - Initially this was considered for H5N1 in Thailand by Ferguson et al
- Prevent spillover infection events
- Combine all approaches....

Approaches to mitigating future pandemic impacts

- Vaccination
 - Reactively develop rapid novel, safe vaccines more rapidly even than in 2020
 - Develop cross-reactive vaccines against pathogens known to exist in animals
- Novel medical treatments
 - Need more and novel antimicrobials (viral and bacterial) to protect against a range of pathogens
- Immediate implementation of non-pharmaceutical measures in face of emerging infection outbreaks
 - How fast is fast enough?
 - Initially this was considered for H5N1 in Thailand by Ferguson et al
- Prevent spillover infection events
- Combine all approaches....

Dependent on prior animal and wildlife surveillance data and then response to this

Transmission in humans

- If any new infection transmits between humans, it will spread
 - This can evolve rapidly (but how rapidly?)
- SARS-COV-2 has demonstrated how quickly a pathogen can adapt for greater transmissibility
 - E.g. Delta -> Omicron -> Omicron.BA.2 (etc)
- So can we detect <u>and intervene effectively at source?</u>

SARS-Cov-2 evolving

Omicron waves demonstrating adaptation

A slide from 2009: how much have we learned?

- Why has MERS not adapted like SARS-COV-2?
- Why did the West Africa Ebola outbreak not persist?
- What happened with 2009 'Swine flu'?

Pathogen Adaptation to cross between Species: Key Factors

Speed of mutation
Efficiency of replication
(virus population size)
&
Extent of change required

Correlation with Phylogenetic Distance

- SIVcpz → HIV-1: 1 mutation?
- FPV → CPV: 7 mutations
- Avian influenza → human influenza: 14 mutations?

Transmission in humans

- If any new infection transmits between humans, it will spread
 - This can evolve rapidly (but how rapidly?)
- SARS-COV-2 has demonstrated how quickly a pathogen can adapt for greater transmissibility
 - E.g. Delta -> Omicron -> Omicron.BA.2 (etc)
- So can we detect <u>and intervene effectively at source?</u>

How good are (source) surveillance data?

- A key defence against disease emergence is early detection
- Early detection requires surveillance, which requires
 - primary health care
 - laboratory capacity
 - and access
 - excellent communications
- Can we sequence pathogens from lots of people in contact with animals?
 - For early detection?
 - Or should we focus on pathogens within wildlife?
- Massive challenges in predicting which infections will spillover to humans
 - Prediction of future seasonal (i.e. endemic) influenza viruses is challenging enough

Human health seeking behaviours

- Humans have to seek treatment if they are to contribute to surveillance.
- Buoyem, nr Techiman, Brong Ahafo, Ghana
 - Malaria hyper-endemic <u>rural</u> region
 - 5 month ethnographic study
- Comparison of village and town living
- Different patterns of health care usage
 - Dependent on income, specific signs and disease severity
- Lack of record keeping in clinics, different communication between doctors & patients
 - Frequent retreatment for malaria
 - Only one opportunity for single diagnostic test
- Little or no chance of detection of EIDs

How good are Ebola surveillance data?

- We know how big the detected outbreaks are
- We can predict how big outbreaks should be, given how transmissible the infection is (in outbreaks)
- We can predict what the distribution of outbreak sizes should be, given how transmissible the infection is

Glennon et al, PLoS Neg Trop Dis 2019

How good are Ebola surveillance data?

- We know how big the detected outbreaks are
- We can predict how big outbreaks should be, given how transmissible the infection is (in outbreaks)
- We can predict what the distribution of outbreak sizes should be, given how transmissible the infection is
- At least half of all spillover events have failed to be reported since Ebola was first recognised
- The probability of detecting outbreaks of different sizes, is less than 10% for single-case spillover event
- Strong evidence for need to invest in primary health care

Transmission in humans

- If any new infection transmits between humans, it will spread
 - This can evolve rapidly
- SARS-COV-2 has demonstrated how quickly a pathogen can adapt for greater transmissibility
 - E.g. Delta -> Omicron -> Omicron.BA.2 (etc)
- So can we detect and intervene at source?
 - UNLIKELY TO BE EFFECTIVE FOR ACUTE INFECTIONS with R0>1
- Logically, we must therefore intervene to prevent spillover transmission
 - Reduce biodiversity loss, extractive industries, care with intermediate (agricultural) hosts etc etc

What is role of wildlife farming?

- Farming and trade of live palm civets was responsible for SARS-CoV-1 outbreaks
 - Extended epidemic in traded palm civets caused multiple spillover events into humans
 - Palm civet acted as intermediate hosts
- Was there a role for farmed wildlife common in the Hunan Seafood Market in causing the onset of the SARS-CoV-2 pandemic?
- Is this different to more conventional agriculture?
 - Scale of wildlife farming, esp. in South Asia is massive
 - Bridging / intermediate species between wildlife and humans for pathogens
 - But agricultural scale and movement of animals is still a massive risk....
- (What even are farmed wildlife?
 - Animals may be wild caught and fattened, or bred on farms)

Role for massive investigation of pathogens in wildlife?

- It is useful to know what pathogens are present in animals
 - But what will we do with the information?
- Can we predict the next pathogen that will cause a pandemic
 - We cannot accurately predict which influenza strain will cause the <u>next</u> seasonal flu outbreak
- Is it feasible to develop multiple effective cross reactive vaccines?
 - Stock pile them
 - Or stock pile vaccine seeds?
 - Where will resourcing come from?

conclusions

- Important to focus on (post-hoc) pandemic responses
 - Need to consider spillback risks (not discussed today)
- Improve early detection
 - Technology limited by under-investment in global primary health care
- Vital to work to reduce spillover infection risk
 - Reducing biodiversity loss
 - Target live animal trade, extractive industries (including elements of agriculture)
- Politically challenging
 - Largely ignored to date, certainly since 2019, and especially in funding opportunities