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Pre-pandemic and early pandemic work

Background (Ft0 = 1.50) and 50 random carehomes (Ftc = 3.00) epidemics
p = 0.70; 8960 out of 15540 infected (57.7%)

Fal

Background epidemic
Carehome sizein[1.7]
Carehome sizein[8.17]
Carehome sizein[ 18, 30]
Carehome size in[ 31, 48]
Carehome size in [ 49, 215 ]

300 350

Effect of "cocooning” on numbers in hospitals and deaths (457271 vulnerable people)

(reducing risk of introduction in carehomes)



MANCHESTER Reported outbreaks over time
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Methods/Results - Spatial
distribution

MANCHESTER

prediction of outbreak risk

Presence/absence of outbreaks
Aims to support decision making
of DPHSs

— Should they test care homes
near

current outbreaks
— Orrandomly in space.
32% National average (at time)
Use GAM (Gaussian Process)
with binomial family
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Reports to SAGE

o Provides independent advice to

SAGE

NERVTAG

COBR

SAGE
Tt

Groups feeding into SAGE

SPI-M

SPI-B

EMG

New and Emerging
Respiratory Virus Threats
Advisory Group.

Provides independent
scientificadvice to the
Chief Medical Officer and
DHSC on threats posed by
new and emerging
respiratory virusesand
options for their
mitigation.

DHSC-led.

Scientific Pandemic
Influenza Group on
Modelling.

Provides advice on
infectious disease
modelling & epidemiology.

Products:
-Consensus statement
-Short-and long-term

scenario forecasts.

DHSC-led.

Scientific Pandemic
Influenza Group on
BehaviouralScience.

Provides advice the
behaviouralscience
aspects of the Covid-19
outbreak.

Products:
- Consensus statement.

SAGE-led.

Environmental and
Modelling Group

Provides advice on
transmission of the virus

and mitigation measures

HSE-led

Reports to CMO

Modelling for vulnerable settings
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April 2020:
September 2020:

Sage Social Care Working
Group — Core group & Expertise

Statistical
Modelling

Mathematical
Modelling

Local
expertise

Social Care

Working
Group

Care of the
Elderly medical
consultants /
clinicians

Virology

Epidemiology

Group started as ‘Sage Care Home Working Group’
Wider remit, clearly defined core members & new Terms of Reference.

Modelling for vulnerable settings



What we delivered...
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https://www.gov.uk/government/publications/care-homes-analysis-12-may-2020
20200923 Review of evidence SCWG SAGE October 2020

2021103 SCWG Consensus Statementon Visitor Policies

20201221 SAGE Care subgroup Chair December Summary Note for Policy on Testing

SCWG: Estimating the minimum level of vaccine coverage in care home settings, March 2021 -
GOV.UK (www.gov.uk)

SCWG: What are the appropriate mitigations to deployin care homes in the context of the post
vaccination risk landscape?, 26 May 2021 - GOV.UK

SCWG Chairs: Summary of role of shielding, 20 December 2021 - GOV.UK (www.gov.uk)

[2202.07325] Novel methods for estimating the instantaneous and overall COVID-19 case fatality
risk among care home residents in England (arxiv.org)

Epidemiological modelling in refugee and internally displaced people settlements: challenges and
ways forward (bmj.com)

Excess mortality for care home residents during the first 23 weeks of the COVID-19 pandemic in
England: a national cohort study | SpringerLink

[2110.06193] EpiBeds: Data informed modelling of the COVID-19 hospital burden in England
(arxiv.org)

A number of outputs in Philosophical Transactions of the Royal Society B 376 (1829) a special
issue on Pandemic modelling response

JMT reports, SPIM-O consensus statements, NRP consensus statements + supporting papers
Modelling for vulnerable settings
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Forecasting

Number

Instantaneous growth rate
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0.05

-0.05

Confirmed CQV deaths
England until 2022-03-16

04-20 07-20 10-20 01-21 04-21 07-21 10-21 01-22 04-22
Time
Plateauing recent trend, may be decreasing 0.784

Projected new events in next 14 days: 185 (96,334)
Projected new events in next 14 days from regional model: 175 (52,453)
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Time
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ey Case fatality ratio within care

1824

e Uses CQC death
notificationsand P1 and
P2 positive tests matched
to care home location
and age

e Allowsfor delayfrom
positive test to death

* Gives 14% CFR in ‘stable’
data period with
appropriate age filters

e Evidence of spatial
variation (NE higher and
London lower)

* Highlyvariable

Daily case fatality risk

homes

1.0

—— Backwards (10-day shift) - PHE
- Forwards - PHE
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5 Vaccine impact

Efficacy against transmission assuming

* Assume given coverage
lelves

* The simple 2 group
mixing model can be
used to show efficacy
rates required to
achieve control.

* This is sensitive to
assumptions on vaccine
efficacy and mixing
patterns.

Resident efficacy

1.0

80% coverage in staff and
90% in residents

0.6

0.4

0.2

0.0

|
0.0 0.2
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Staff efficacy

0.8
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How do we create a visitor policy that is
safe but enables residents to see their
family? Alexander Thompson

Potential harm caused by isolation
Homes in different areas of high / low prevalence
Each individual and family member may have a different view on safety vs quality of life.

Trade-off
A
Last capability Lost capability
Policy Policy
Early mortality Reduced well being auses harm ¢ 1solationt < Crae:dheonrlnse 5 ws“?n‘(;?l:i:) ::mal N s b J ncr' S .ns ol Early mortaliey
Lost health-refated — I m Lost health-related

i £ s i Cther )
el afiee Residents Carers FESe RAIEES St rezidents quality of life

Modelling for vulnerable settings 11
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Quality adjusted Life Years...

\ \ \ g But does the QALY
capture necessary
Impacts on wider
|
: - N = 0 wellbeing and health
: S e — (ASCOT).
Need to integrate with
epidemic models

Duration of isolation (mo)

Modelling for vulnerable settings 12
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Viral-load-based models

I —@— Allinterventions

| —@— PCR after + LFD before
{‘ —@— Dally LFD after + LFD before

| 2 *_ —@— LFD before only

/ » — A&k - PCR after + Dally LFD

l . A - PCR after only

~ A - Daily LFD after only

— A& - No interventions
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Mean Infectious Days
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Daily LFDs 4+ Weekly PCR

Daily LFDs

B 70% LFD compliance
= 40% LFD compliance

Status Quo

3 LFDs

14-day rand. PCR
14-day conc. PCR
2 LFDs

Scenario

100

75

Viral load (log10 copies/ml)

100

75

50 |

25

00

Model 2 (Kissler et al. data)

- - median
mean

10 20 30
Days since infection

Ke et al. parameterisation

- - median
mean

Days since infection

Ke, R etal. ‘Daily sampling ofearly SARS-CoV-2infection reveals substantial heterogeneity

in infectiousness’ Medrxiv2021.
Kissler, S. M. et al PLOS Biology 19(7),e3001333.2021
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« Behaviour and acceptance is critical to efficacy
for testing.

« Sensitivity and specificity vary over time
o
.

Reduction in infection potential (p)

2 4 4] ] 10 12 14
Days between tests

Modelling for social care 14



MANCHESTER
1824

The University of Manchester

The role of adherence

Type Of lﬂ'éLeaky" adherence: 2021 sens., 45h TaT "Alltgr-nothing" adherence: 2021 sens., 45h TaT
adherence

80 a0
matters: z z
Leaky: Everyone takes T 60 | | E e . !
iy e : | —
probability g 409 g 04

. = LFD adherence = LFD adherence

AoN: Fraction of people « 00% 6% | T 100% 1 60%
do all tests, fraction do o . 21 .
none T0% B 30% T0% B 30%

Strategies with
high frequency are
most affected by
this difference

Daily LFDs only
3 LFDs 4+ 1 PCR
Daily LFDs only
3 LFDs 4+ 1 PCR
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credit interval for simplified model.

patient No.1st 635495

PROTECT

A COVID-19 National Core Study

patient No.1st 634105
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Hazard assessment

Ingress hazard * Examples of
(connectionto

interventions: testing,
limiting movement,
communitya nd other vaccination, Infection

. prevention and control
care setting) (IPQ)

. e * Examples of
Transmission hazard [N ewsgres

(contacts between social distancing,
q vaccination, isolation of
staff andresidents) coses

Outbreak hazard * Examples of
interventions: testing,
(Cl Osed' d ensgly compartmentaisation,
networkedsetting) vaccination

Severe outcomes
(highlyvulnerable

residents - age,
frailty, co-morbidity)

Modelling for vulnerable settings

* Examples of interventions:

vaccination, timely antiviral

treatment, oxygen, steroids.

17



Complex mitigation
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Size of
outbreaks

Severe
outcomes

eVaccination of residents, staff and visitors

e Isolate or cohortinfectious or potentially infectious residents

¢ Avoid symptomatic people visiting

e Financial support for staff to isolate

¢ Test residents on admission and on return from hospital, test visitors and staff

* Avoid cross-deployment of staff, limit or stopinward/outward visits,accommodate staff separately from family

* Vaccination of residents, staff and visitors

* Isolate or cohort people with symptoms or confirmed infection

* Optimize ventilation

* PPE

* Financial support for staff to isolate

 Facilities to reduce fomite transfer (e.g laundries) and quarantine materials and equipment

* Test residents on admission and on return from hospital, test staff and visitors

* Mask use by staff and visitors

* Social distancing where possible, limit close interactions between residents, limit visitor numbers

eVaccination of residents, staffandvisitors

e |solate or cohortinfectious residents

¢ Cohort staffto infected/uninfected residents

¢ Financial support for staff to isolate

¢ Social distancing where possible, limitinteractions betweenresidents

® Repeat rounds of testing to determine whether onward transmission still occurring, further limit visitor numers

eVaccination of residents, staff & visitors.

eAntiviral treatment for residents and staff with infection

eSupportive carein the care homeincluding oxygen, fluids, and steroids
e Admission tohospital if appropriate

eRehabilitation and management of long COVID

— N N

Modelling for social care
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Mean number of positive cases per outbreak
by date of outbreak start

All COVID-19 incidents and outbreaks 2
by date of first test (last date: 2022-02-05) 2
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06-20 09-20 12-20 03-21 06-21 09-21 12-21

dailymerge$date
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Positivity rates
compared with ONS CIS
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Agility and vulnerability: the UK
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Summary

ersity of Manchester

« Data was weak...

... better now but not perfect (Social Care
episode statistics!!!).

« Hard to evaluate specific interventions

« Eager to build in future research and look at
acceptability

 Home care and other settings critical.
« Staff data linked to workplaces adds value.

* Timescales for reporting are short and language
for translation needs care — work with policy
teams
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Future
work
model|??

Iteration

AN

Impact (Hazard
characterization)

Interpretation
(translation,
communicaton
andadding
value)

Inference (now- Interventions
casting, shortand (dynamic

medium term contingency
forecast) planning)
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