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Brief Recap:

Statistical Learning Theory



A Bit More Formal....

Still Informal Definition:
Let X ,Y, and Z be measurable spaces. In a learning task, one is given

I data in Z and

I a loss function L : M(X ,Y)×Z → R.

The goal is to choose a hypothesis set F ⊂M(X ,Y) and construct a
learning algorithm, i.e., a mapping

A :
⋃
m∈N
Zm → F ,

which uses training data s = (z(i))mi=1 ∈ Zm to find a model
fs = A(s) ∈ F that

1. performs well on the training data s and

2. generalizes to unseen data z ∈ Z.

Here, performance is measured via the loss function L and the
corresponding loss L(fs , z).



Our Focus: Prediction Tasks

Definition:
In a prediction task, we have that Z := X × Y, i.e., we are given training
data s = ((x (i), y (i)))mi=1 that consist of input features x (i) ∈ X and
corresponding labels y (i) ∈ Y.

For one-dimensional regression tasks with Y ⊂ R, we consider the
quadratic loss

L(f , (x , y)) = (f (x)− y)2

and, for binary classification tasks with Y = {−1, 1}, we consider the 0-1
loss

L(f , (x , y)) = 1(−∞,0)(yf (x)).

We assume that our input features are in Euclidean space, i.e., X ⊂ Rd

with input dimension d ∈ N.



Our Hypothesis Class

Hypothesis Sets of Neural Networks:
Let a = (N, %) be a neural network architecture with input dimension
N0 = d , output dimension NL = 1, and measurable activation function %.

For regression tasks the corresponding hypothesis set is given by

Fa =
{

Φa(·, θ) : θ ∈ RP(N)
}

and for classification tasks by

Fa,sgn =
{

sgn(Φa(·, θ)) : θ ∈ RP(N)
}
, where sgn(x) :=

{
1, if x ≥ 0,

−1, if x < 0.



Learning Algorithm: Empirical Risk Minimization

Definition (Empirical Risk):
For training data s = (z(i))mi=1 ∈ Zm and a function f ∈M(X ,Y), we
define the empirical risk by

R̂s(f ) :=
1

m

m∑
i=1

L(f , z(i)).

...measures the average loss on the given training data.

Definition (ERM Learning Algorithm):
Given a hypothesis set F , an empirical risk minimization algorithm Aerm

chooses for training data s ∈ Zm a minimizer f̂s ∈ F of the empirical risk
in F , i.e.,

Aerm(s) ∈ argmin
f ∈F

R̂s(f ).



Average Out-Of-Sample Performance of a Model

Assumption (Independent and Identically Distributed data):
We assume that z(1), . . . , z(m), z are realizations of i.i.d. random variables
Z (1), . . . ,Z (m),Z .

Definition:
For a function f ∈M(X ,Y), we define the risk by

R(f ) := E
[
L(f ,Z )

]
=

∫
Z
L(f , z) dPZ (z).

Defining S := (Z (i))mi=1, the risk of a model fS = A(S) is thus given by

R(fS) = E
[
L(fS ,Z )|S

]
.



Regression and Classification Risk

Definition:
A function f ∗ ∈M(X ,Y) achieving the smallest risk, the Bayes risk

R∗ := inf
f ∈M(X ,Y)

R(f ),

is called a Bayes-optimal function.

Lemma:

(1) For a regression task with V[Y ] <∞, the risk can be decomposed
into

R(f ) = E
[
(f (X )− E[Y |X ])2

]
+R∗, f ∈M(X ,Y),

which is minimized by the regression function f ∗(x) = E[Y |X = x ].

(2) For a classification task, the risk can be decomposed into

R(f ) = E
[
|E[Y |X ]|1(−∞,0)(E[Y |X ]f (X ))

]
+R∗, f ∈M(X ,Y),

which is minimized by the Bayes classifier
f ∗(x) = sgn(E[Y |X = x ]).



Error Decomposition

Let f ∗F ∈ argminf ∈F R(f ) be a best approximation in F , such that we can
bound the error

R(fS)−R∗

= R(fS)− R̂S(fS) + R̂S(fS)− R̂S(f ∗F ) + R̂S(f ∗F )−R(f ∗F ) +R(f ∗F )−R∗

≤ εopt + 2εgen + εapprox

by

I an optimization error

εopt := R̂S(fS)− R̂S(f̂S) ≥ R̂S(fS)− R̂S(f ∗F ),

I a (uniform) generalization error

εgen := sup
f ∈F
|R(f )−R̂S(f )| ≥ max{R(fS)−R̂S(fS), R̂S(f ∗F )−R(f ∗F )},

I an approximation error

εapprox := R(f ∗F )−R∗.



The Optimization Error

Remark:

I This error is primarily influenced by the numerical algorithm A.

I We will focus on the setting where such an algorithm aims to
approximately minimize the empirical risk

R̂s(f ) :=
1

m

m∑
i=1

L(f , z(i)).

The most common are gradient-based methods!
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Stochastic Gradient Descent



Stochastic Gradient Descent

Core Algorithm (Robbins, Monro; 1951):

Input : Differentiable function r : Rp → R
Sequence of step-sizes ηk ∈ (0,∞), k ∈ [K ]

Rp-valued random variable Θ(0)

Output: Sequence of Rp-valued random variables (Θ(k))Kk=1

for k = 1, . . . ,K do
Let D(k) be a random variable such that
E[D(k)|Θ(k−1)] = ∇r(Θ(k−1));

Set Θ(k) := Θ(k−1) − ηkD(k);

Gradient Descent:

I Choose D(k) is deterministically. \\ \,



Gradient Descent versus Stochastic Gradient Descent

Source: Berner, Grohs, K, Petersen. The Modern Mathematics of Deep Learning. In: Mathematical

Aspects of Deep Learning, Cambridge, 2022.



Stochastic Gradient Descent (Continued)

Minimizing the Empirical Loss:

I Choose r : RP(N) → R as

r(θ) = R̂s(Φa(·, θ)).

I Choose a batch-size m′ ∈ N with m′ ≤ m and consider

Θ(k) := Θ(k−1) − ηk
m′

∑
z∈S ′

∇θL(Φa(·,Θ(k−1)), z).

I S ′ is a mini-batch of size |S ′| = m′ chosen uniformly at random from
the training data s.

I (ηk)k∈N is called learning rate.

Output of Algorithm:
After K steps, this leads to

fs = A(s) = Φa(·, θ̄),

where θ̄ can be chosen as the realization of Θ(K).
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Convergence of SGD

Theorem (Nemirovski, Juditsky, Lan, Shapiro; 2009):
Let p,K ∈ N and let r : Rp ⊃ B1(0)→ R be differentiable and convex.
Further let (Θ(k))Kk=1 be the output of stochastic gradient descent with
initialization Θ(0) = 0, step-sizes ηk = K−1/2, k ∈ [K ], and random
variables (D(k))Kk=1 satisfying that ‖D(k)‖2 ≤ 1 almost surely for all
k ∈ [K ]. Then

E[r(Θ̄)]− r(θ∗) ≤ 1√
K
,

where Θ̄ := 1
K

∑K
k=1 Θ(k) and θ∗ ∈ argminθ∈B1(0) r(θ).

Remark: If r is not convex, then stochastic gradient descent may converge
to a local, non-global minimum.
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The Mystery

Observe:
I The empirical risk is severely nonconvex, may exhibit

I (higher-order) saddle points,
I seriously suboptimal local minima, and
I wide flat areas where the gradient is very small.

I In applications, excellent performance of SGD is observed.

True?
The trajectory of the optimization routine misses suboptimal critical points
and other areas that may lead to slow convergence.



The Mystery

Observe:
I The empirical risk is severely nonconvex, may exhibit

I (higher-order) saddle points,
I seriously suboptimal local minima, and
I wide flat areas where the gradient is very small.

I In applications, excellent performance of SGD is observed.

True?
The trajectory of the optimization routine misses suboptimal critical points
and other areas that may lead to slow convergence.



Analyzing the Loss Landscape



The Loss Landscape

Definition:
Let Φ(·, θ) be a neural network and let s ∈ Zm be training data. Then the
graph of the function θ 7→ r(θ) := R̂s(Φ(·, θ)) is called the loss landscape.

Idea: Analyze stochastic gradient descent through the shape of this
high-dimensional surface.



The Loss Landscape

Definition:
Let Φ(·, θ) be a neural network and let s ∈ Zm be training data. Then the
graph of the function θ 7→ r(θ) := R̂s(Φ(·, θ)) is called the loss landscape.

Idea: Analyze stochastic gradient descent through the shape of this
high-dimensional surface.



Illustration of the Loss Landscape

Source: Berner, Grohs, K, Petersen. The Modern Mathematics of Deep Learning. In: Mathematical

Aspects of Deep Learning, Cambridge, 2022.



Some Approaches: Paths and Level Sets

Idea:

I Analyze paths through the parameter space.

I Focus on those, for which the associated
empirical risks are monotone.

I Aim for paths of non-increasing empirical
risk to the global minimum.

; No such path can escape a minimum.

Some Results... (Freeman, Bruna; ’17) (Venturi, Bandeira, Bruna; ’18)
...about the presence or absence of spurious valleys, defined as connected
components of sub-level sets that do not include a global minimum.
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Some Approaches: Spin Glass Interpretation

“Definition”: The Hamiltonian of the spin glass model is a random
function on the (n − 1)-dimensional sphere of radius

√
n.

Theorem (Choromanska, Henaff, Mathieu, Arous, LeCun; 2015):
“The loss of a neural network with random inputs can be considered as the
Hamiltonian of a spin glass model, where the inputs of the model are the
parameters of the neural network.”

Implications:

The set of critical points leads to the relative
number of directions in which the loss landscape
has negative curvature.

I Being further away from the optimal loss, then the critical points
become more unstable.

I Being in a local minimum, implies that the loss is close to
the global minimum.
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Lazy Training



A Strange Effect

Observation:
During the training of highly overparametrized neural networks, the
parameters seem to barely change.

Source: Berner, Grohs, K, Petersen. The Modern Mathematics of Deep Learning. In: Mathematical

Aspects of Deep Learning, Cambridge, 2022.



A Simple Learning Model

Our Setting: Assume that...

I the neural network model is

Rd 3 x 7→ Φ(x , θ) :=
n∑

j=1

θ
(2)
j %
(
〈θ(1)

j ,

[
x
1

]
〉
)
,

where θ
(1)
j ∈ Rd+1 for j ∈ [n], θ(2) ∈ Rn with a smooth activation function %

which is not affine linear.

I training data s = ((x (i), y (i)))mi=1 ∈ (Rd × R)m, where xi 6= xj for all i 6= j .

I the empirical risk is given by

r(θ) = R̂s(θ) =
1

m

m∑
i=1

(Φ(x (i), θ)− y (i))2.

I for the initialization Θ = (Θ(1),Θ(2)), Θ
(1)
j ∼ N (0, 1/n)d+1, j ∈ [n], and

Θ
(2)
j ∼ N (0, 1/n), j ∈ [n], are independent random variables.



Introducing A Peculiar Kernel

Goal: Analyze the gradient ∇θr(Θ) over Θ = (Θ(1),Θ(2)).

We obtain

‖∇θr(Θ)‖2
2 ≥ 4

m2

∥∥∥ m∑
i=1

∇θ(2) Φ(x (i),Θ)(Φ(x (i),Θ)− y (i))
∥∥∥2

2

=
4

m2

(
(Φ(x (i),Θ)− y (i))mi=1

)T
K̄Θ(Φ(x (j),Θ)− y (j))mj=1,

where K̄Θ is a random Rm×m-valued kernel given by

(K̄Θ)i,j :=
(
∇θ(2) Φ(x (i),Θ)

)T∇θ(2) Φ(x (j),Θ), i , j ∈ [m].

For our two-layer neural networks,(
∇θ(2) Φ(x ,Θ)

)
k

= %

(〈
Θ

(1)
k ,

[
x
1

]〉)
, x ∈ Rd , k ∈ [n].

Thus,

K̄Θ =
n∑

k=1

vkv
T
k with vk =

(
%

(〈
Θ

(1)
k ,

[
x (i)

1

]〉))m

i=1

∈ Rm, k ∈ [n].
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Controlling the Gradient

Recall:

K̄Θ =
n∑

k=1

vkv
T
k with vk =

(
%

(〈
Θ

(1)
k ,

[
x (i)

1

]〉))m

i=1

∈ Rm, k ∈ [n].

Key Property of the Kernel:
For sufficiently large n, with high probability K̄Θ is a positive definite kernel with
smallest eigenvalue λmin(K̄Θ) scaling linearly with n.

Controlling the Gradient:
With high probability,

‖∇θr(Θ)‖2
2 ≥

4

m2
λmin(K̄Θ)‖(Φ(x (i),Θ)− y (i))mi=1‖2

2 &
n

m
r(Θ).
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Controlling the Gradient (Continued)

Recall: Controlling the Gradient:
With high probability,

‖∇θr(Θ)‖2
2 ≥

4

m2
λmin(K̄Θ)‖(Φ(x (i),Θ)− y (i))mi=1‖2

2 &
n

m
r(Θ).

Let θ̄ ∈ B1(0). Then, with high probability,

‖∇θr(Θ + θ̄)‖2
2 ≥ 4

m2

∥∥∥ m∑
i=1

∇θ(2) Φ(x (i),Θ + θ̄)(Φ(x (i),Θ + θ̄)− y (i))
∥∥∥2

2

=
4

m2

∥∥∥ m∑
i=1

(∇θ(2) Φ(x (i),Θ) +O(1))(Φ(x (i),Θ + θ̄)− y (i))
∥∥∥2

2

&
1

m2
(λmin(K̄Θ) +O(1))‖(Φ(x (i),Θ + θ̄)− y (i))mi=1‖2

2

&
n

m
r(Θ + θ̄).
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Exponential Convergence

Result of our Argumentation:
For sufficiently small step sizes η and ‖Θ(k) −Θ‖ ≤ 1 for all k ∈ [K + 1],

r(Θ(K+1)) ≈ r(Θ(K))− η‖∇θr(Θ(K))‖2
2 ≤

(
1− cηn

m

)
r(Θ(K)) .

(
1− cηn

m

)K
,

for c ∈ (0,∞) so that ‖∇θr(Θ(k))‖2
2 ≥ cn

m r(Θ(k)) for all k ∈ [K ].

Extension:
If also ‖∇θr(Θ + θ̄)‖2

2 . n
m r(Θ + θ̄), then

‖Θ(k) −Θ‖2 ≤ 1 for all k .
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Exponential Convergence
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Exponential Convergence

Theorem (Chizat, Oyallon, Bach; 2019):

(1) “Gradient descent converges with an exponential rate to an arbitrary
small empirical risk if the width n is sufficiently large.”

(ii) “The iterates of the descent algorithm stay in a small fixed
neighborhood of the initialization during training.”

; Lazy Training!



Neural Collapse



Single-Label Classification Problem

I Goal: Predict probabilities of classes {1, . . . ,N} for inputs x ∈ D

I Train network Φ: Rd → RN computing pre-softmax scores

Inputs

x

Features

h(x)

Outputs

Wh(x)+b

. . .

. . .

. . .

. . .

. . .

Feature engineering Linear
classifier
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Equiangular Tight Frame

Definition:
An equiangular tight frame is a family of vectors {xi}ni=1 in Rd with

(1) ‖xi‖ = 1 for all i ,

(2) |〈xi , xj〉| = c for all i 6= j and some constant c ,

(3) d
n

∑n
i=1〈x , xi 〉xi = x for all x ∈ Rd .

Remark:
An equiangular tight frame is a type of optimal packing of lines in
Euclidean space.



Neural Collapse (Papyan, Han, Donoho; 2020)

Illustration
For 3 classes, features of training samples:

Initialization

Notation

I h
(1)
n , . . . , h

(K)
n := features of samples in

class n

I hn := 1
K

∑K
k=1 h

(k)
n class-n mean

I h := 1
N

∑N
n=1 hn global mean

Neural Collapse Phenomena

(in the terminal phase of training)

1 Variability collapse:
‖h(k)

n − hn‖2 → 0

2 Simplex equiangular tight frame

(ETF) configuration:

I ‖hn−h‖2−‖hm−h‖2 → 0
I cos](hn − h, hm − h)→
− 1

N−1

3 Duality: ‖hn − h − Cwn‖2 → 0 for
some C ∈ R

4 Nearest class center behavior
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Neural Collapse

Source: Papyan, Han, Donoho. Prevalence of Neural Collapse during the terminal phase

of deep learning training. PNAS 117 (2020), 24652–24663.



Considerations

Terminal Phase of Training:

I The last-layer features are not only linearly separable, but actually
collapsed to an equi-angular tight frame.

I The last-layer classifier is behaviorally equivalent to the Nearest
Class-Center decision rule.

Additional Work:

I Mixon, Parshall, Pi; 2020

I Nguyen, Levie, K, Bruna; 2021

I Kornblith, Chen, Lee, Norouzi; 2021

I ...



Is Training Necessary?



Convolutional Neural Networks (CNNs)

Schematic Illustration:

Operation in each Layer:
Input → Convolution → Activation → Pooling → Output



A Mathematical Approach

A Very Nice Idea...
The scattering transform (Mallat, 2014) is a special convolutional neural
network:

I It uses fixed predefined (wavelet) filters.

I It performs almost as good as a trained neural network in some
applications.

I It is more accessible to theoretical analysis.

I There exists a continuous as well as discrete theory.



Scattering Transform



Scattering Transform



Scattering Transform

Definition: Let

I Ψn = {ψλn}λn∈Λn , ψλn ∈ L1(Rd) ∩ L2(Rd) with∑
λn∈Λn

‖f ∗ ψλn‖2
2 ≤ Bn‖f ‖2

2 for all f ∈ L2(R),

I For Rn ≥ 1 the subsampling factor, let

(Un[λn]f )(x) = R2
n |f ∗ ψλn |(Rnx), λ ∈ Rd ,

I For a path of index sets q = (λ1, ...λn), λi ∈ Λi let

U[q]f = Un[λn](Un−1[λn−1]− (U1[λ1]f )),

I χn−1 := ψλn for every n ∈ N.

The associated scattering transformation ΦΩ is defined by

f 7→ ΦΩ(f ) :=
∞⋃
n=0

{U[q]f ∗ χn−1}q=(λ1,...λn)︸ ︷︷ ︸
Interpretation: Feature vector

.



Translation Invariance of the Scattering Transform

Theorem (Mallat; 2014)(Wiatowski at al.; 2016):
Let ΦΩ be a scattering transformation with Rn := 1 for all n. Then Φn is
translation invariant, i.e.

ΦΩ(Tt f ) = TtΦΩ(f )

for all t ∈ Rd with (Tt f )(x) = f (x − t), x ∈ Rd , in particular,

U[q](Tt f ) ∗ χn−1 = Tt(U[q]f ∗ χn−1)

for all t ∈ Rd .



Deformation Stability of the Scattering Transform

Theorem (Mallat; 2014)(Wiatowski at al.; 2016):
Let ΦΩ be a scattering transformation with maxn∈N max{Bn,BnL

2
n} ≤ 1.

Then for any K > 0, the scattering transformation ΦΩ is stable on E2
s (Rd)

with respect to deformations.
This means that for every K > 0, there exists CK > 0 such that for all
f ∈ E2

s (Rd) and τ ∈ C1(Rd ,Rd) with

‖τ‖∞ ≤
1

2
and ‖Dτ‖∞ ≤

1

2d
,

we have

‖|ΦΩ(Fτ f )− ΦΩ(f )|‖ ≤ CK‖τ‖
1
2∞,

where
(Fτ f )(x) = f (x − τ(x)).



Some Final Thoughts...



Conclusions

Optimization:

I Stochastic gradient descent is the typical choice.

I Due to the severe nonconvexity, it is a mystery why “good” local minima
are found.

Unraveling the Mystery:

I Analyzing the loss landscape

I Lazy training

I Neural Collapse

Is Training Necessary?

I Scattering Transform
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