A New Approach for Parameter Estimation in Complex Epidemiological Models

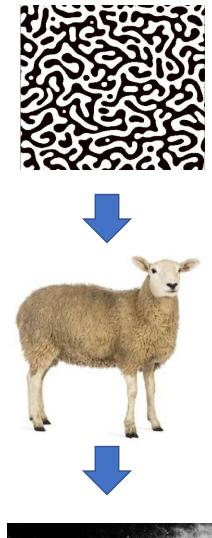
BioSS

Chris Pooley (BioSS), Andrea Doeschl-Wilson (Roslin) and Glenn Marion (BioSS)

Epidemic Models: Insights from the RAMP Project March 24th 2022

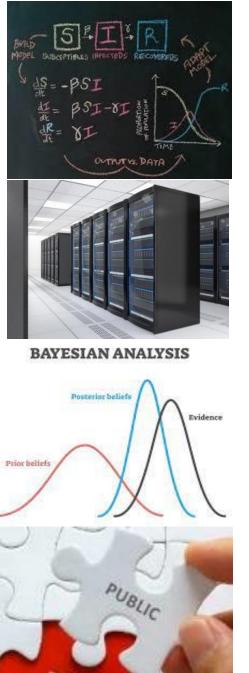
My background

- Physics → Genetics → Epidemiology
- Understanding genetics of disease spread in animals
 - Selective breeding programs to help combat disease
- Bayesian methods for disease transmission experiments
 - Typically data from 100s of animals/fish
 - Individual-based models



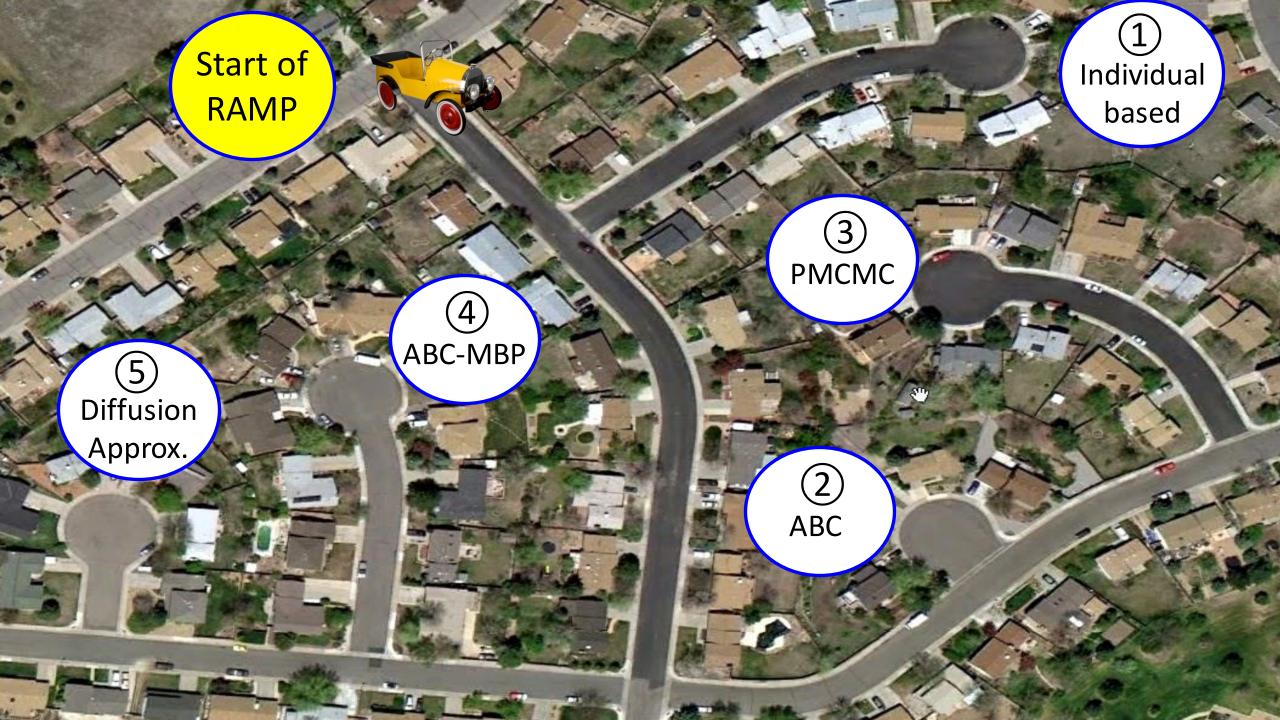
Motivation

- Develop mathematical models for COVID-19
 - Understanding
 - Looking into the future
 - Test control strategies before applying them in reality
- Models only useful if well parameterised
- Bayesian inference
 - Accounts for uncertainty in prior and data
 - Output model parameters and system behaviour INCLUDING uncertainty
 - Provides best evidence-based advice for policy



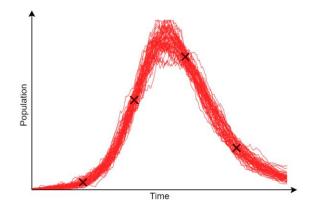
Aim

- Develop models and Bayesian methods to analyse publically available COVID-19 data
- Ideally account for:
 - Differences in disease severity
 - Spatial variation
 - Demographic variation (*e.g.* age, sex)
 - Time variation in external force of infection
 - Government interventions
 - Human behavioural change
 - Different virus variants
 - Vaccination effects
 - Biases in the data

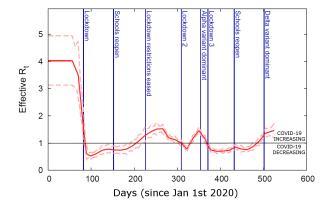


Overview

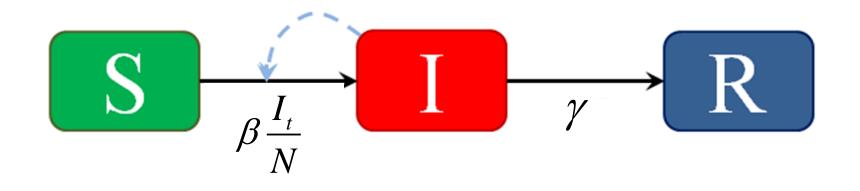
- Outline existing methods:
 - ABC rejection sampling and ABC-SMC
- Introduce new inference methodology:
 - ABC-MBP
- BEEPmbp software
 - Speed comparison between different approaches
- Application to age-structured model of Covid-19







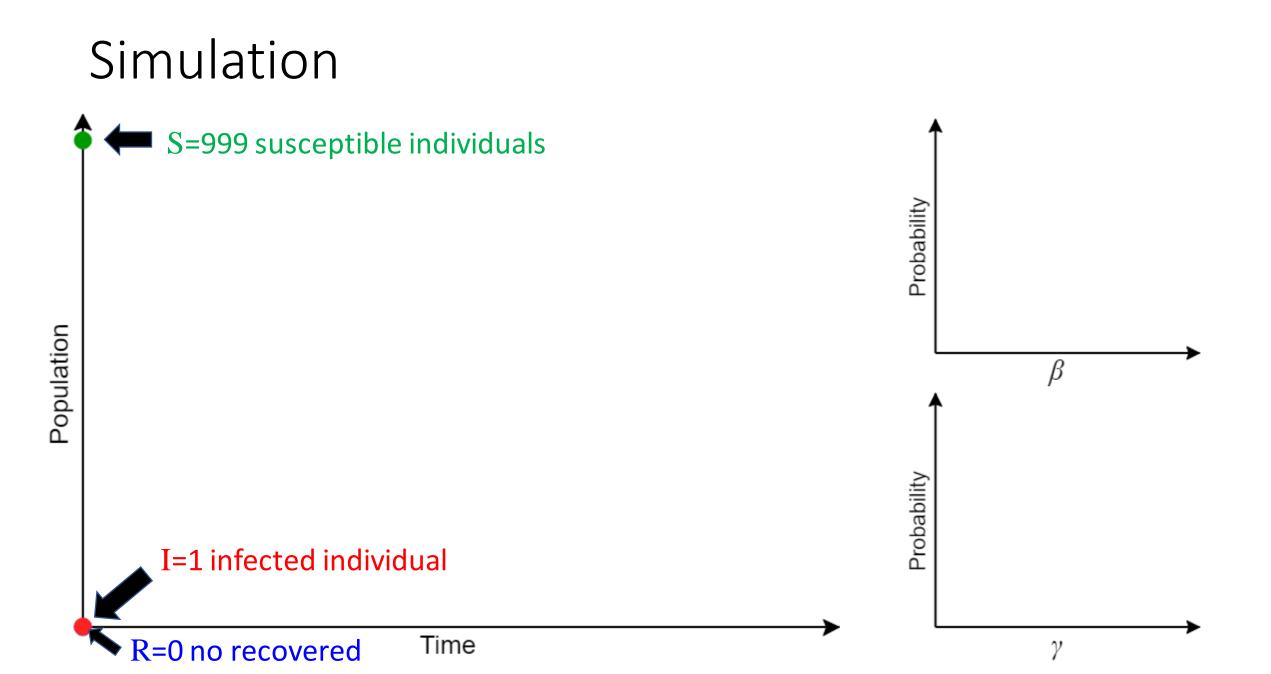
SIR compartmental model

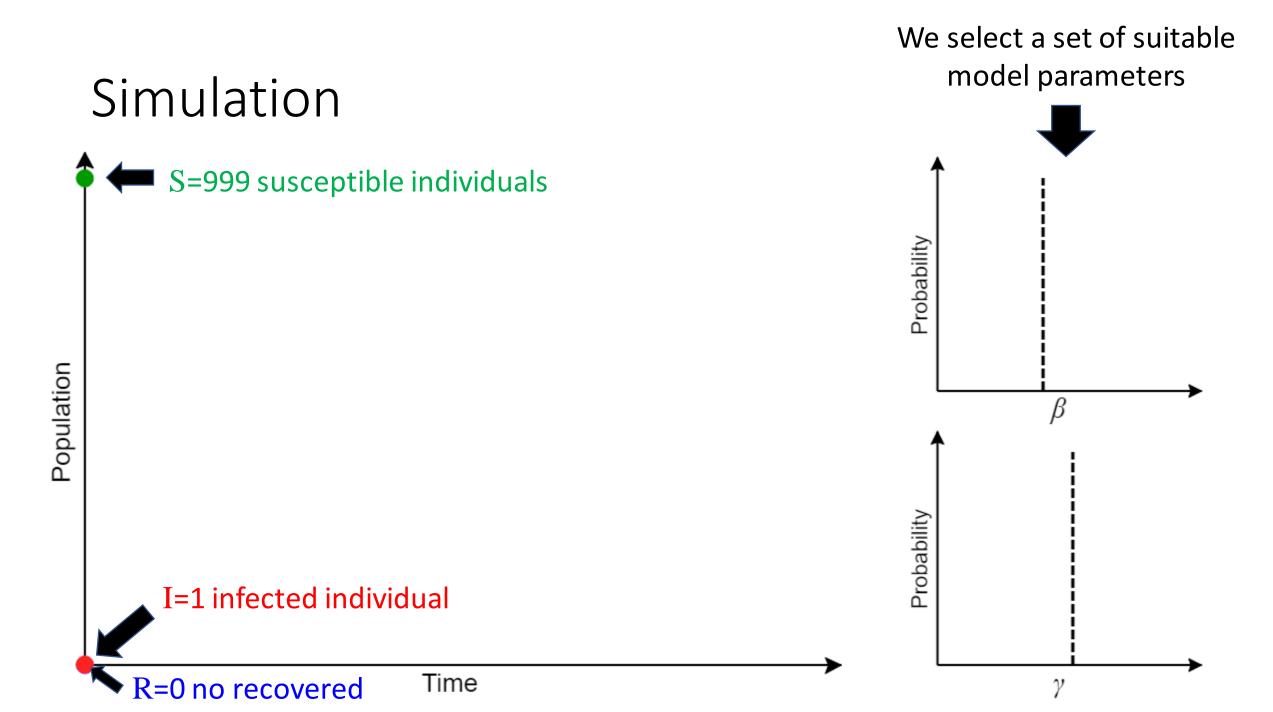


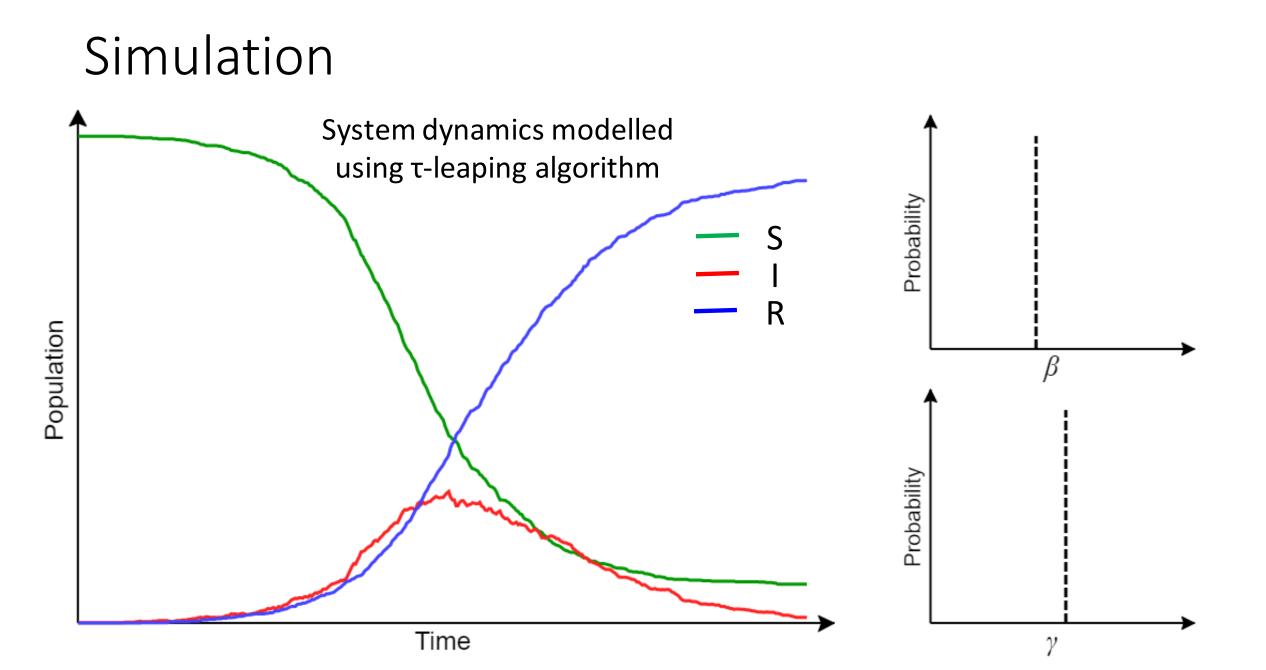
Susceptible population

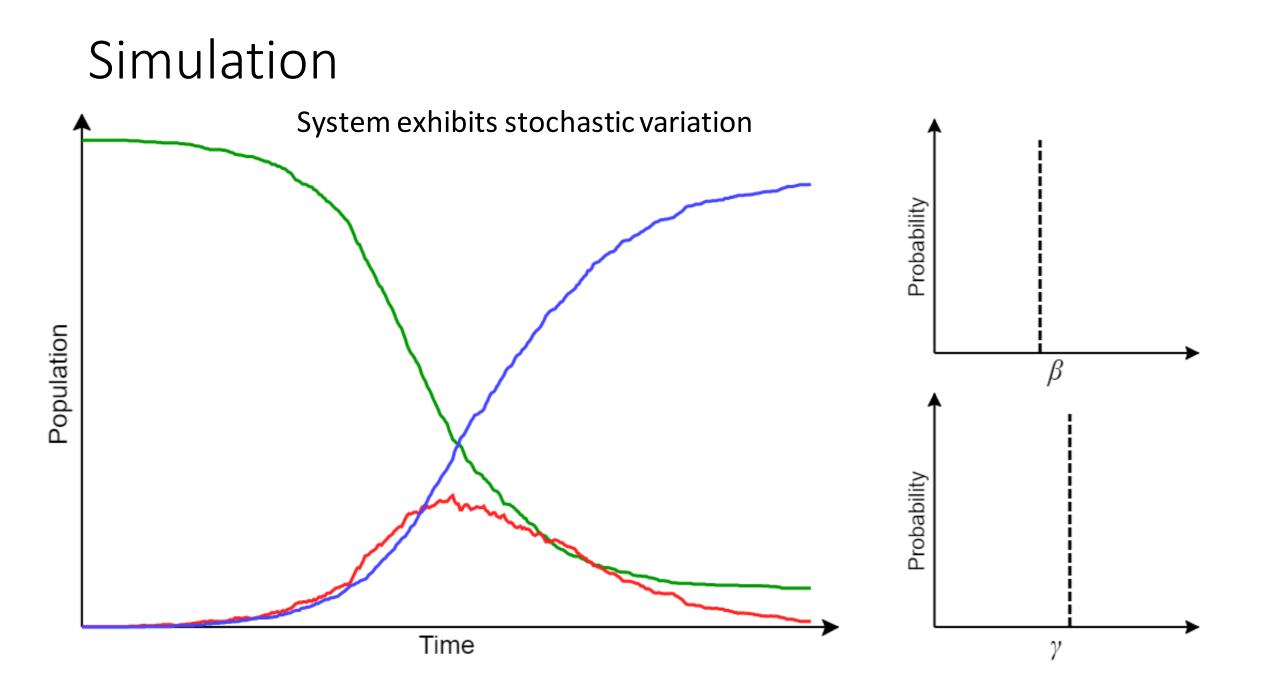
Infected population

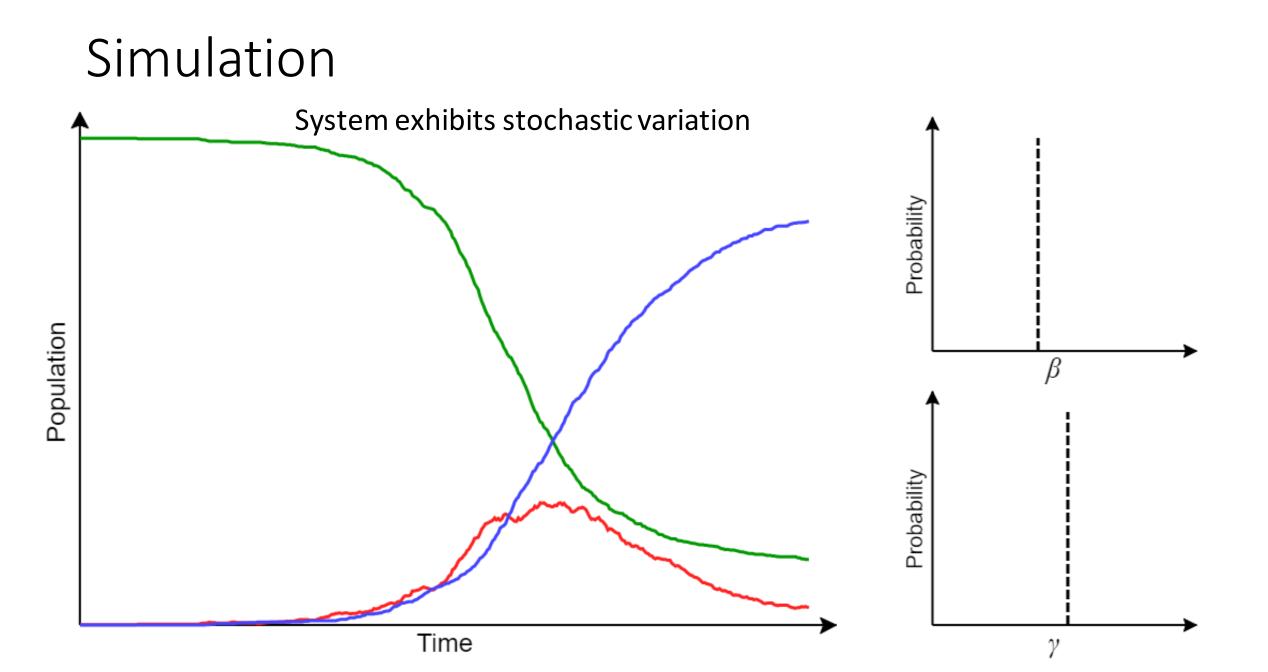
Recovered population



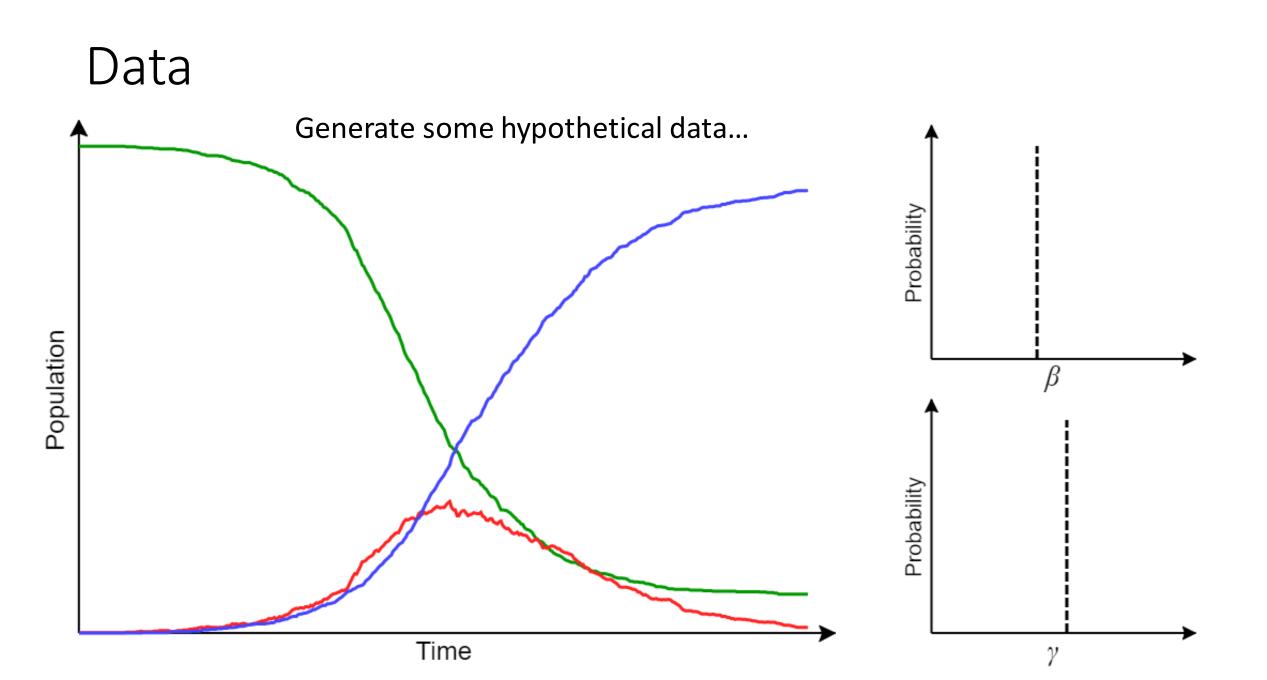


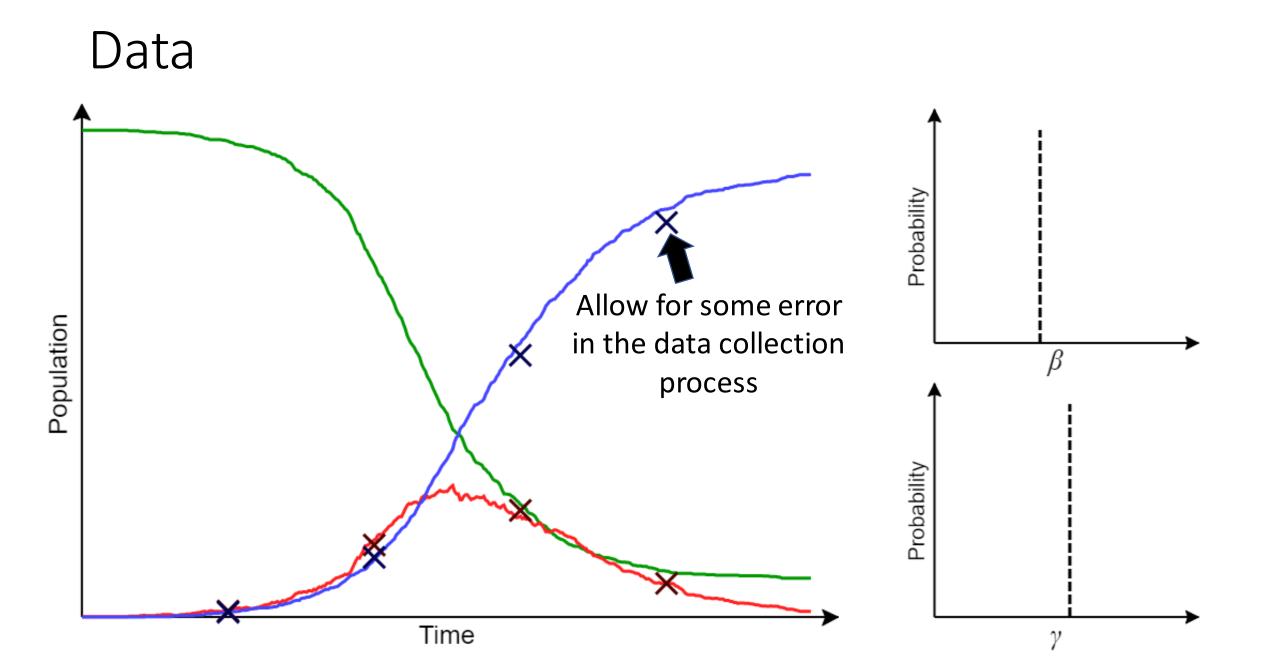


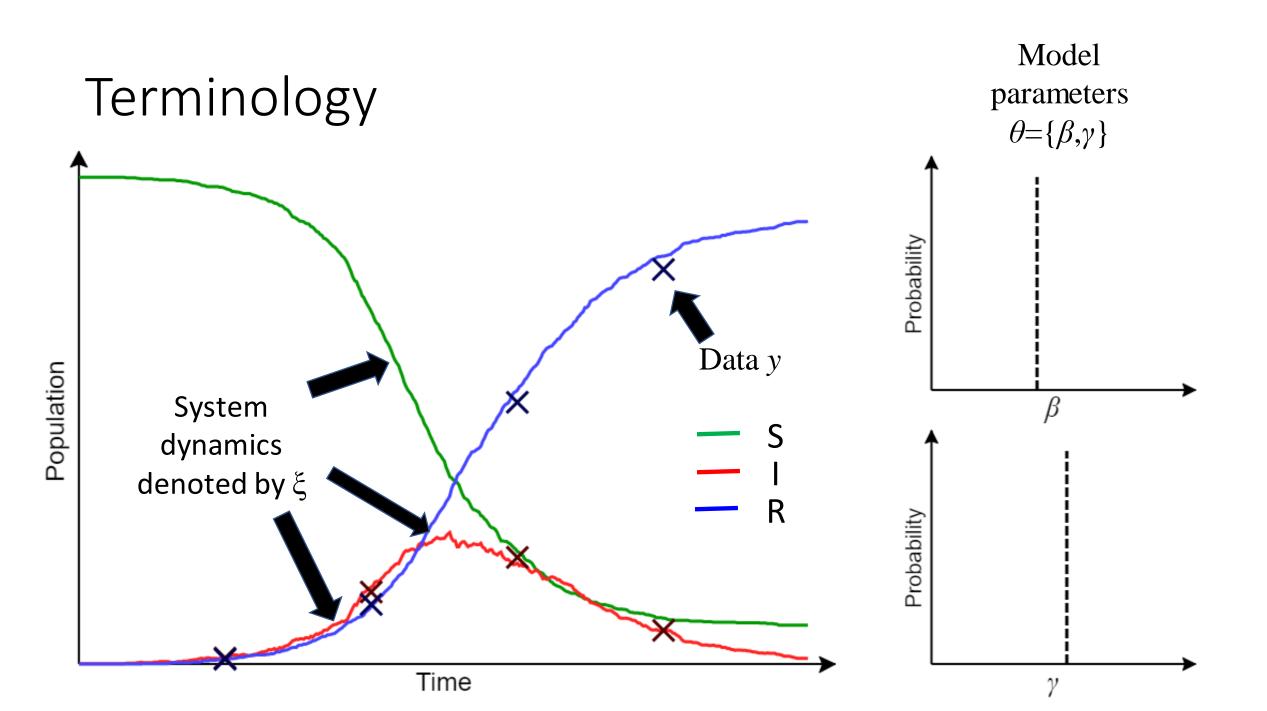


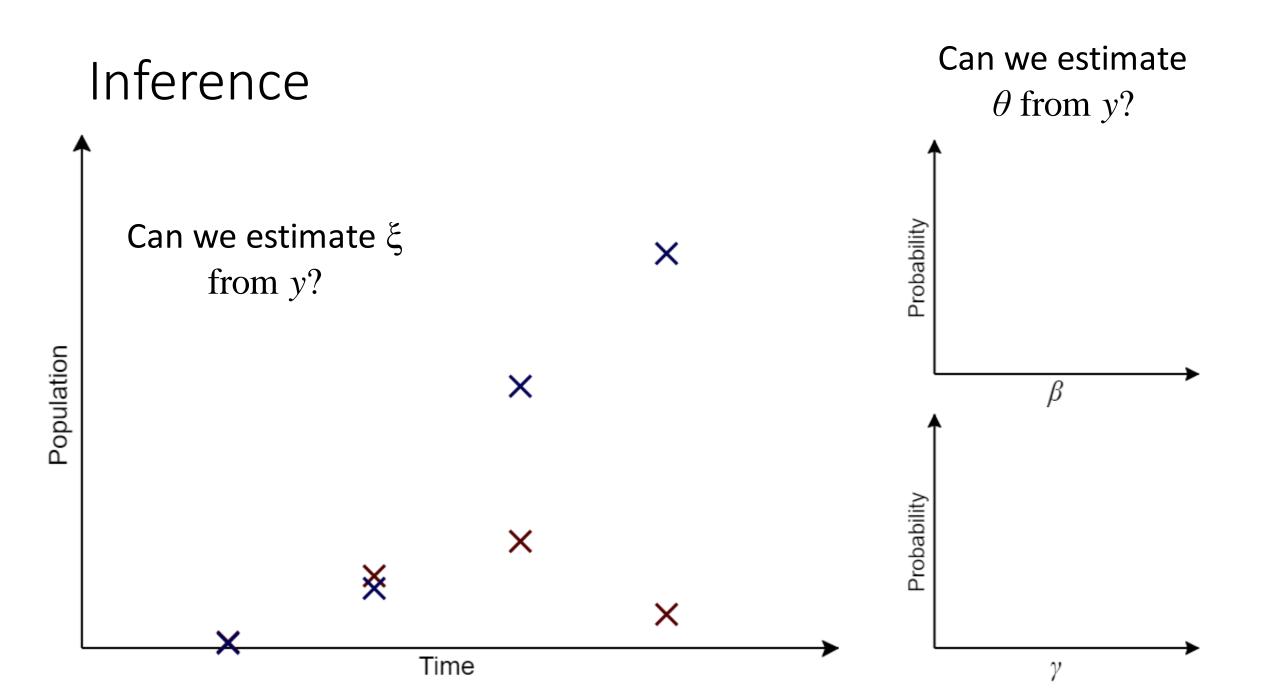


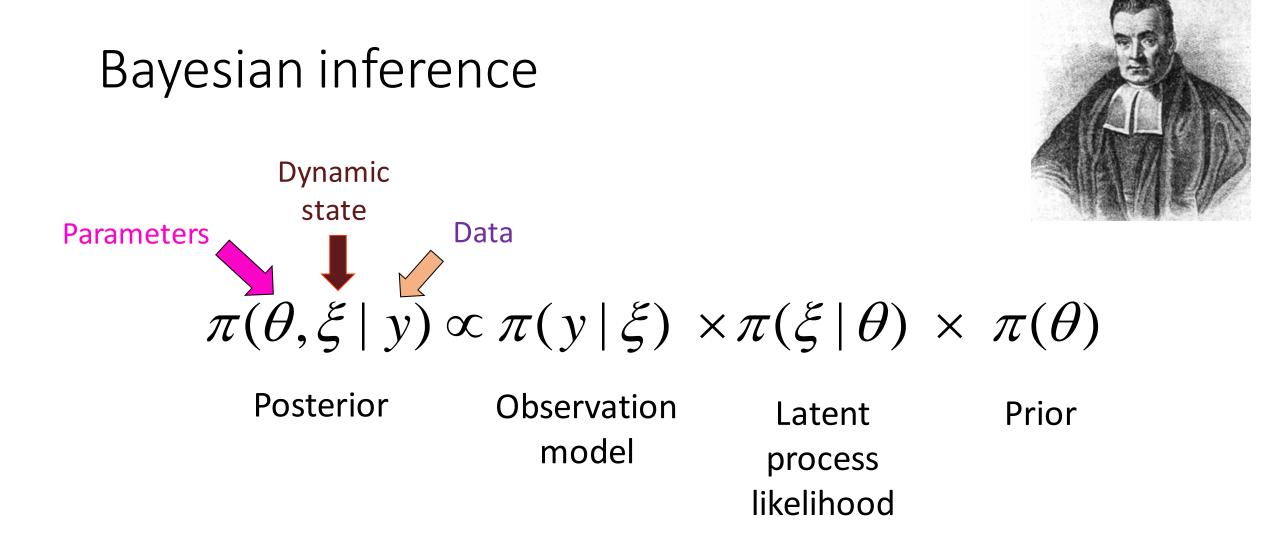
Simulation System exhibits stochastic variation Probability Population ß Probability Time γ

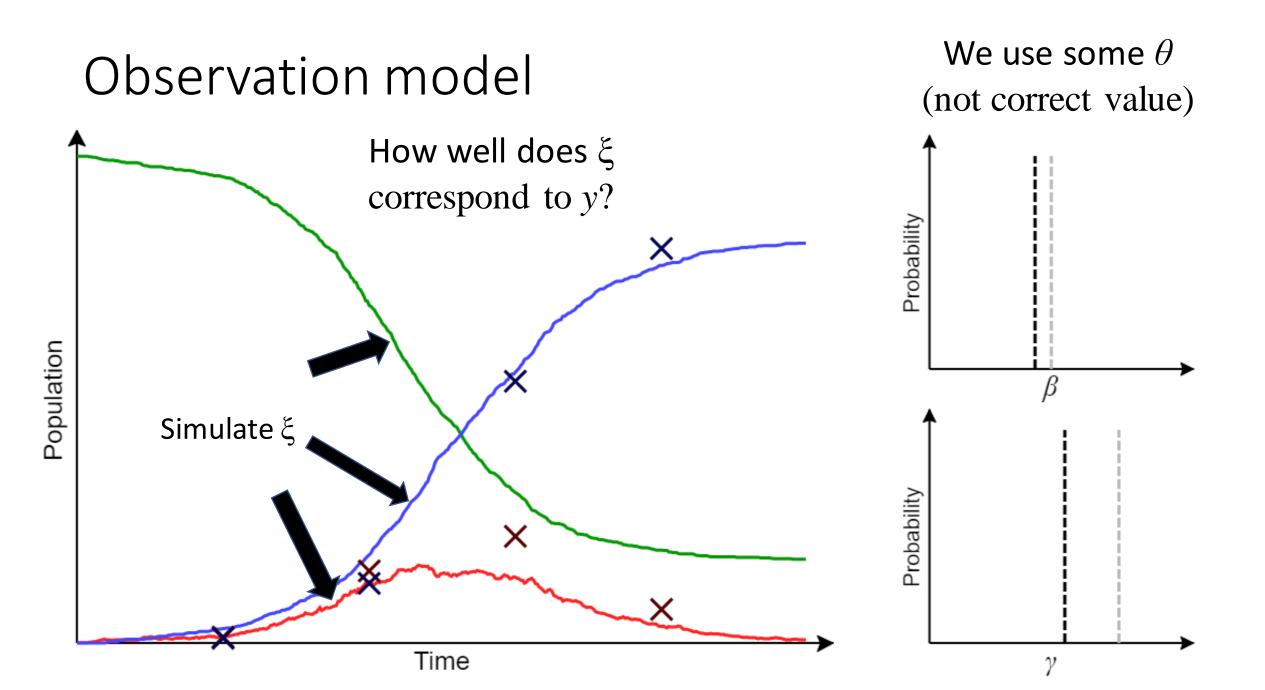


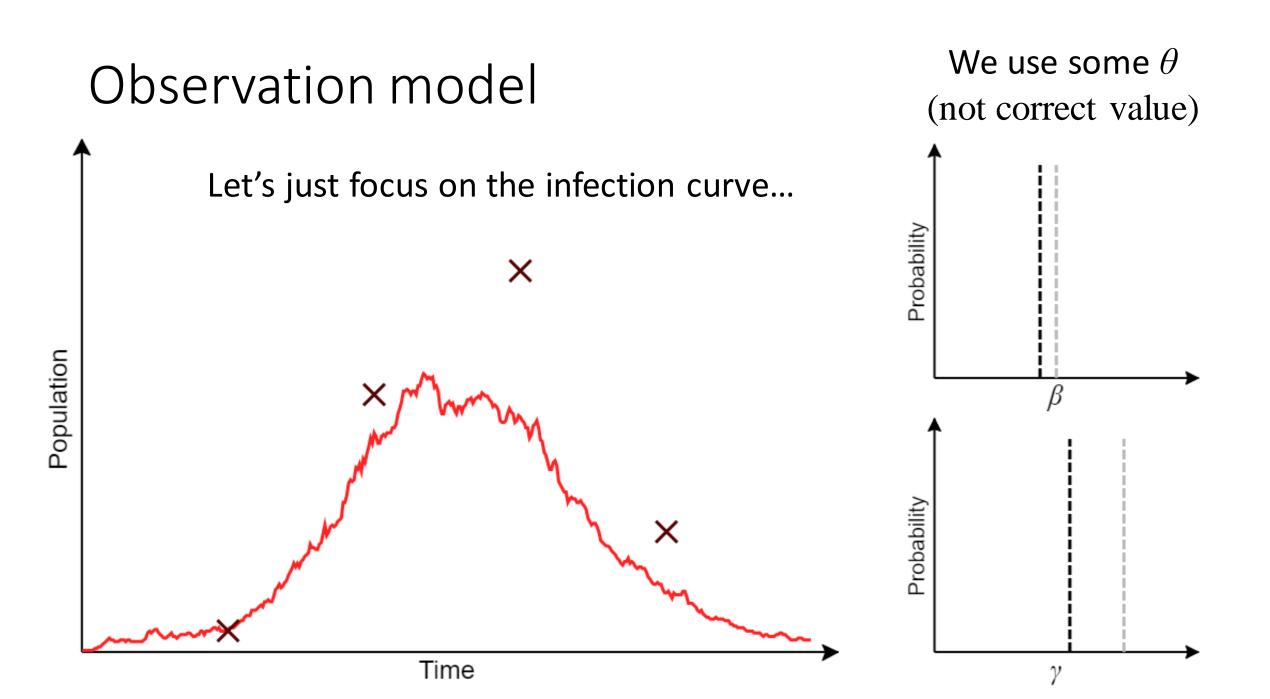


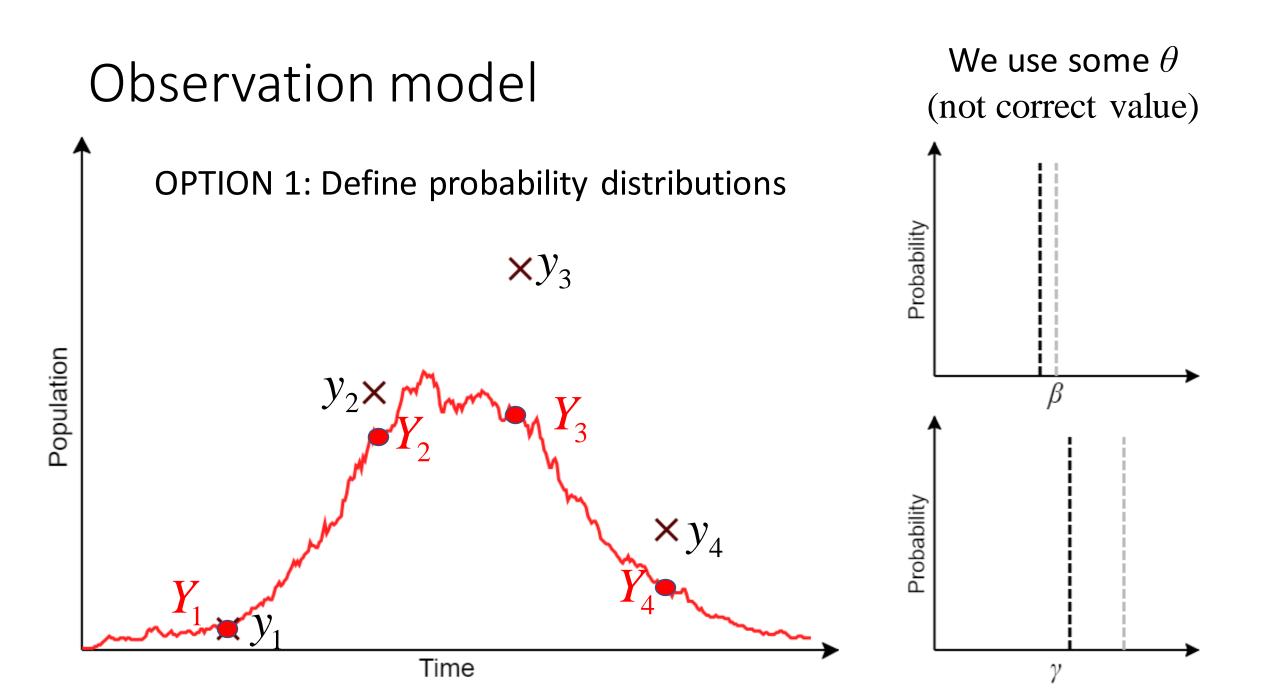


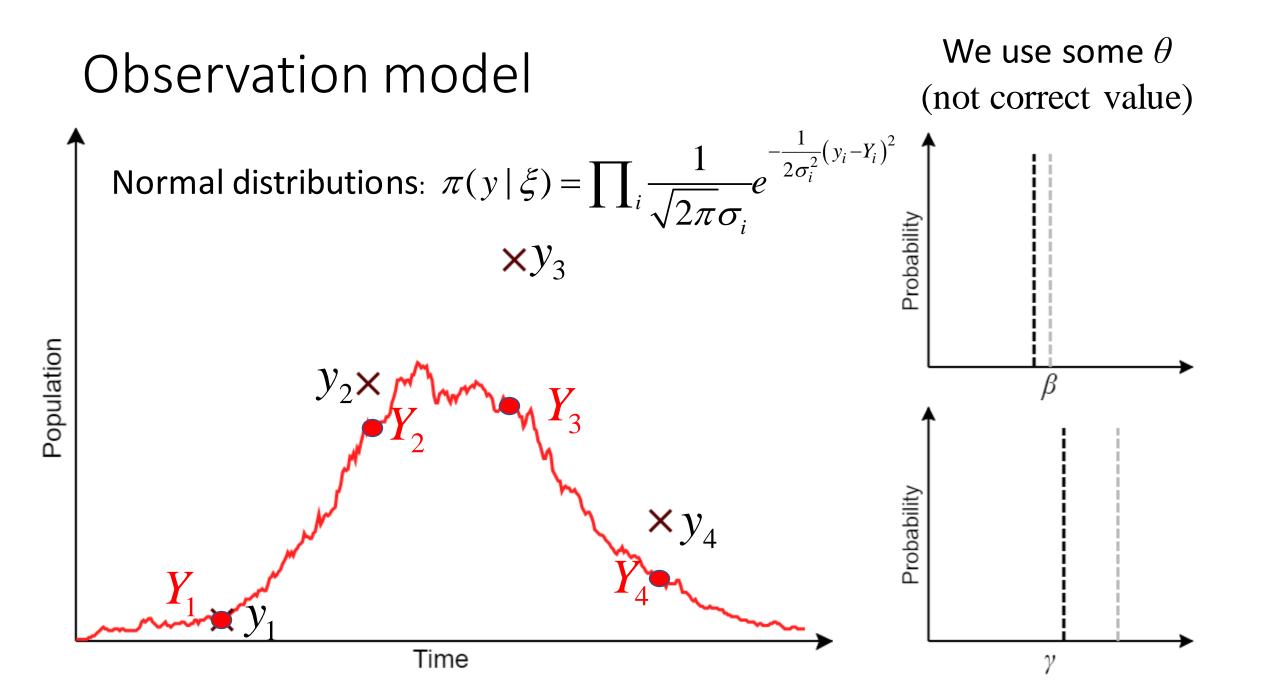


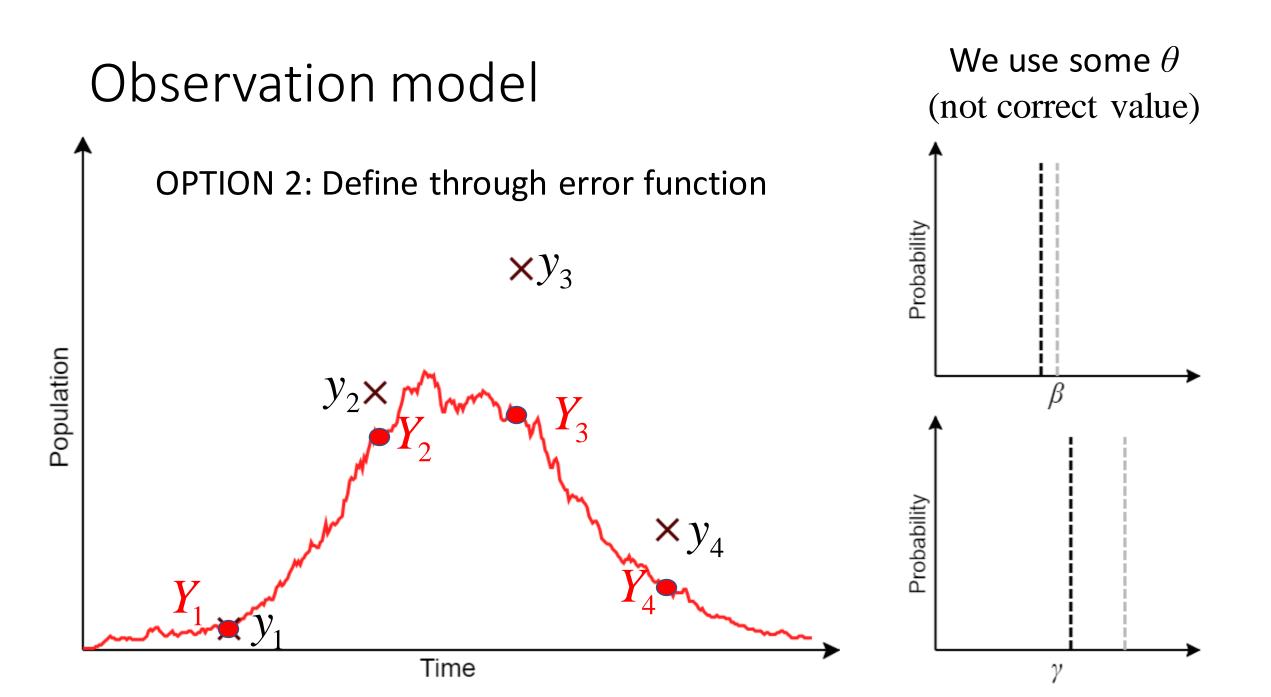


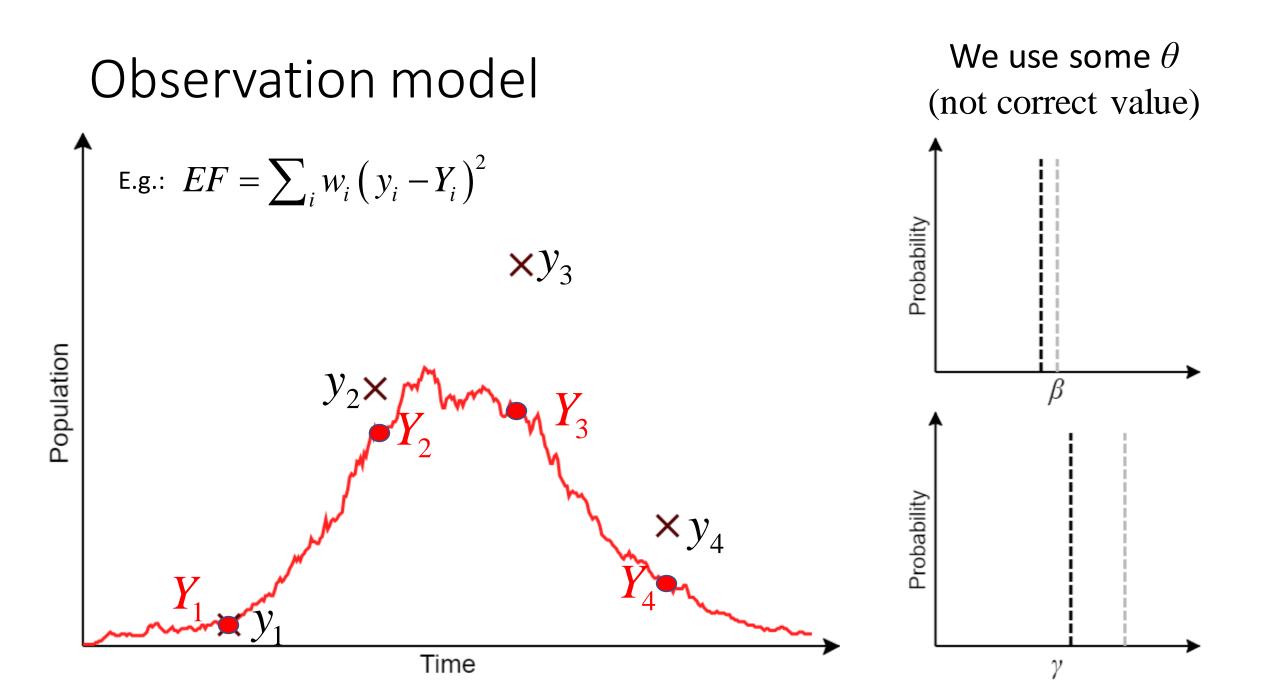


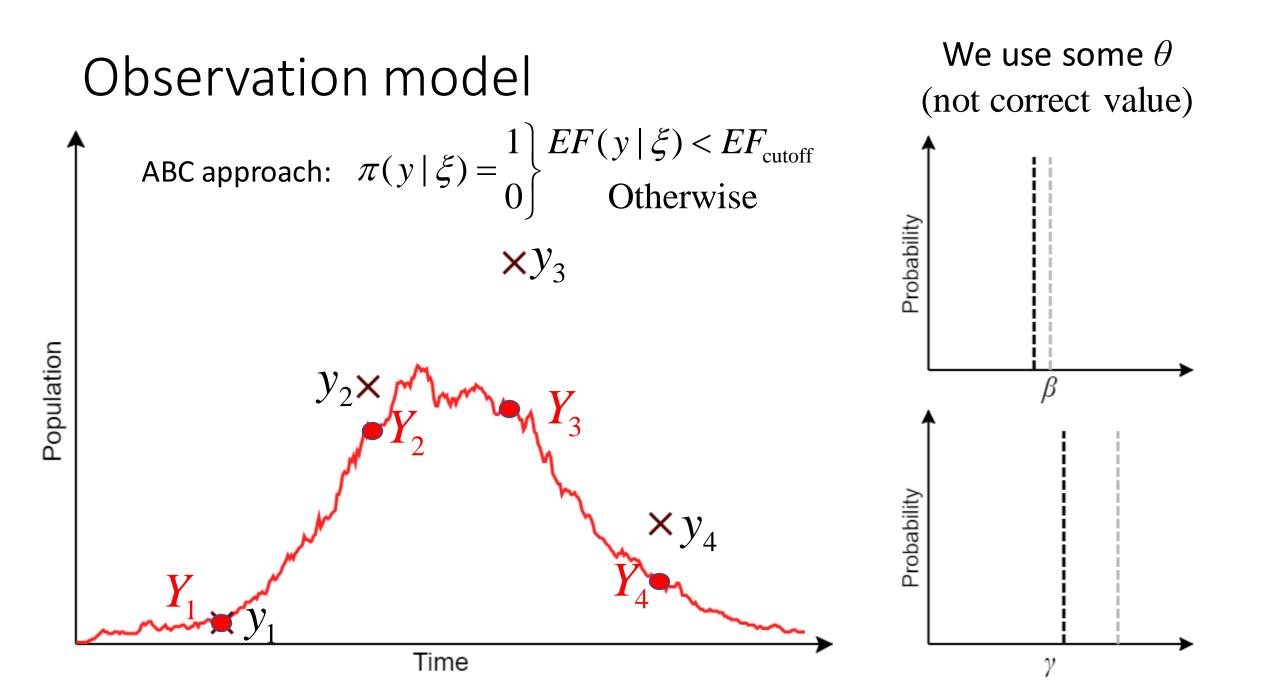












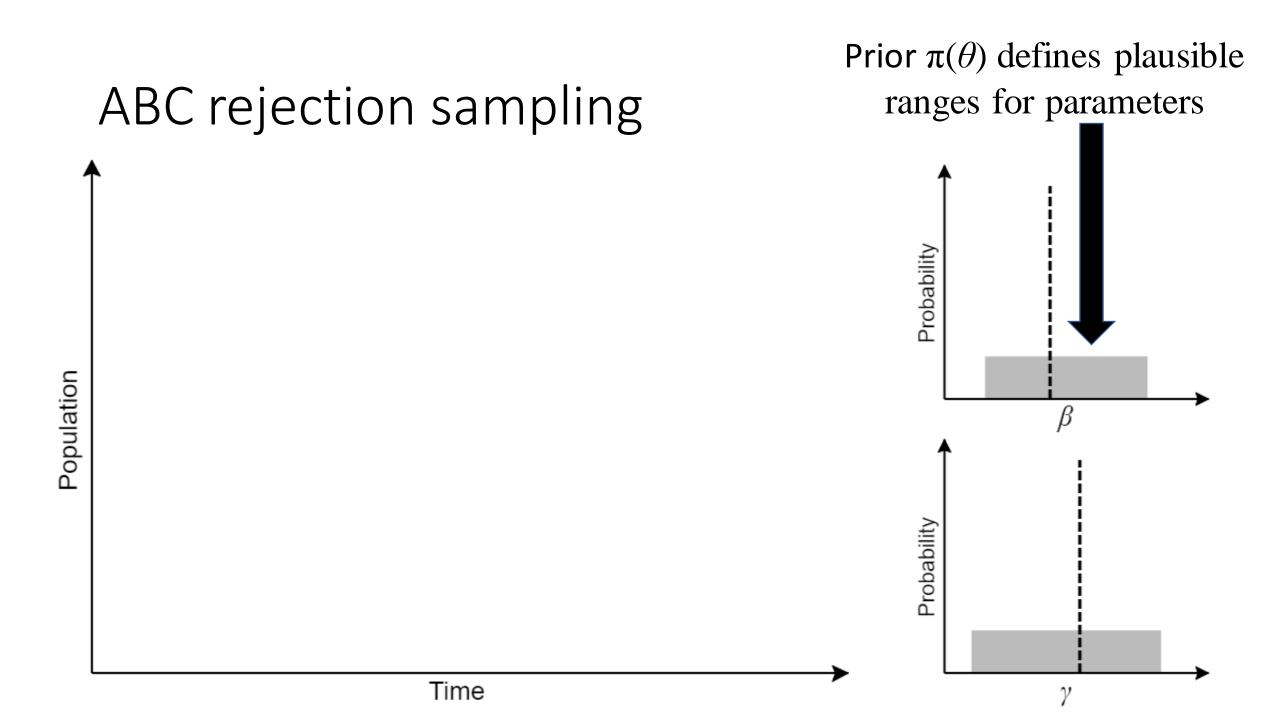
Inference algorithms

OPTION 1: Observation model with probability distributions

- Data augmentation Markov chain Monte Carlo (DA-MCMC)
- Particle MCMC (PMCMC)
- Metropolis coupled MCMC (MC³)

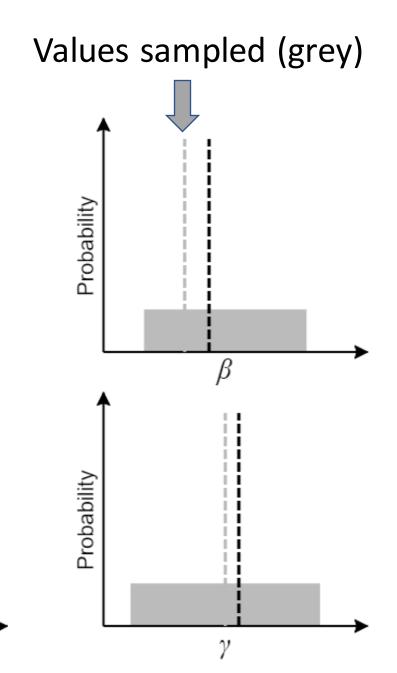
OPTION 2: Error functions

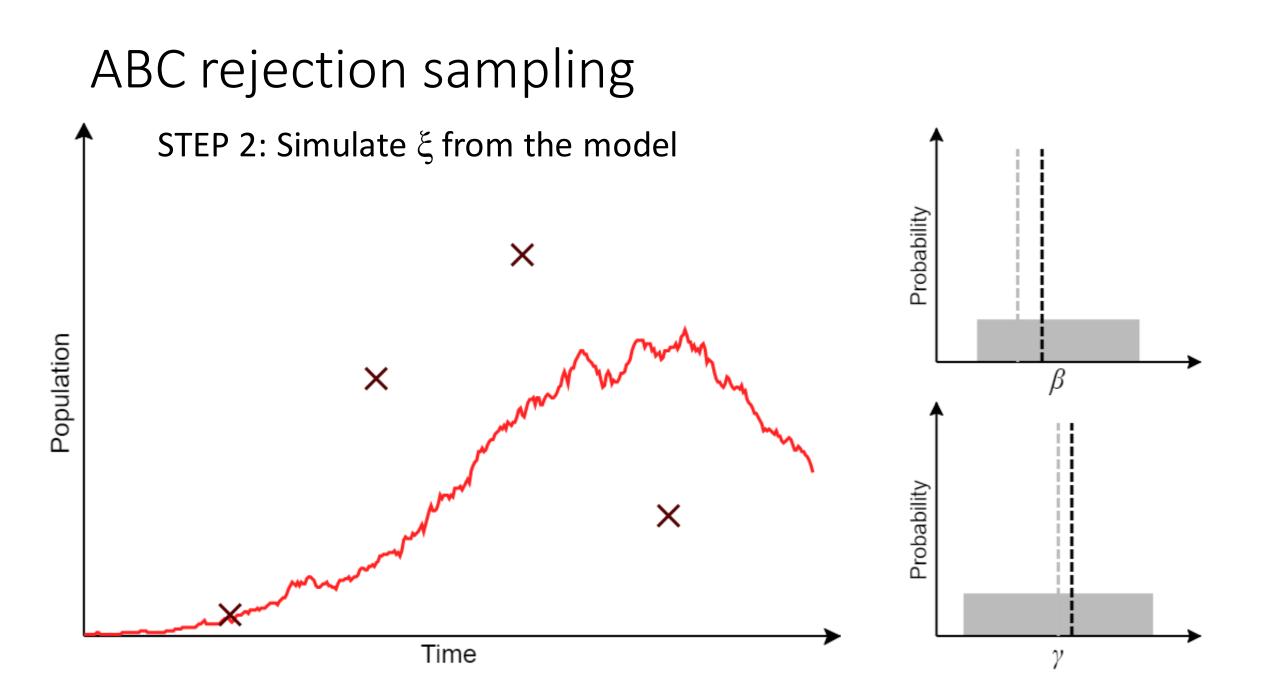
- Approximate Bayesian computation rejection sampling (ABC)
- ABC sequential Monte Carlo (ABC-SMC)
- ABC with model-based proposals (ABC-MBP)

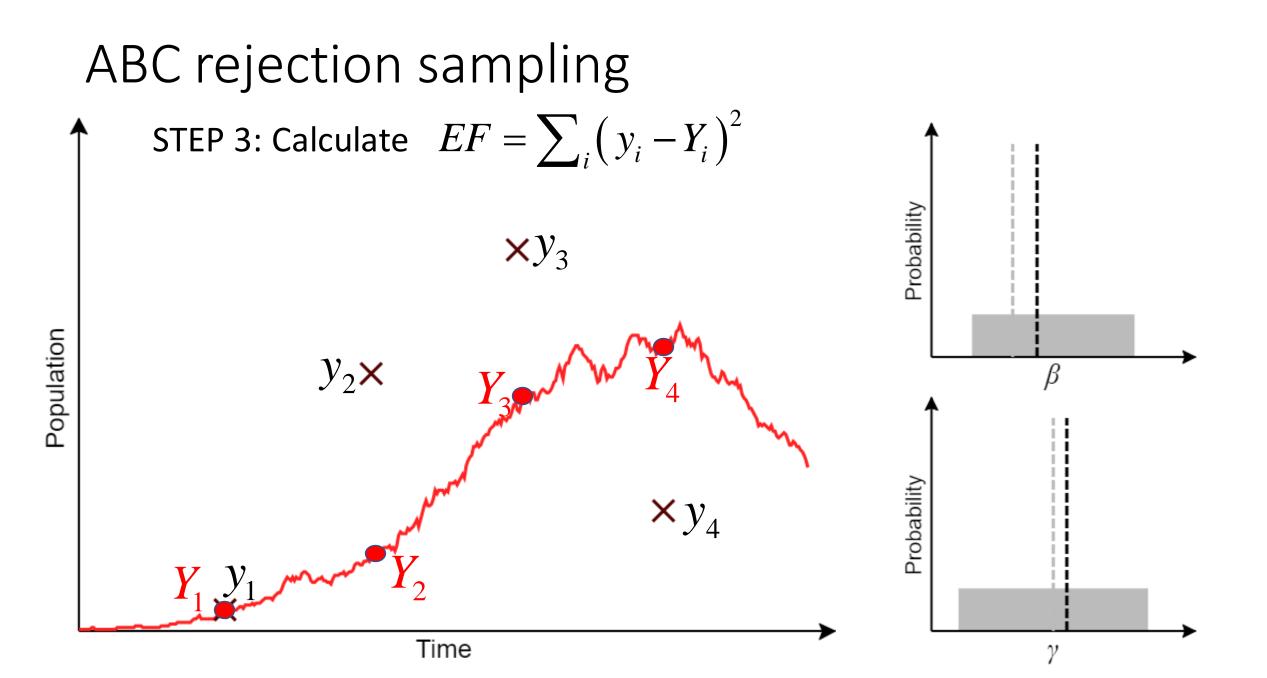


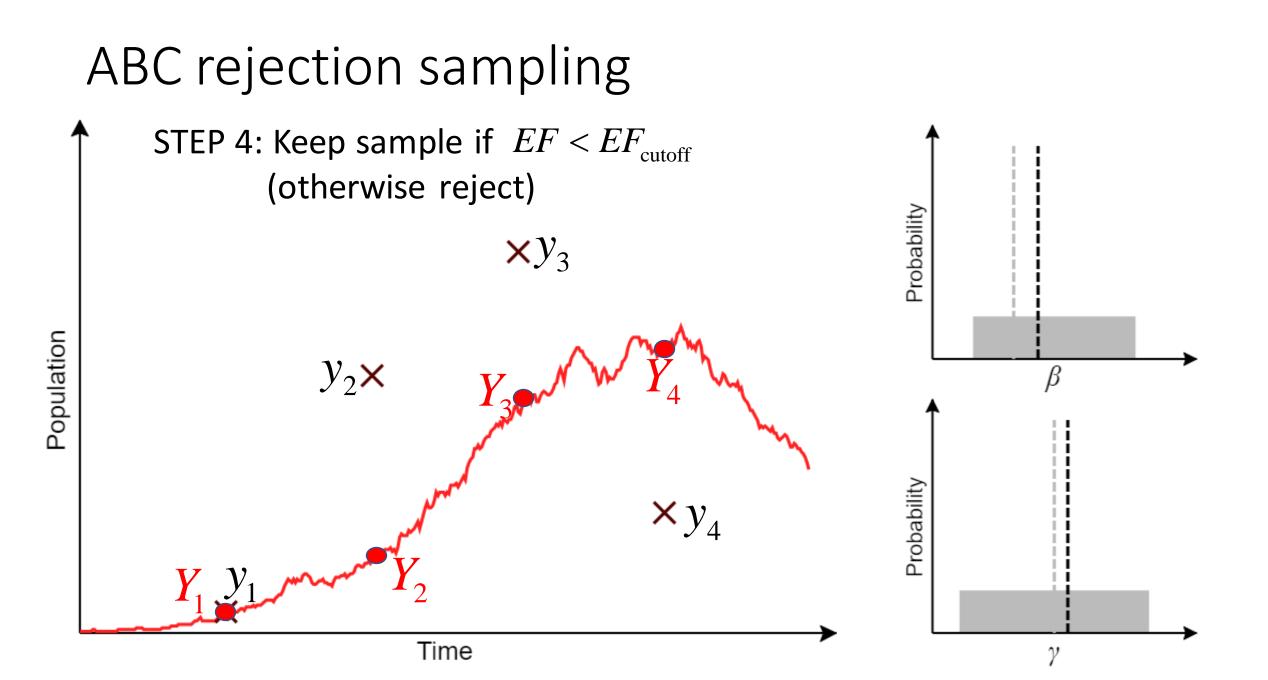
ABC rejection sampling

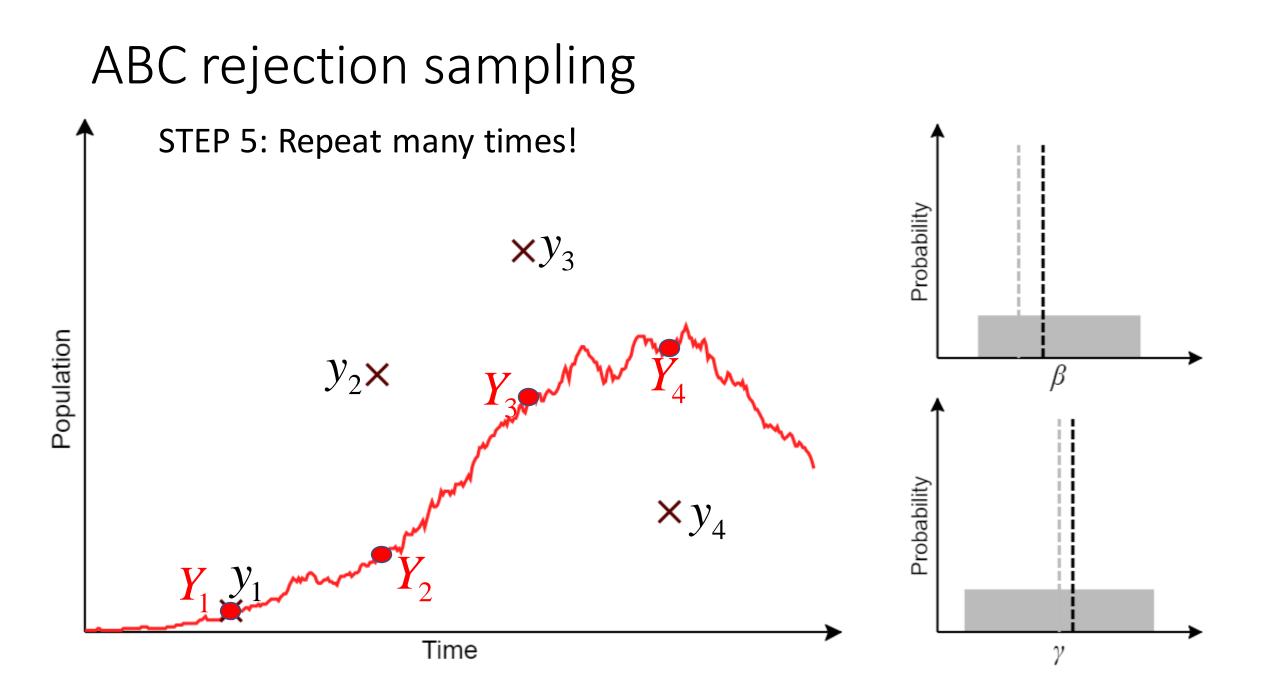
STEP 1: Sample θ from the prior $\pi(\theta)$

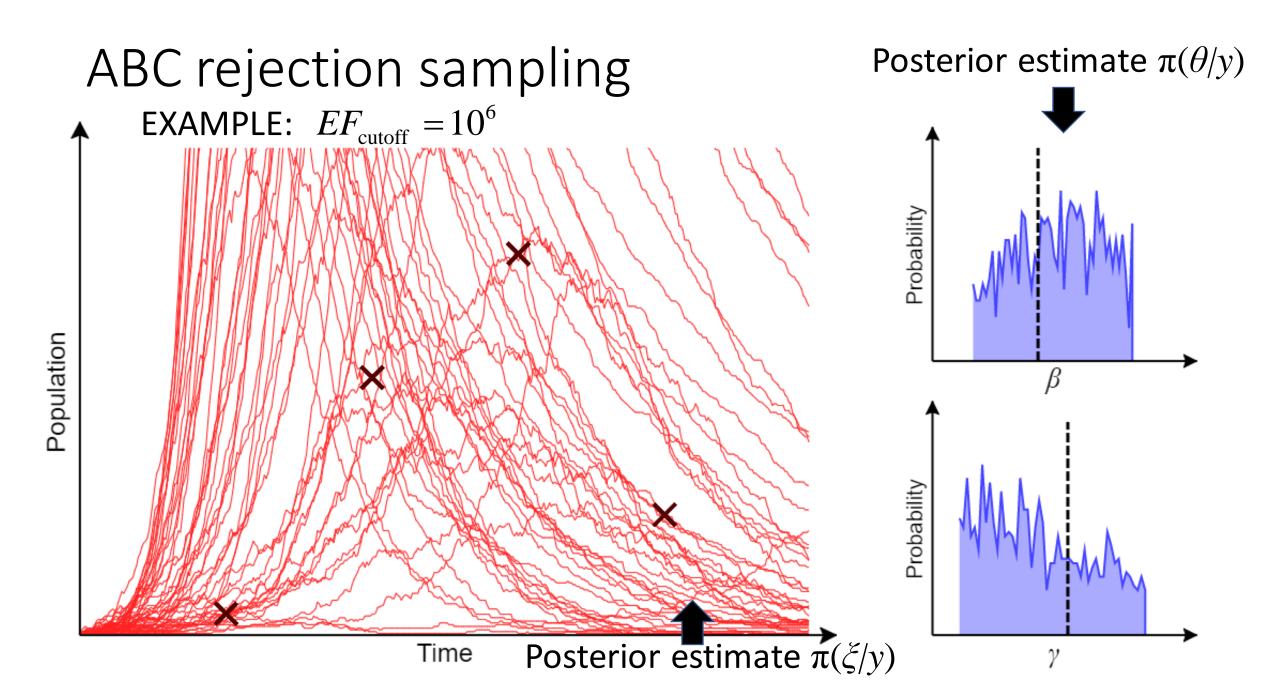


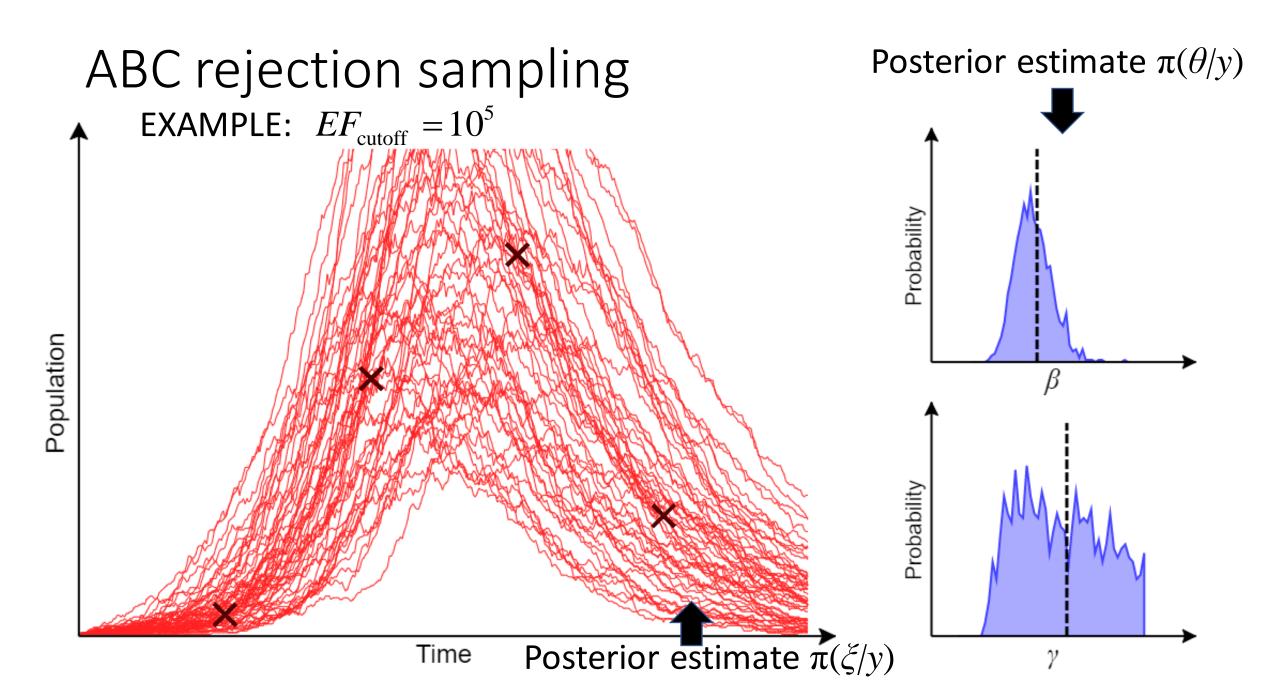


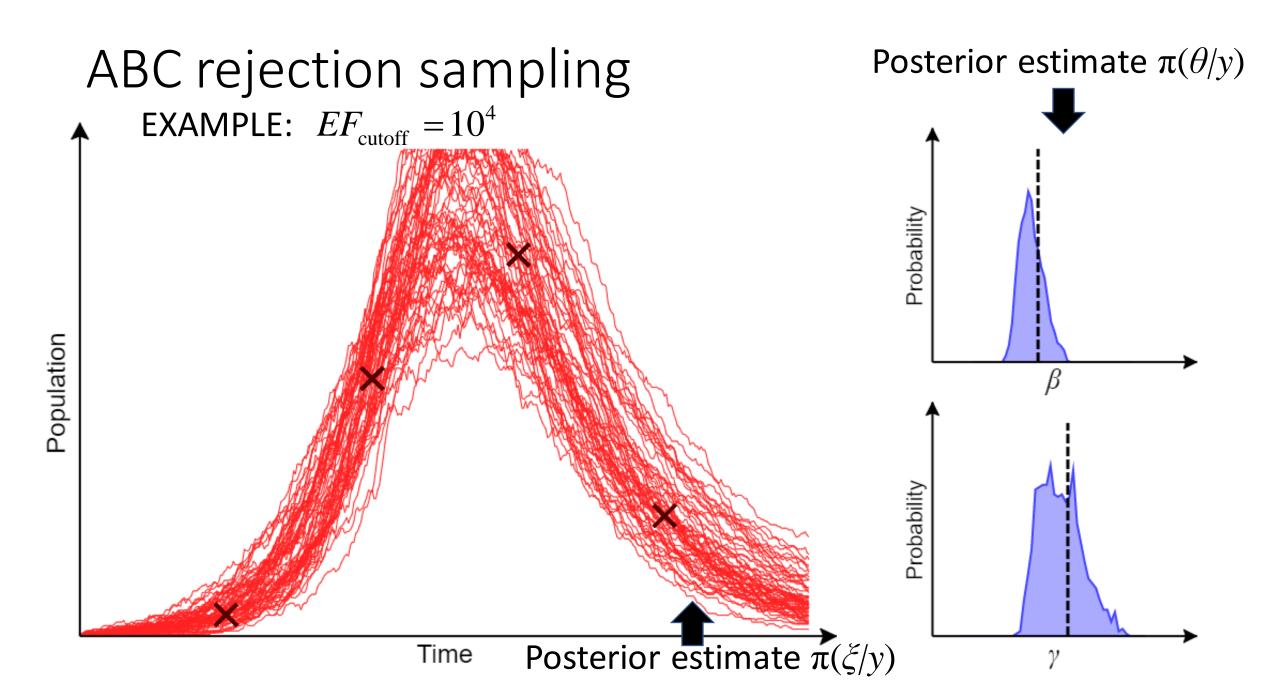


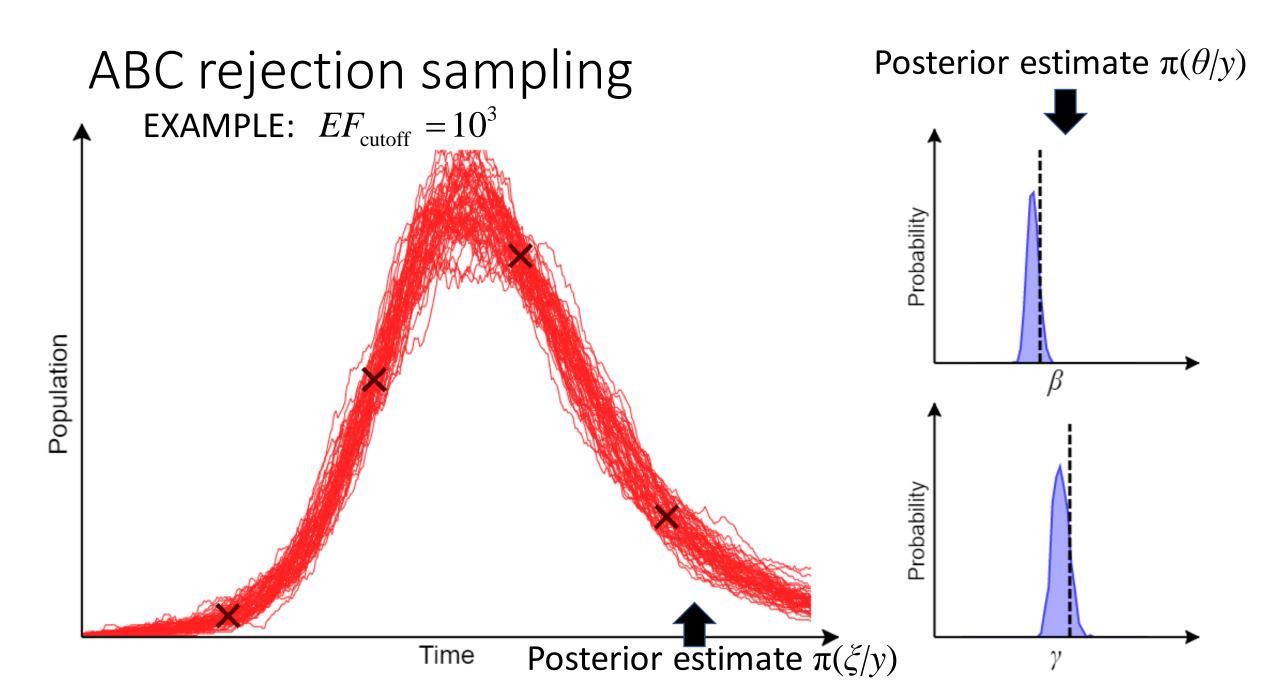


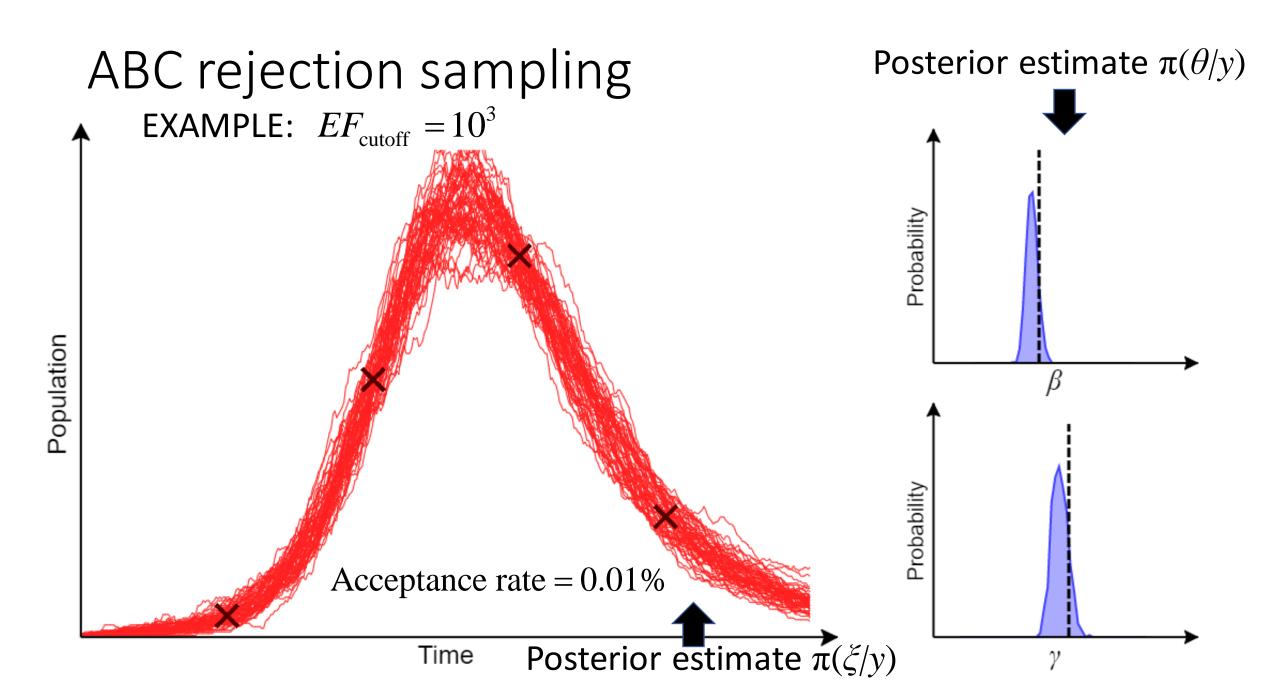












ABC rejection sampling

- Very simple to implementOnly need to be able to simulate from the model

- Becomes computationally very slow for small EF_{cutoff} For complex system not possible to get good posterior estimate
- WHY?
 - Because most samples from prior $\pi(\theta)$ have a low posterior probability $\pi(\theta|\mathbf{y})$
 - This is the motivation behind ABC-SMC...

ABC Sequential Monte Carlo (ABC-SMC)

- Run over several generations G
- For each generation g a different EF_{cutoff}^{g} is used, such that

 $EF_{\text{cutoff}}^1 > EF_{\text{cutoff}}^2 > \dots > EF_{\text{cutoff}}^G$

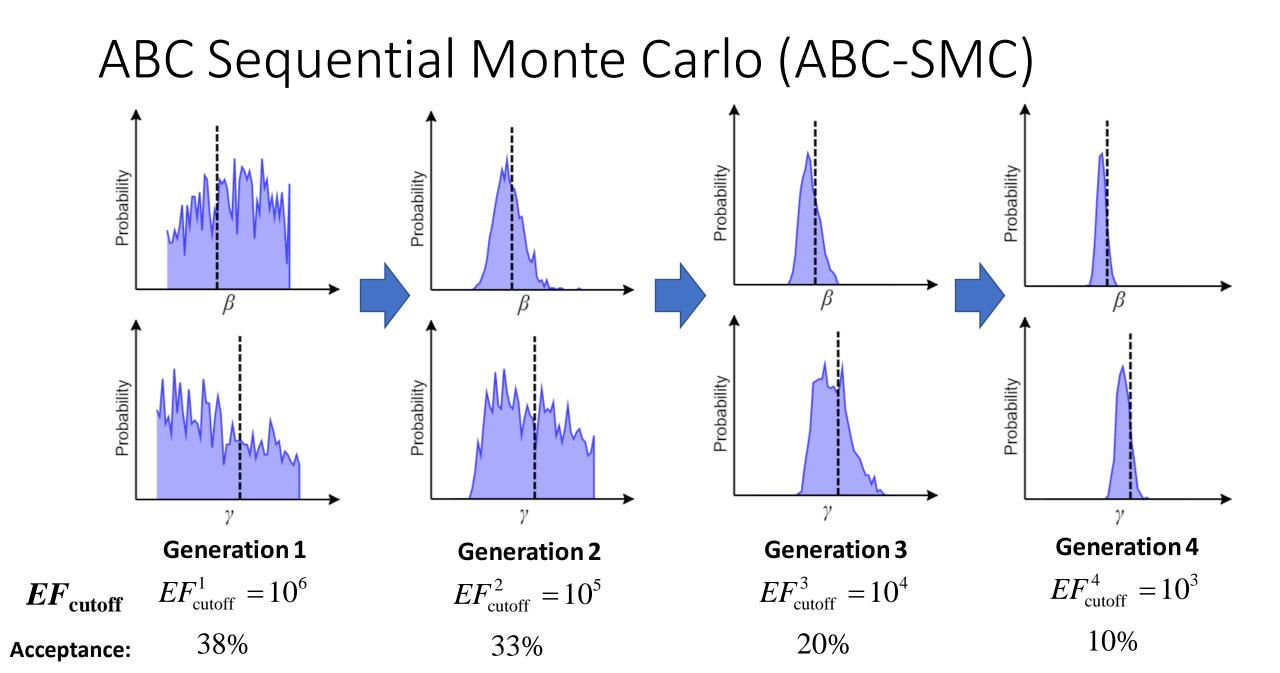
Generation 1

- 1) Sample θ from prior $\pi(\theta)$.
- 2) Simulate ξ .
- 3) Calculate EF.

4) If $EF < EF_{\text{cutoff}}^1$ accept. Repeat.

Generation g

- 1) Sample θ using previous generation outputs as an importance sampler (with associated weight).
- 2) Simulate ξ .
- 3) Calculate *EF*.
- 4) If $EF < EF_{cutoff}^{g}$ accept.



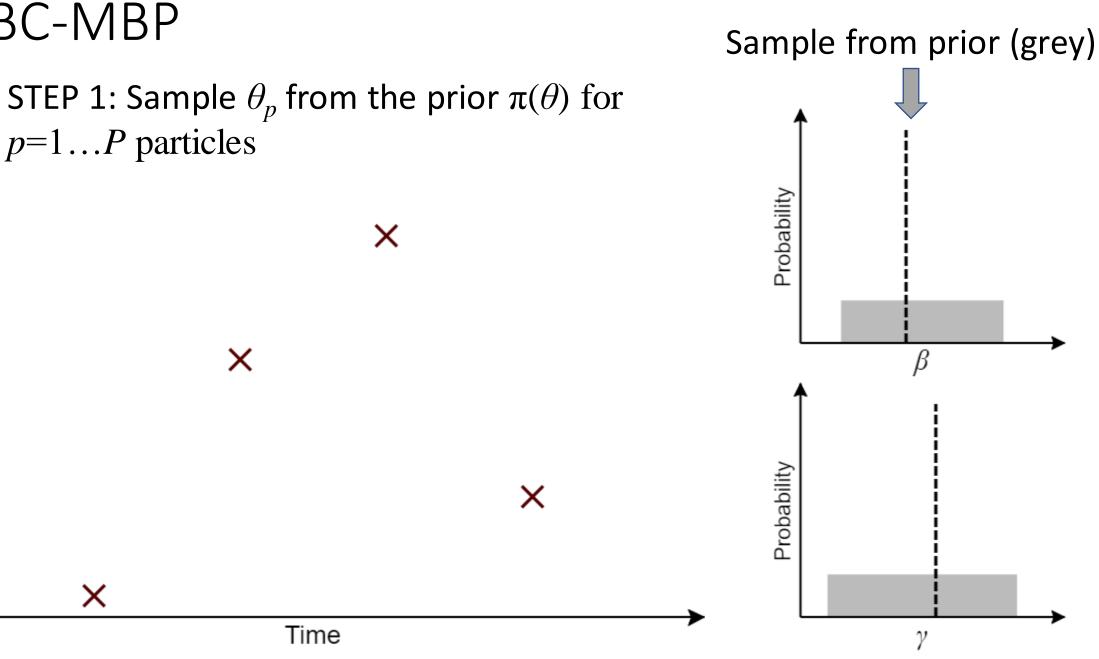
ABC Sequential Monte Carlo (ABC-SMC)

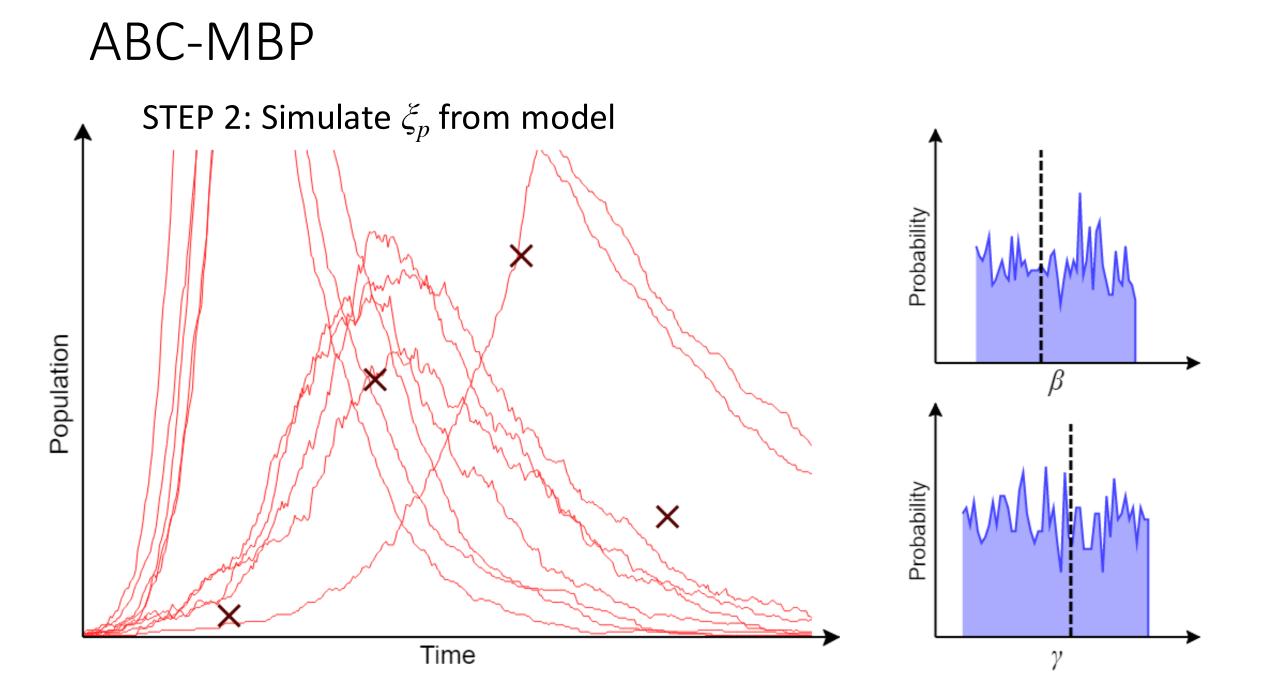
- Relatively simple to implement
 Requires careful optimisation of EF^g_{cutoff}
- Only need to be able to simulate from the system
- Usually much faster than ABC rejection sampling

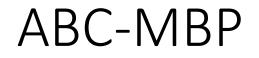
- Can become computationally slow for small EF_{cutoff}
- WHY?
 - 1) Large number of parameters
 - Importance weights results in small effective sample size
 - 2) Significant stochasticity
 - Even correct parameters leads to a poor probability for simulating the data

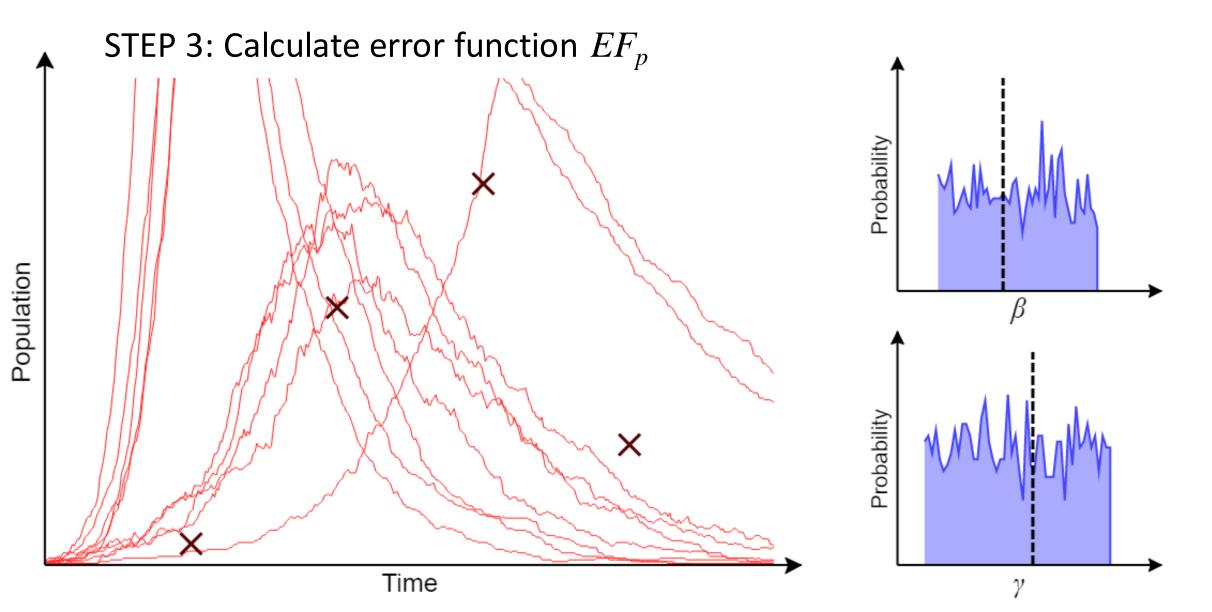
ABC-MBP

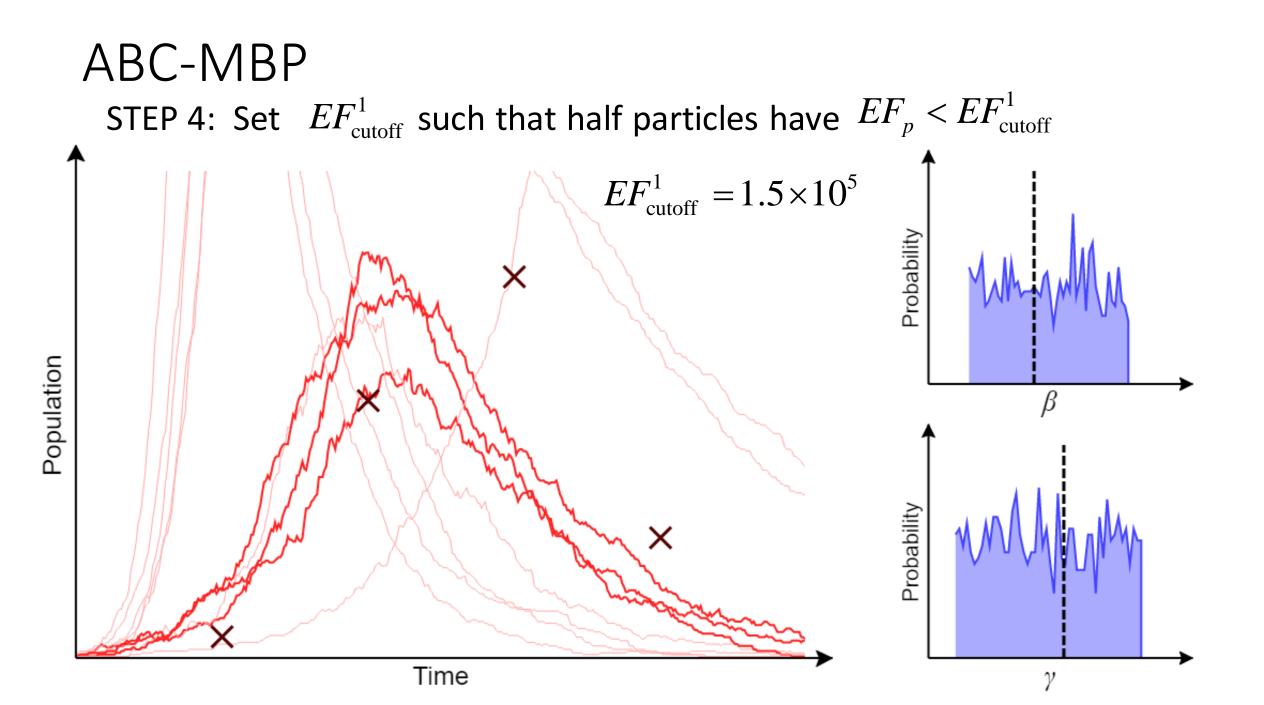
p=1...P particles

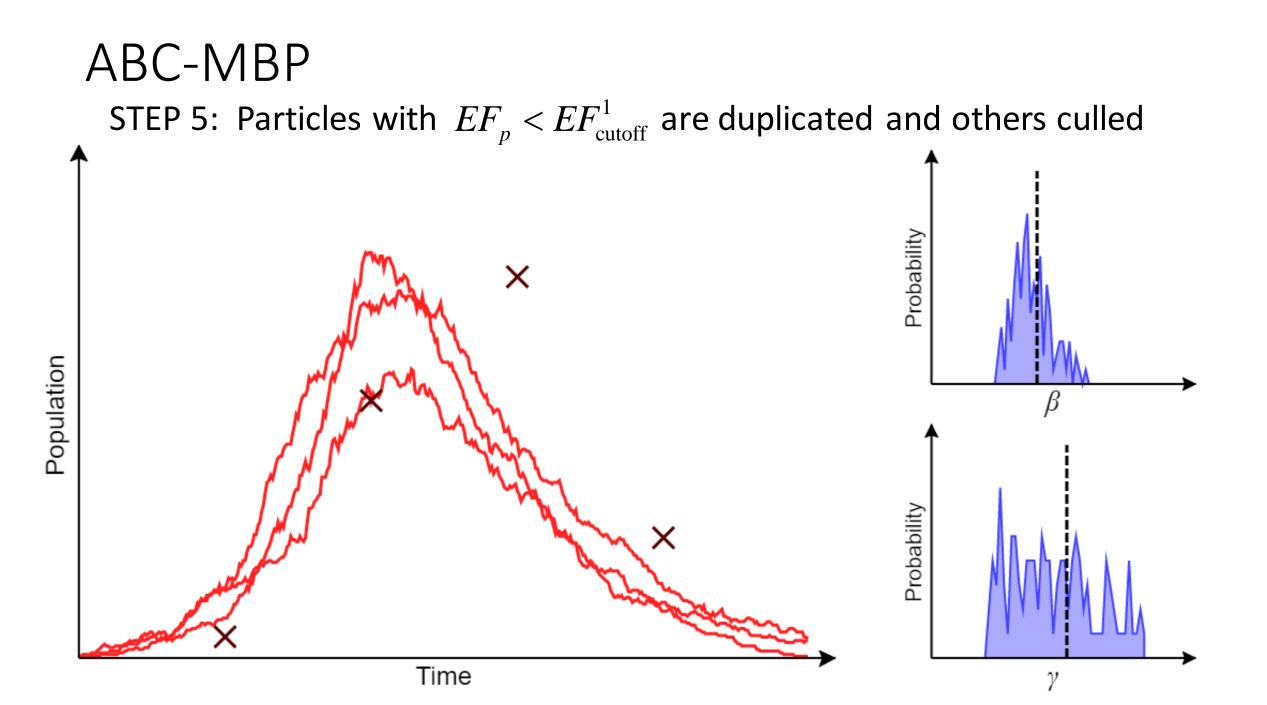


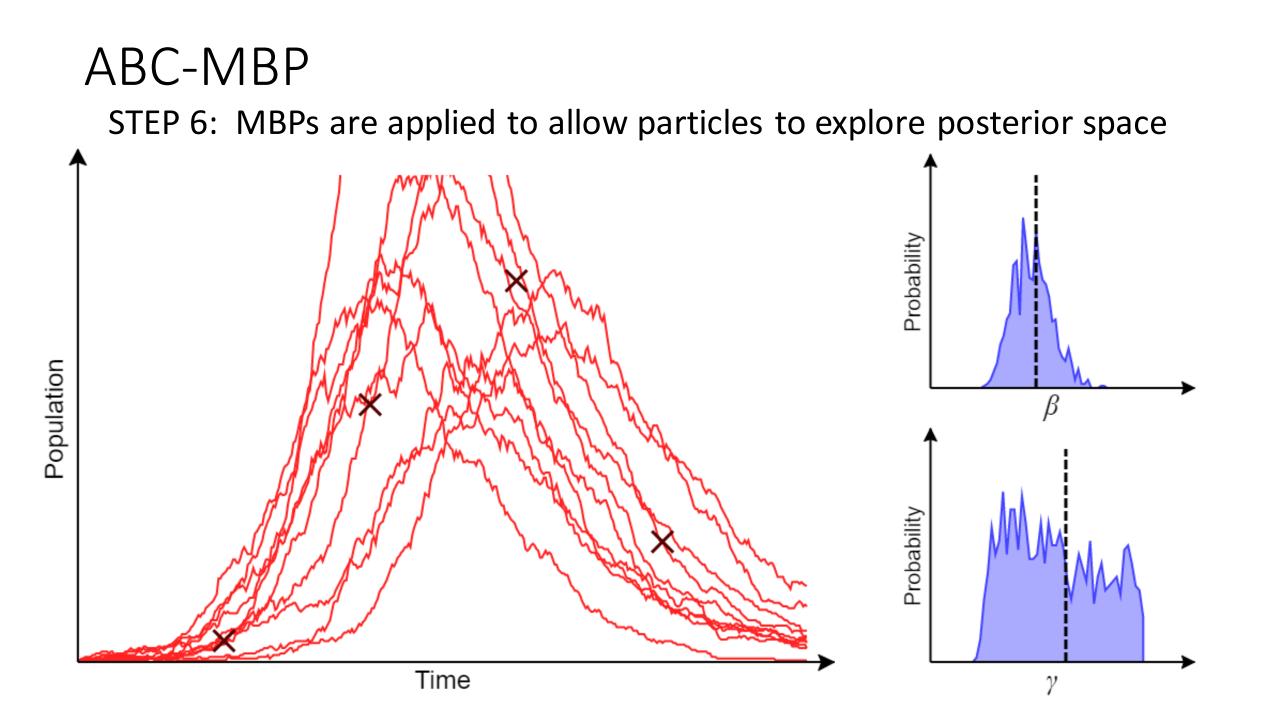






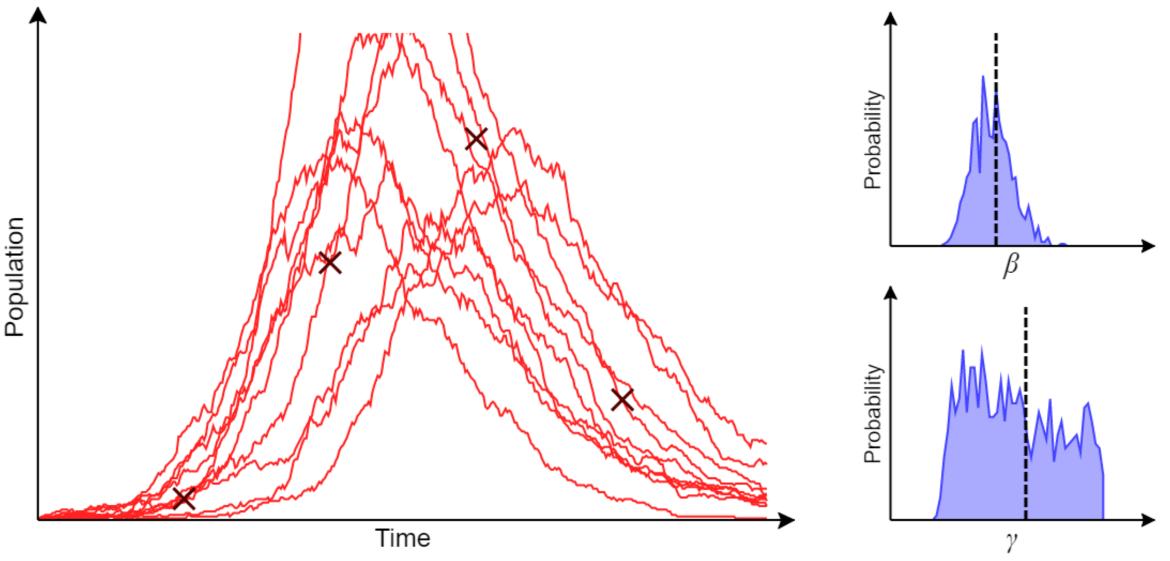


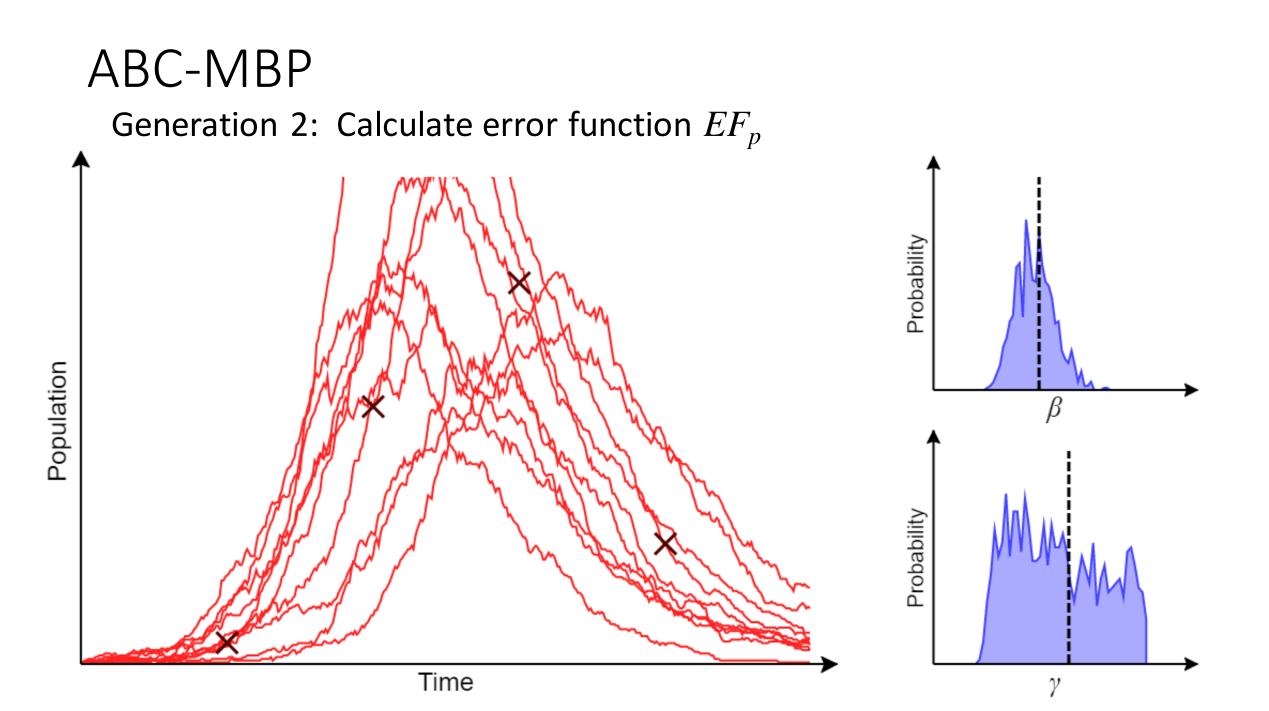


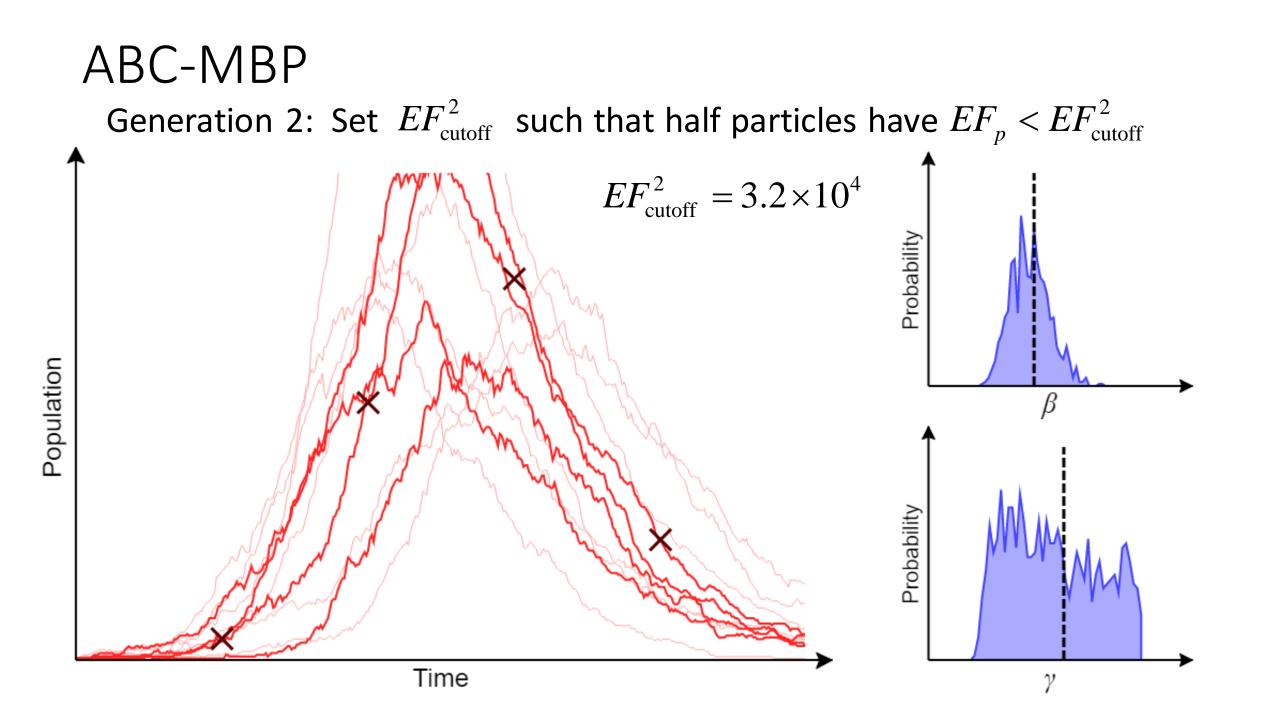


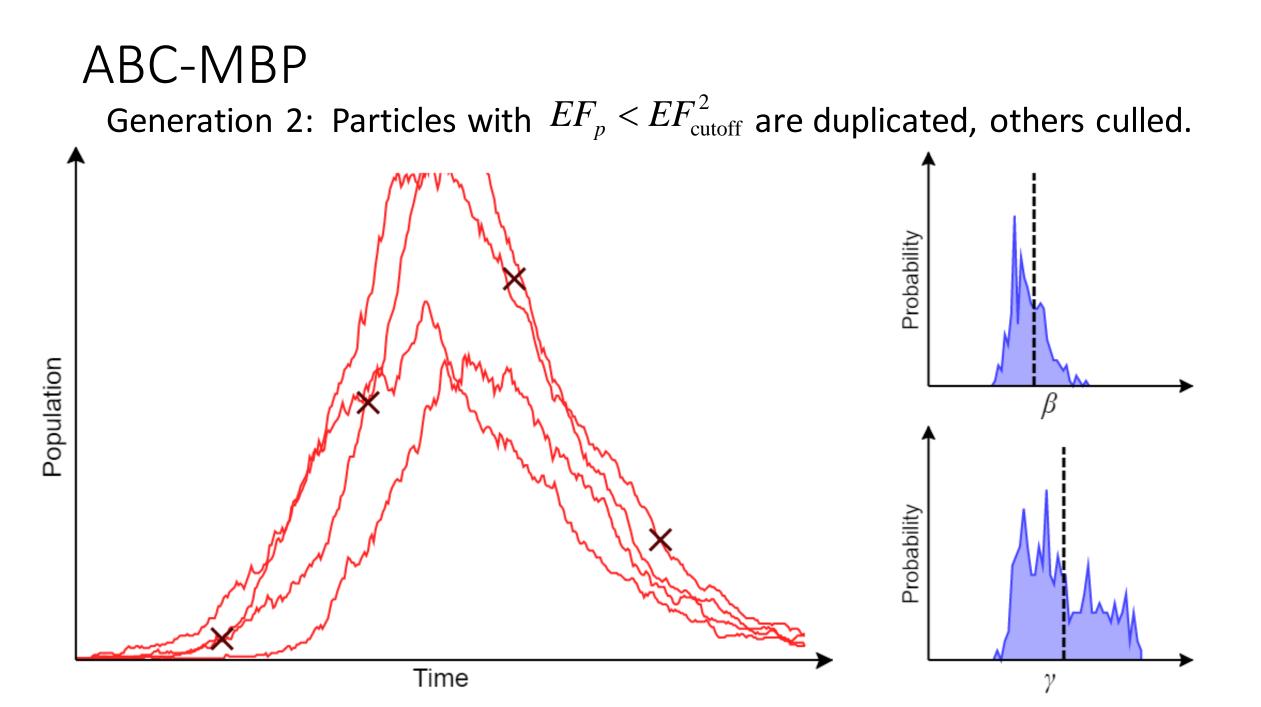
ABC-MBP

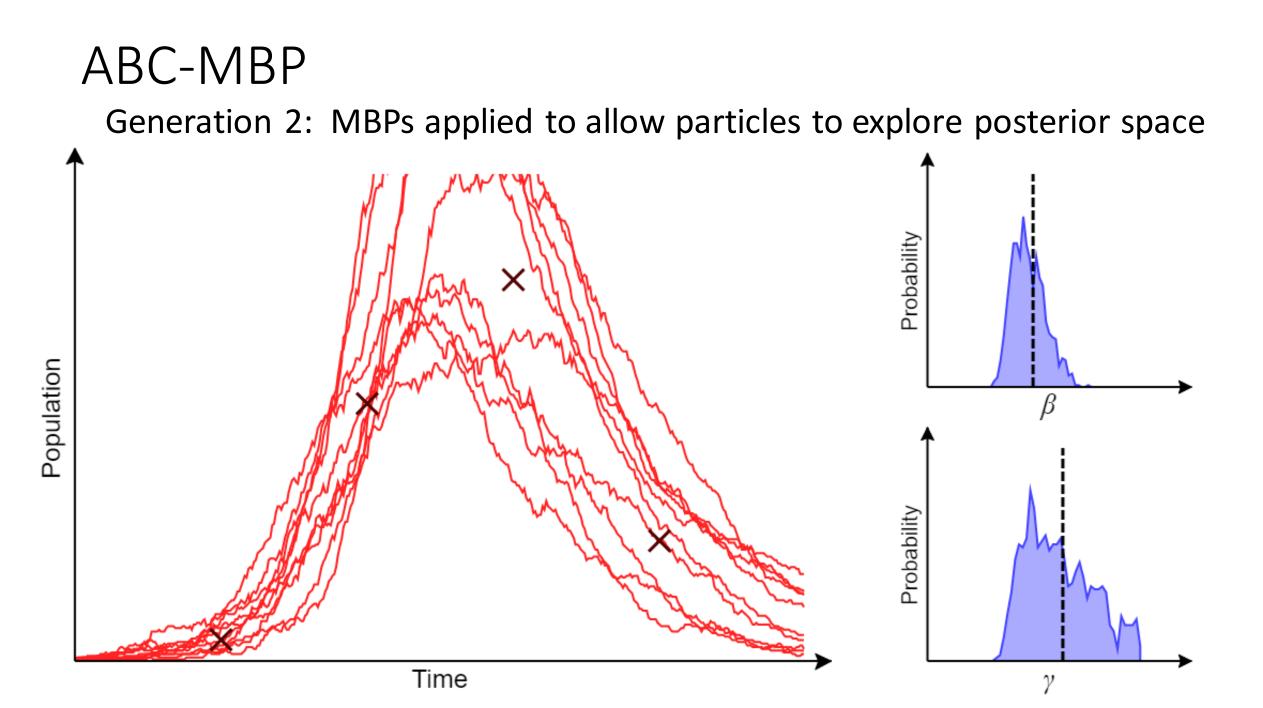
This completes the first generation. Repeat over more generations...

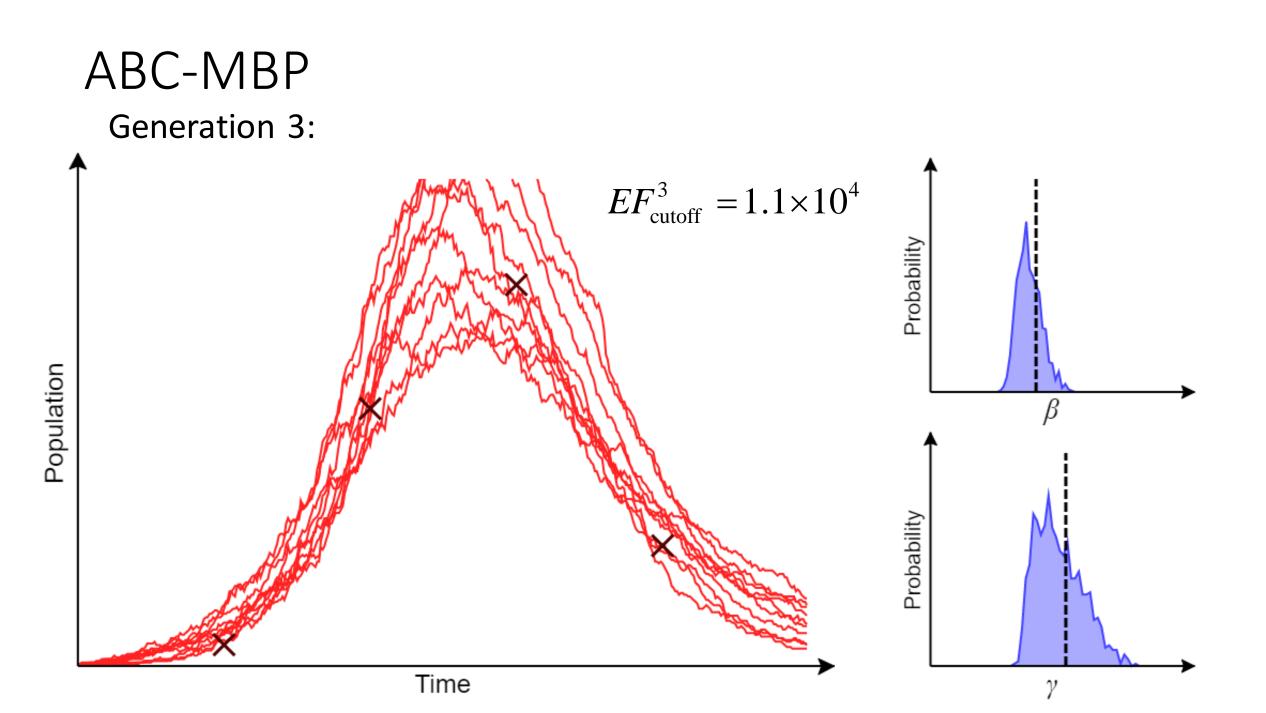


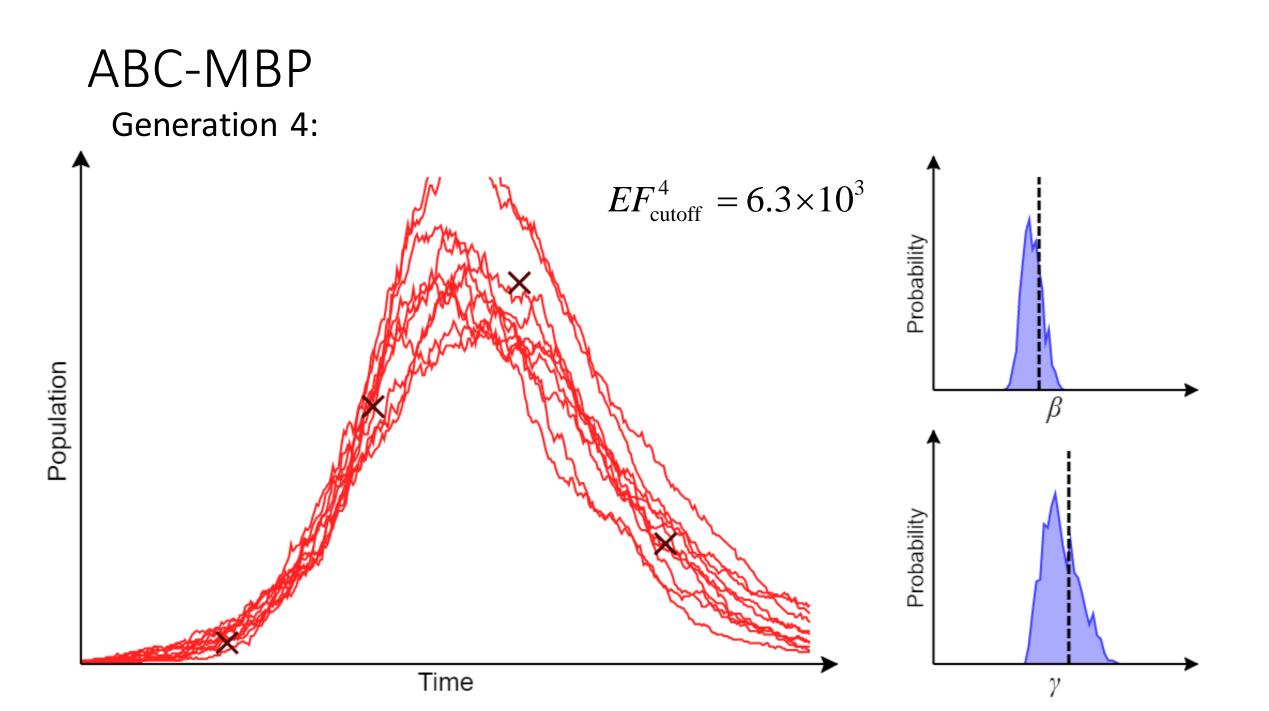


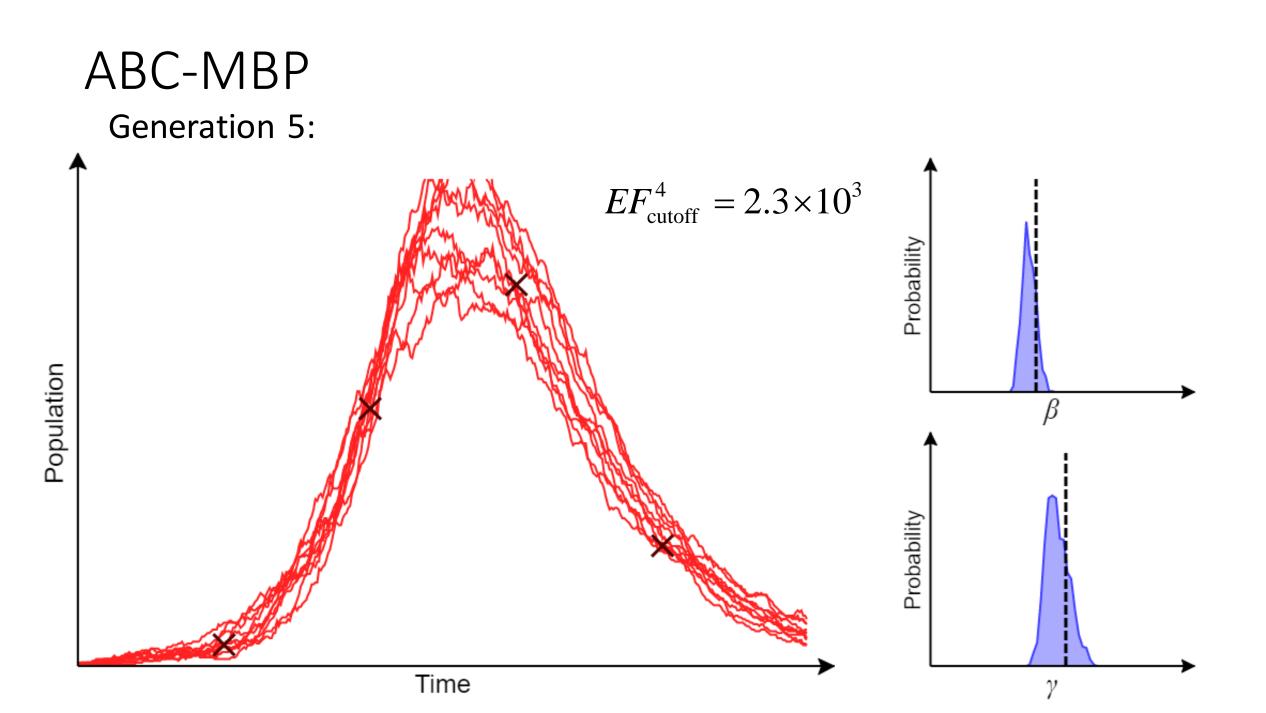












Model based proposals (MBPs)
• STEP 1: Propose a new parameter set
$$\theta'_p \sim \text{MVN}(\theta_p, s^g \Sigma^g)$$
,
• STEP 2: *Modify* ξ_p to generate ξ'_p
• STEP 3: Calculate EF'_p
• STEP 4: If $EF'_p \geq EF_{cut}$ reject, $[\pi(\theta')]$

otherwise accept with probability: $\max\left\{\frac{\pi(\sigma_p)}{\pi(\theta_p)}, 1\right\}$

Covariance estimate

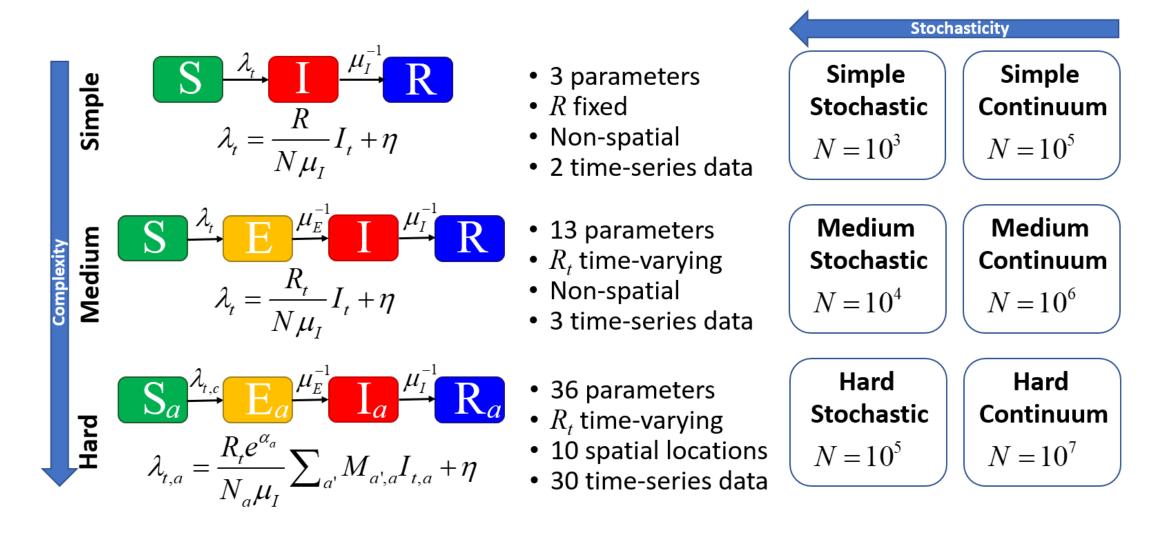
Posterior-based proposals for speeding up Markov chain Monte Carlo

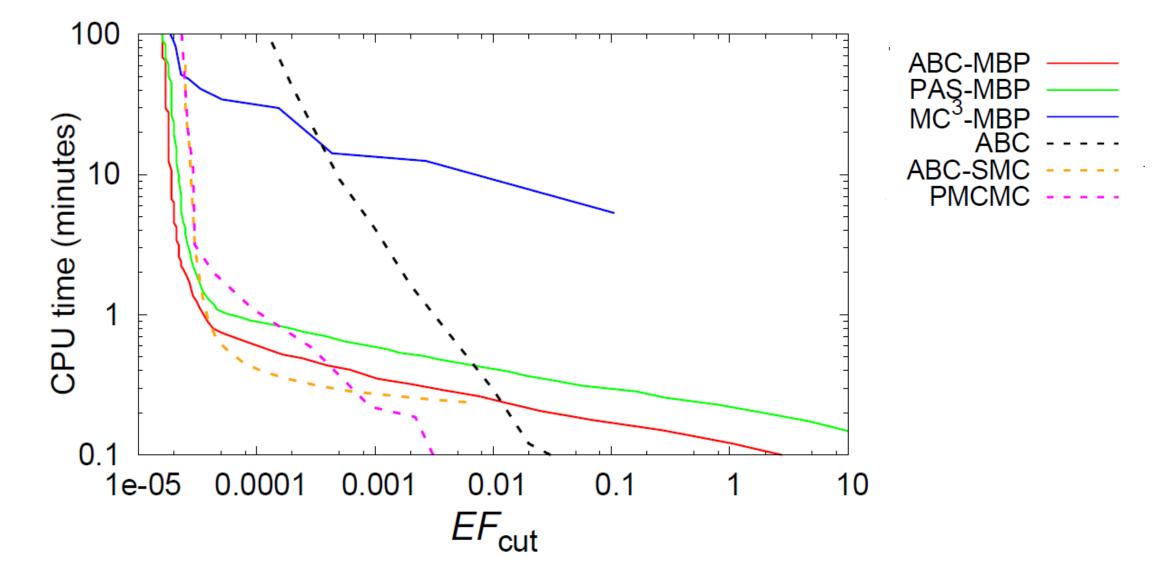
C. M. Pooley, S. C. Bishop, A. Doeschl-Wilson and G. Marion (2019) Royal Society Open Science

BEEPmbp

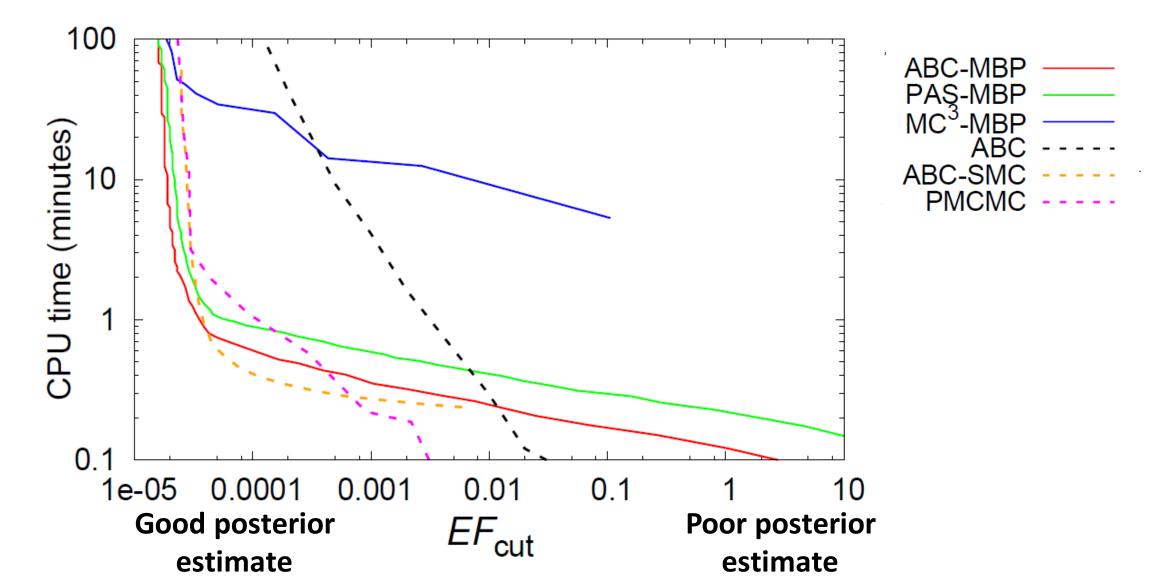
- "Bayesian Estimation of Epidemic Parameters using Model-Based Proposals"
 - Open source software tool for fitting epidemiological models
 - Parallel implementation suitable for HPC
- Supports potential spatial and demographic stratification
- Different data types:
 - Time-series transition data (*e.g.* daily cases)
 - Time-series population data (e.g. numbers in hospital)
 - Marginal distributions (e.g. age distribution of deaths)

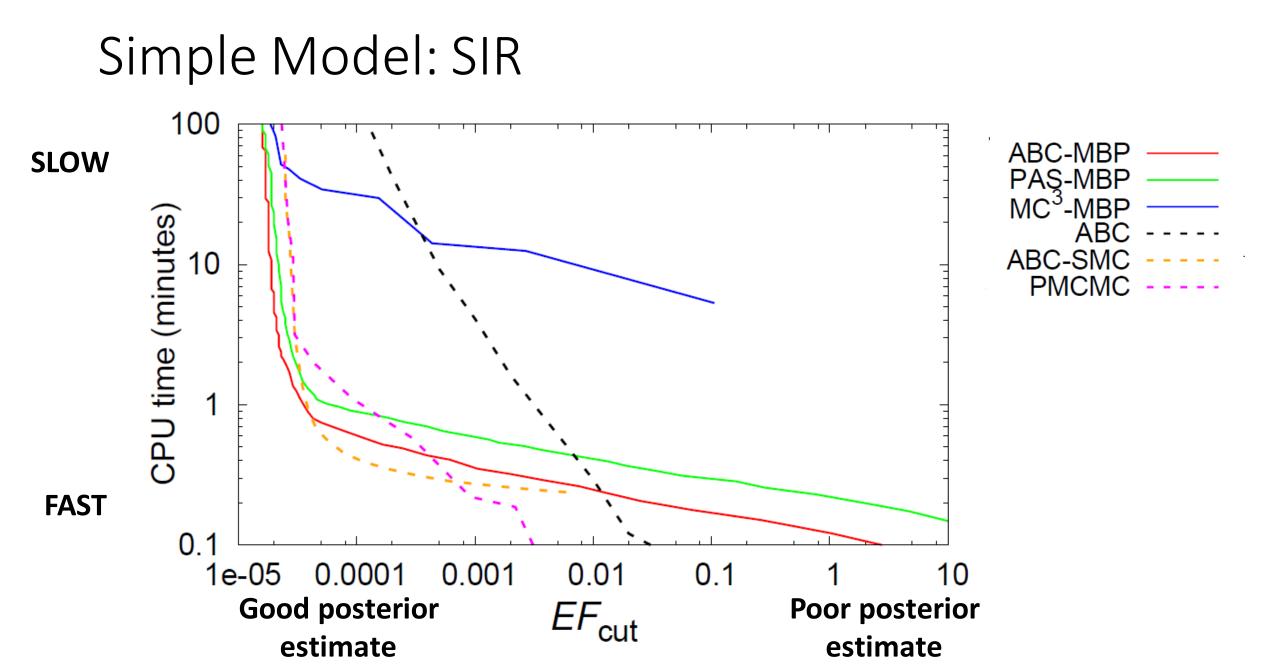
Benchmark models for speed comparison



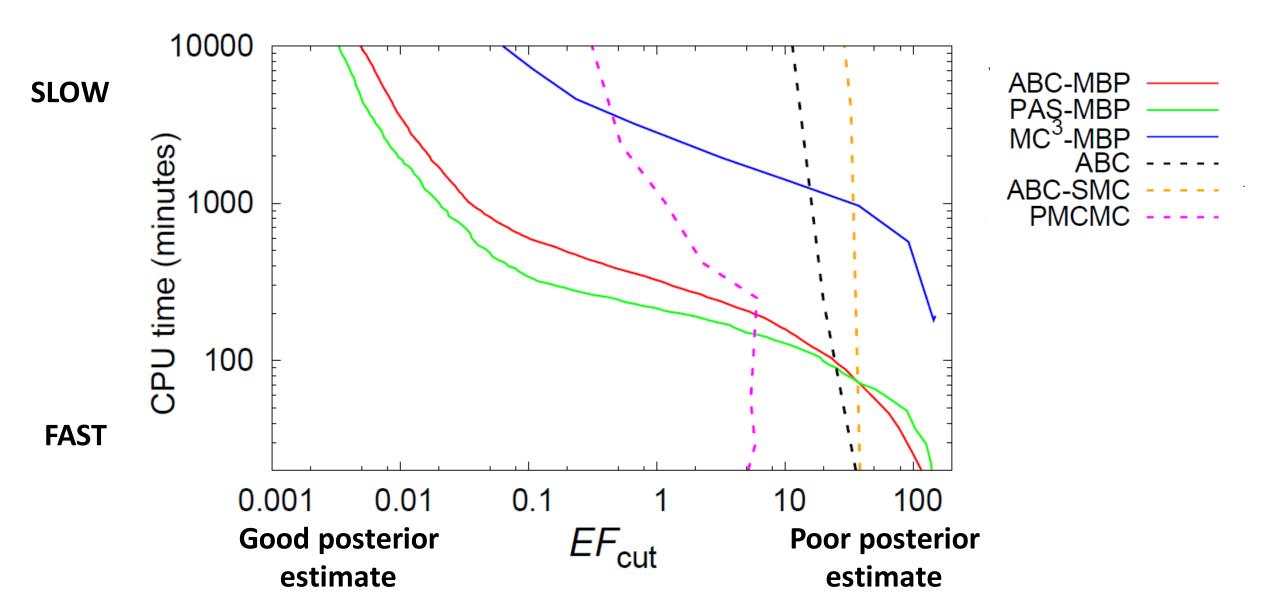


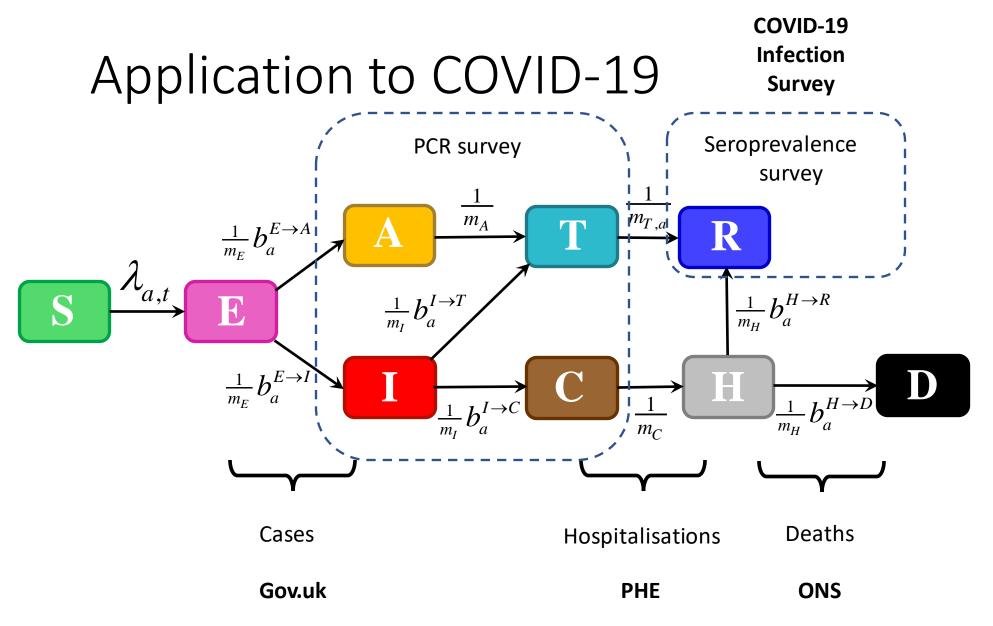
Simple Model: SIR





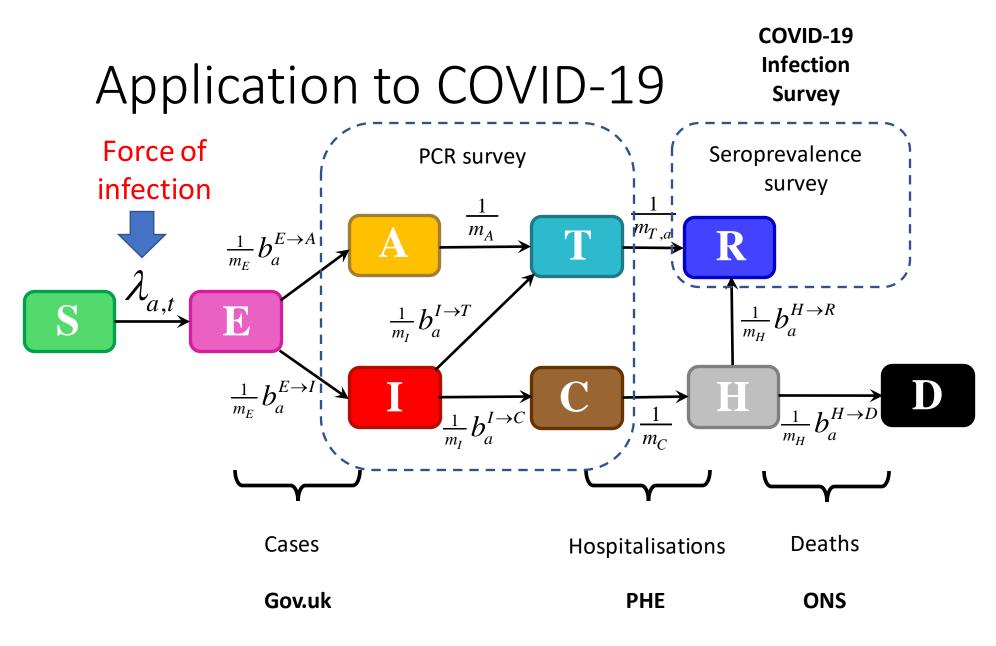
Complex Model: Spatial SEIR with time variation





S: Susceptible E: Exposed A: Asymptomatic I: Symptomatic T: Test-sensitive **R:** Recovered H: Hospitalised C: Critically ill D: Dead

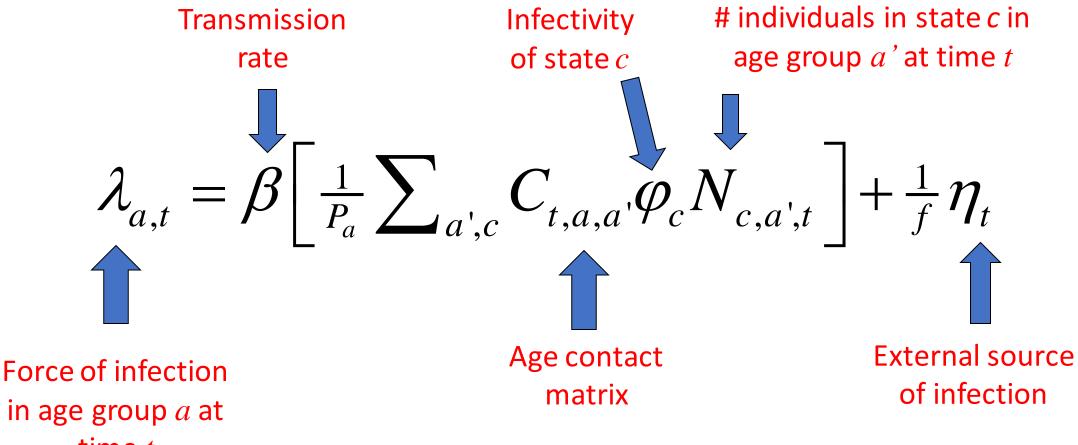
18 age categories *a*={0-4, 5-9,..., 75-79, 80+, Care homes}



S: Susceptible E: Exposed A: Asymptomatic I: Symptomatic T: Test-sensitive **R:** Recovered H: Hospitalised C: Critically ill D: Dead

18 age categories *a*={0-4, 5-9,..., 75-79, 80+, Care homes}

Force of infection



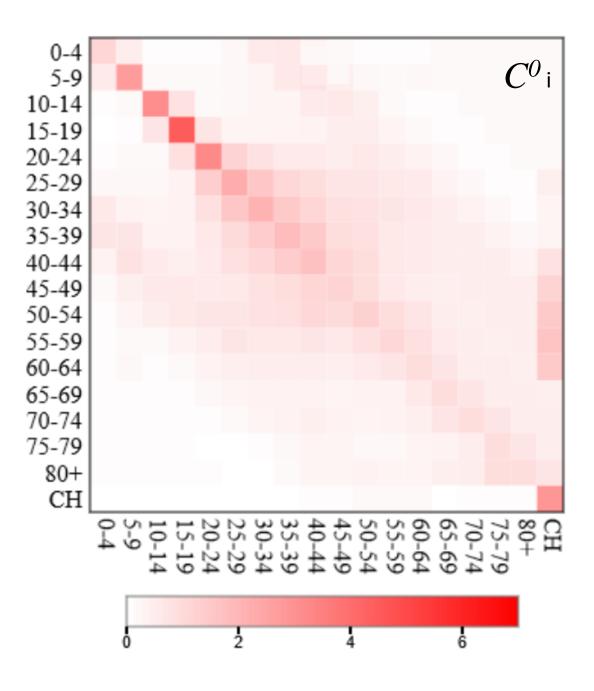
time t

Age contact matrix C

• A baseline contact matrix C⁰ is taken from the BBC Pandemic! study

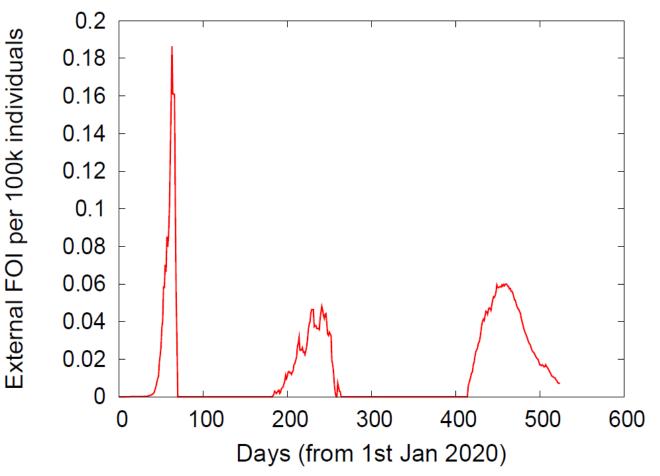
$$C_{t,a,a'} = f_t v_a C_{a,a'}^0 v_{a'}.$$

- This is altered by
 - A time varying factor which accounts for government interventions and changing social behaviour
 - Age modifying factor



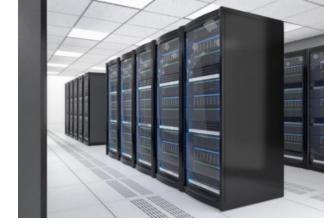
External force of infection η

- COVID-19 enters the UK via individuals moving to and from other countries
- Estimate external force of infection by using:
 - Global flight data from CAA
 - Global Covid-19 data from Johns Hopkins University



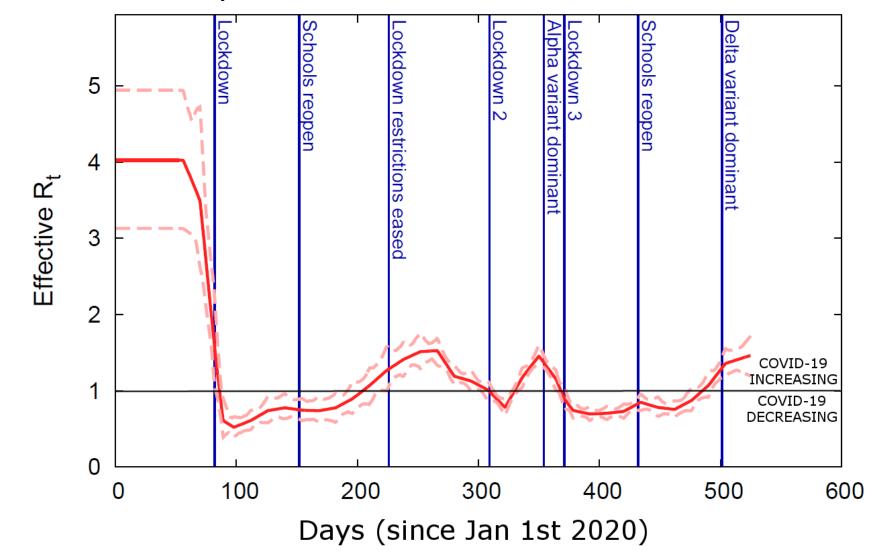
Inference

- Model contains ~150 parameters
- Data contains ~9000 observations in total
 - Spread across many time series
- Inference performed using ABC-MBP
 - DIRAC HPC
 - ~5 hours when running on 256 cores



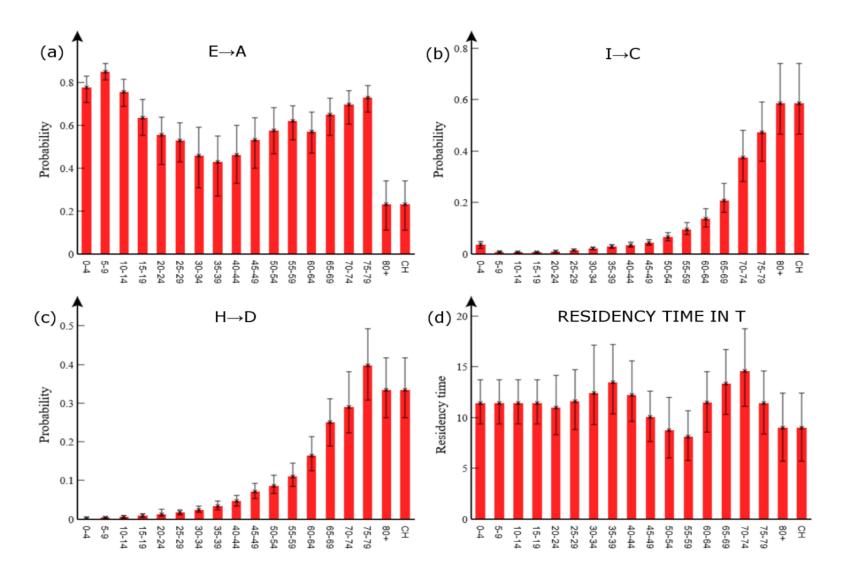
Dirac

Results: Reproduction number



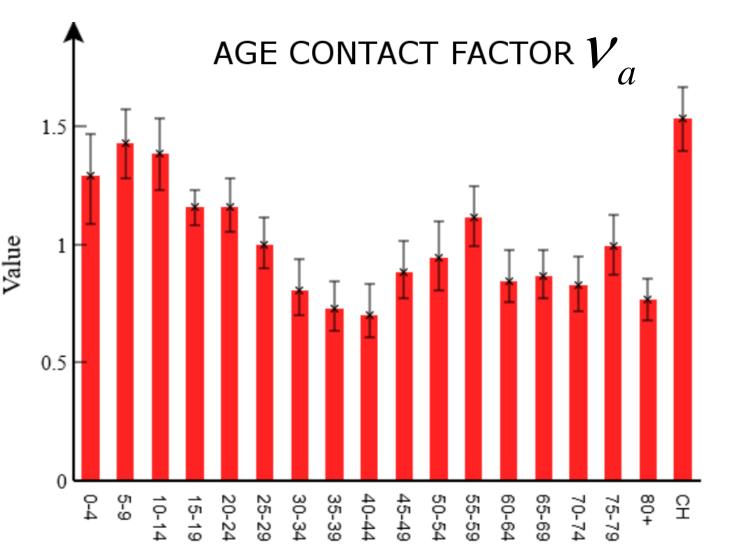
Compartmental parameter estimates

- Obtain a fully parameterised agestructured model
- Improved predictions and simulation studies



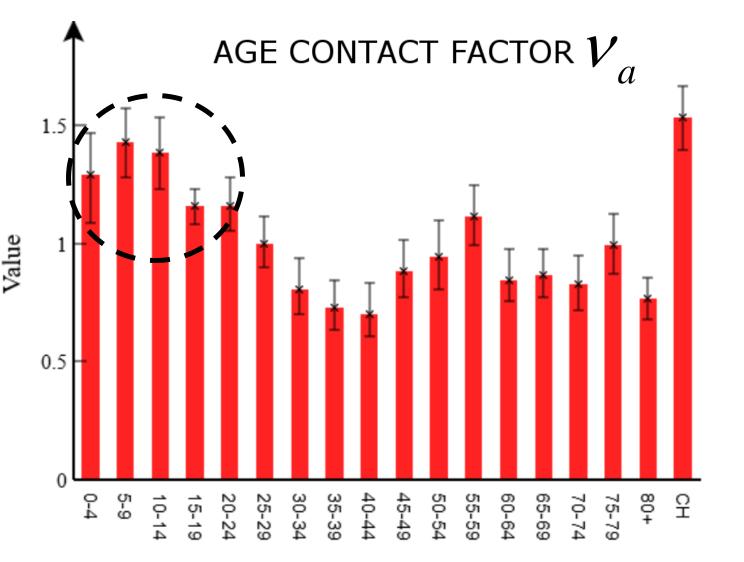
Age contact matrix \boldsymbol{C}

 This shows the relative modification in the contact matrix compared to the expectation obtained from the BBC Pandemic study



Age contact matrix \boldsymbol{C}

- This shows the relative modification in the contact matrix compared to the expectation obtained from the BBC Pandemic study
- We find higher relative rates of effective contacts in younger individuals compared to older individuals



Summary

- Developed a new inference methodology ABC-MBP
 - Orders of magnitude faster than other existing approaches
 - Generic and not specific to Covid-19 or epidemiology
- Created software tool BEEPmbp
 - Incorporate many inference algorithms
 - Flexible to different model specification and data types
- Application to an age-structure model of Covid-19

Future

- Covid-19 provides a huge data source
 - Many opportunities for new ways to analyse
- Current work...
 - Spatial models nationally and internationally
 - Trying to assess the impact of government interventions and travel restrictions
- What can we apply to the next animal disease outbreak?
- What should we do differently next time?

Acknowledgments

Supervisors:

Glenn Marion (BioSS) Andrea Doeschl-Wilson (The Roslin Institute)

Also:

Scottish Covid-19 Response Consortium (SCRC) Royal Society RAMP volunteers

Data curators:

Richard Bailey (The Roslin Institute) Martin Burke (BioSS) Helen Brown (The Roslin Institute)

RSEs:

Ian Hinder (Manchester) Robin Williams (Bristol)

Funding:

Part of the Edinburgh & South East Scotland City Region Deal