Mobility and Human Behaviour – Urban Analytics

(Why did we find transmission modelling hard?)

Fred Shone Technical Lead Arup City Modelling Lab fred.shone@arup.com

Gerard Casey Research Lead Arup City Modelling Lab gerard.casey@arup.com

Modelling to Support Resilience for Pandemics – Open Questions

Contents

- Arup City Modelling Lab (CML)
- The Stack
 - Transport choice model + simulation
 - + virus transmission model
- Challenges
 - Compute
 - Complexity
 - Assurance
 - Calibration
- Conclusions/Assertions
 - PAM Pandemic Activity Modifier
 - The right questions

Selected projects

New Zealand Ministry of Transport

Embedded **simulation capabilities** within the Ministry of Transport. Started with a strategy phase followed by an Alpha model build owned by the client team. The models are helping to determine the effects of **road pricing** on congestion.

Ministry of Transport TE MANATŪ WAKA

Transport Infrastructure Ireland

Built an Alpha and Beta model to investigate **road pricing** scenarios and how this might help to fund infrastructure in the future. There was a specific focus on **social equity** when considering road pricing schemes.

Suffolk County Council, United Kingdom

Built an Alpha model for the Suffolk region, and ran scenarios to inform their **bus strategy**. Carried out a **carbon assessment** which highlighted that additional bus services don't necessarily equate to lower carbon emissions.

Collaborations, partnerships, and clients

We have strong partnerships to progress R&D and foster innovation across the industry

We have set up a **research partnership** with UCL to bridge the gap between client needs and academic research.

There is a growing international **community** engaging with us and discussing how this simulation capability can be leveraged.

We have carried out **client projects** globally.

What did we do? (transport models/simulations)

Long-term choice modelling

London

London

Output Events

What did we do? (transport models/simulations)

- Choice modelling
 - Where do people live/with who/do they own a car etc...
 - Where do people/work/shop/leisure etc...
 - When do people travel/how long do they spend at work etc...
 - How do people travel/which modes/what routes...
- Simulation
 - Where/when/who
- + Transmission risk
 - Who?
 - Where? (areas/places/lines/vehicles)
 - When?
 - Transport scenarios not so much 'policy' scenarios

What did we do?

What did we do?

What do we do? - as a choice model

Challenges

Compute

- "ABMs are slow"
 - Not really
 - If you have the right tools
 - Big computers & parallelised scenarios
 - Staged calibration (no feedback)
 - Focus should more often be on using them faster not running them faster

Challenges

Complexity

- "ABMs are too complex/random"
 - Complexity + uncertainty = unstable outputs?
 - Not so much for MATSim
 - Yes for Episim you have to run it a lot
 - Make uncertainty exogenous
 - "Forecast" → "scenario"
 - "Model" \rightarrow "modify"
 - (pam)
 - Complexity makes some bits easier (never mind better)
 - Assurance
 - Flexibility

Challenges

Assurance & Flexibility

- "It's hard to validate an ABM"
 - More sources of validation data
 - Looks right
 - Too many people at this train station
 - Bus is too slow
 - This person is stuck
 - "Look at all these moving dots" persuasive
 - "Good code"
 - Behave like computer engineers
 - Open
 - Build components not scripts/stacks
- Flexibility

Challenges

Calibration

- "It's hard to calibrate an ABM"
 - Yes it is
 - Most research seems to point at some trade-off with the simulation
 - Approach
 - Compartmentalise/sequentially calibrate & validate
 - Restrict unknowns
 - Realistic simulation > abstraction
 - "Scenarios"
 - Be fast
 - Stability / low unknowns / build fast
 - Instability / lot's of unknowns / run fast

Challenges

Different Approaches

PAM

https://github.com/arup-group/pam

PAM

Answer the right questions

- Which routes do the most connected people use most?
- What times are busiest?
- If I shut schools/work-places/Pret, who will be affected?
- If I shut this station do people walk or get the bus?
- If I operate a more frequent tube do people become less connected?

