

Understanding community level influences on COVID-19 prevalence in England

New insights from comparison over time and space

Joshi Chaitanya, Arif Ali, Thomas O'Connor, Li Chen, Kaveh Jahanshahi

> Understanding community level influences on COVID-19 prevalence in England

11 April 2022

Background

- Part of DSC support in response to COVID-19
 - Developing understanding of risks at community level
 - Workplace risks after controlling for residential characteristics, NPIs, travel patterns, vaccination, etc.
 - Early warning system
 - A new framework for augmenting data from different sources
- Stakeholders
 - JBC (UKHSA)
 - HSE is taking it further as part of the PROTECT COVID-19 National Core Study on transmission and environment
 - ONS HAPI

Method of analysis

OA

LSOA

MSOA

WPZ

Census geography - Office for National Statistics (ons.gov.uk)

Within LSOA

Within MSOA

Constrained to MSOA

Within LA

Wales)

181,408

34,753

7,201

53.578

Model framework

C Office for National Statistics

Analysis time tranches

Tranche	Period	External influences during different stages of the pandemic
1	2020-05-03 to 2020-08-30	Low prevalence; schools closed; Alpha and Delta variants not yet emerged; no vaccine available
2	2020-09-06 to 2020- 11-08	High prevalence; schools open; negligible Alpha variant; Delta variant not yet emerged; no vaccine available.
3	2020-11-15 to 2020- 12-27	High prevalence; schools open; Alpha variant becomes dominant; Delta variant not yet emerged; negligible vaccine coverage.
4	2021-01-03 to 2021-02-14	High prevalence; schools closed (except for pre-school); Alpha variant dominant; Delta variant not emerged yet; over 10 million first vaccine doses by the end of the time period.
5	2021-02-21 to 2021- 04-25	Low prevalence; schools open; Delta variant negligible; over 35 million first and 15 million second vaccine doses by the end of time period.
6	2021-05-02 to 2021-07-11	High prevalence; schools open; Delta variant becomes dominant; over 45 million first and 35 million second doses administered by the end of the time period.
7	2021-07-18 to 2021- 12-05	Lifting of almost all lockdown restrictions in England and before the Omicron variant became dominant.

Findings

Comparing latent clusters with conventional Area types

Latent geography according to commuting behaviour

Distribution of cases and travel clusters

Spatial correlations

Findings – example of post lockdown time tranche

Findings – Stability over time

C Office for National Statistics

Findings – Goodness of fit

Main Findings

- Areas with a larger proportion of residents working in care homes and warehouses and to a lesser extent ready meals and textile sectors are prone to higher risk of infection across all travel clusters and all time periods modelled
- The critical role of geographical variations in influences on COVID-19 Incidence e.g.
 - Bigger proportion of small families and fewer density of children are prone to lower risk of infection in medium and smaller urban and rural areas
 - Family size, however, is not a significant risk factor in central and inner London and metropolitan cities
- Use of public transport has been identified as one of the main risk factors in smaller and bigger urban areas alike.

Questions and Discussion

Understanding community level influences on COVID-19 prevalence in England

Kaveh Jahanshahi, Joshi Chaitanya, Arif Ali, Thomas O'Connor, Li Chen

Understanding community level influences on COVID-19 prevalence in England