The Mathematics of Deep Learning Lecture 3: Analyzing the Training Algorithm

Gitta Kutyniok

(Ludwig-Maximilians-Universität München)

LMS Invited Lecture Series University of Cambridge, February 28 – March 4, 2022

Brief Recap:

Statistical Learning Theory

Still Informal Definition:

Let $\mathcal{X}, \mathcal{Y},$ and \mathcal{Z} be measurable spaces. In a learning task, one is given

- ▶ data in $\mathcal Z$ and
- ▶ a loss function \mathcal{L} : $\mathcal{M}(\mathcal{X}, \mathcal{Y}) \times \mathcal{Z} \to \mathbb{R}$.

The goal is to choose a *hypothesis set* $\mathcal{F} \subset \mathcal{M}(\mathcal{X}, \mathcal{Y})$ and construct a *learning algorithm*, i.e., a mapping

$$\mathcal{A}\colon \bigcup_{m\in\mathbb{N}}\mathcal{Z}^m\to\mathcal{F},$$

which uses training data $s = (z^{(i)})_{i=1}^m \in \mathbb{Z}^m$ to find a model $f_s = \mathcal{A}(s) \in \mathcal{F}$ that

- 1. performs well on the training data s and
- 2. generalizes to unseen data $z \in \mathcal{Z}$.

Here, *performance* is measured via the loss function \mathcal{L} and the corresponding loss $\mathcal{L}(f_s, z)$.

Definition:

In a *prediction task*, we have that $\mathcal{Z} \coloneqq \mathcal{X} \times \mathcal{Y}$, i.e., we are given training data $s = ((x^{(i)}, y^{(i)}))_{i=1}^m$ that consist of input features $x^{(i)} \in \mathcal{X}$ and corresponding labels $y^{(i)} \in \mathcal{Y}$.

For one-dimensional regression tasks with $\mathcal{Y} \subset \mathbb{R}$, we consider the quadratic loss

$$\mathcal{L}(f,(x,y)) = (f(x) - y)^2$$

and, for *binary classification tasks with* $\mathcal{Y} = \{-1, 1\}$, we consider the 0-1 loss

$$\mathcal{L}(f,(x,y)) = \mathbb{1}_{(-\infty,0)}(yf(x)).$$

We assume that our input features are in Euclidean space, i.e., $\mathcal{X} \subset \mathbb{R}^d$ with input dimension $d \in \mathbb{N}$.

Our Hypothesis Class

Hypothesis Sets of Neural Networks:

Let $a = (N, \varrho)$ be a neural network architecture with input dimension $N_0 = d$, output dimension $N_L = 1$, and measurable activation function ϱ .

For regression tasks the corresponding hypothesis set is given by

$$\mathcal{F}_{a} = \left\{ \Phi_{a}(\cdot, \theta) \colon \theta \in \mathbb{R}^{P(N)} \right\}$$

and for *classification tasks* by

$$\mathcal{F}_{a,\text{sgn}} = \{ \text{sgn}(\Phi_{a}(\cdot,\theta)) \colon \theta \in \mathbb{R}^{P(N)} \}, \text{ where } \text{sgn}(x) \coloneqq \begin{cases} 1, & \text{if } x \ge 0, \\ -1, & \text{if } x < 0. \end{cases}$$

Definition (Empirical Risk):

For training data $s = (z^{(i)})_{i=1}^m \in \mathbb{Z}^m$ and a function $f \in \mathcal{M}(\mathcal{X}, \mathcal{Y})$, we define the *empirical risk* by

$$\widehat{\mathcal{R}}_{s}(f) := \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(f, z^{(i)}).$$

...measures the average loss on the given training data.

Definition (ERM Learning Algorithm):

Given a hypothesis set \mathcal{F} , an *empirical risk minimization algorithm* \mathcal{A}^{erm} chooses for training data $s \in \mathbb{Z}^m$ a minimizer $\hat{f}_s \in \mathcal{F}$ of the empirical risk in \mathcal{F} , i.e.,

$$\mathcal{A}^{\operatorname{erm}}(s) \in \operatorname*{argmin}_{f \in \mathcal{F}} \widehat{\mathcal{R}}_{s}(f).$$

Assumption (Independent and Identically Distributed data):

We assume that $z^{(1)}, \ldots, z^{(m)}, z$ are realizations of i.i.d. random variables $Z^{(1)}, \ldots, Z^{(m)}, Z$.

Definition:

For a function $f \in \mathcal{M}(\mathcal{X}, \mathcal{Y})$, we define the *risk* by

$$\mathcal{R}(f) \coloneqq \mathbb{E}[\mathcal{L}(f,Z)] = \int_{\mathcal{Z}} \mathcal{L}(f,z) \, \mathrm{d}\mathbb{P}_{Z}(z).$$

Defining $S := (Z^{(i)})_{i=1}^m$, the *risk of a model* $f_S = \mathcal{A}(S)$ is thus given by $\mathcal{R}(f_S) = \mathbb{E}[\mathcal{L}(f_S, Z)|S].$

Regression and Classification Risk

Definition:

A function $f^* \in \mathcal{M}(\mathcal{X}, \mathcal{Y})$ achieving the smallest risk, the *Bayes risk*

$$\mathcal{R}^* \coloneqq \inf_{f \in \mathcal{M}(\mathcal{X}, \mathcal{Y})} \mathcal{R}(f),$$

is called a *Bayes-optimal function*.

Lemma:

(1) For a regression task with $\mathbb{V}[Y] < \infty,$ the risk can be decomposed into

$$\mathcal{R}(f) = \mathbb{E}ig[(f(X) - \mathbb{E}[Y|X])^2ig] + \mathcal{R}^*, \quad f \in \mathcal{M}(\mathcal{X}, \mathcal{Y}),$$

which is minimized by the *regression function* $f^*(x) = \mathbb{E}[Y|X = x]$.

(2) For a *classification task*, the risk can be decomposed into

$$\mathcal{R}(f) = \mathbb{E}\big[|\mathbb{E}[Y|X]|\mathbb{1}_{(-\infty,0)}(\mathbb{E}[Y|X]f(X))\big] + \mathcal{R}^*, \quad f \in \mathcal{M}(\mathcal{X},\mathcal{Y}),$$

which is minimized by the *Bayes classifier* $f^*(x) = sgn(\mathbb{E}[Y|X = x]).$

Error Decomposition

Let $f_{\mathcal{F}}^* \in \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{R}(f)$ be a best approximation in \mathcal{F} , such that we can bound the error

$$\begin{aligned} \mathcal{R}(f_{\mathcal{S}}) &- \mathcal{R}^{*} \\ &= \mathcal{R}(f_{\mathcal{S}}) - \widehat{\mathcal{R}}_{\mathcal{S}}(f_{\mathcal{S}}) + \widehat{\mathcal{R}}_{\mathcal{S}}(f_{\mathcal{S}}) - \widehat{\mathcal{R}}_{\mathcal{S}}(f_{\mathcal{F}}^{*}) + \widehat{\mathcal{R}}_{\mathcal{S}}(f_{\mathcal{F}}^{*}) - \mathcal{R}(f_{\mathcal{F}}^{*}) + \mathcal{R}(f_{\mathcal{F}}^{*}) - \mathcal{R}^{*} \\ &\leq \varepsilon^{\text{opt}} + 2\varepsilon^{\text{gen}} + \varepsilon^{\text{approx}} \end{aligned}$$

by

an optimization error

$$arepsilon^{ ext{opt}}\coloneqq \widehat{\mathcal{R}}_{\mathcal{S}}(f_{\mathcal{S}}) - \widehat{\mathcal{R}}_{\mathcal{S}}(\widehat{f}_{\mathcal{S}}) \geq \widehat{\mathcal{R}}_{\mathcal{S}}(f_{\mathcal{S}}) - \widehat{\mathcal{R}}_{\mathcal{S}}(f_{\mathcal{F}}^*),$$

a (uniform) generalization error

$$\varepsilon^{\text{gen}} \coloneqq \sup_{f \in \mathcal{F}} |\mathcal{R}(f) - \widehat{\mathcal{R}}_{\mathcal{S}}(f)| \ge \max\{\mathcal{R}(f_{\mathcal{S}}) - \widehat{\mathcal{R}}_{\mathcal{S}}(f_{\mathcal{S}}), \widehat{\mathcal{R}}_{\mathcal{S}}(f_{\mathcal{F}}^*) - \mathcal{R}(f_{\mathcal{F}}^*)\},\$$

an approximation error

$$\varepsilon^{\operatorname{approx}} \coloneqq \mathcal{R}(f_{\mathcal{F}}^*) - \mathcal{R}^*.$$

Remark:

- \blacktriangleright This error is primarily influenced by the numerical algorithm $\mathcal{A}.$
- We will focus on the setting where such an algorithm aims to approximately minimize the *empirical risk*

$$\widehat{\mathcal{R}}_{s}(f) \coloneqq \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(f, z^{(i)}).$$

The most common are gradient-based methods!

Gradient Descent

Remark:

- ▶ This error is primarily influenced by the numerical algorithm A.
- We will focus on the setting where such an algorithm aims to approximately minimize the *empirical risk*

$$\widehat{\mathcal{R}}_{s}(f) \coloneqq \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(f, z^{(i)}).$$

The most common are gradient-based methods!

Remark:

- ▶ This error is primarily influenced by the numerical algorithm A.
- We will focus on the setting where such an algorithm aims to approximately minimize the *empirical risk*

$$\widehat{\mathcal{R}}_{s}(f) \coloneqq \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(f, z^{(i)}).$$

The most common are gradient-based methods!

Key Questions:

- How *fast* does the algorithm converges?
- Does it converge to a "good" local minimum?
- What are good starting values?

Stochastic Gradient Descent

Stochastic Gradient Descent

Core Algorithm (Robbins, Monro; 1951):

Gradient Descent:

• Choose $D^{(k)}$ is deterministically.

Gradient Descent versus Stochastic Gradient Descent

Source: Berner, Grohs, K, Petersen. The Modern Mathematics of Deep Learning. In: Mathematical Aspects of Deep Learning, Cambridge, 2022.

Stochastic Gradient Descent (Continued)

Minimizing the Empirical Loss:

• Choose $r: \mathbb{R}^{P(N)} \to \mathbb{R}$ as

$$r(\theta) = \widehat{\mathcal{R}}_{s}(\Phi_{a}(\cdot,\theta)).$$

▶ Choose a *batch-size* $m' \in \mathbb{N}$ with $m' \leq m$ and consider

$$\Theta^{(k)} \coloneqq \Theta^{(k-1)} - \frac{\eta_k}{m'} \sum_{z \in S'} \nabla_{\theta} \mathcal{L}(\Phi_a(\cdot, \Theta^{(k-1)}), z).$$

- S' is a *mini-batch* of size |S'| = m' chosen uniformly at random from the training data s.
- ▶ $(\eta_k)_{k \in \mathbb{N}}$ is called *learning rate*.

Stochastic Gradient Descent (Continued)

Minimizing the Empirical Loss:

• Choose $r: \mathbb{R}^{P(N)} \to \mathbb{R}$ as

$$r(\theta) = \widehat{\mathcal{R}}_{s}(\Phi_{a}(\cdot,\theta)).$$

▶ Choose a *batch-size* $m' \in \mathbb{N}$ with $m' \leq m$ and consider

$$\Theta^{(k)} := \Theta^{(k-1)} - \frac{\eta_k}{m'} \sum_{z \in S'} \nabla_{\theta} \mathcal{L}(\Phi_a(\cdot, \Theta^{(k-1)}), z).$$

- S' is a *mini-batch* of size |S'| = m' chosen uniformly at random from the training data s.
- $(\eta_k)_{k \in \mathbb{N}}$ is called *learning rate*.

Output of Algorithm:

After K steps, this leads to

$$f_s = \mathcal{A}(s) = \Phi_a(\cdot, \overline{\theta}),$$

where $\bar{\theta}$ can be chosen as the realization of $\Theta^{(K)}$.

Theorem (Nemirovski, Juditsky, Lan, Shapiro; 2009):

Let $p, K \in \mathbb{N}$ and let $r : \mathbb{R}^p \supset B_1(0) \to \mathbb{R}$ be differentiable and *convex*. Further let $(\Theta^{(k)})_{k=1}^K$ be the output of stochastic gradient descent with initialization $\Theta^{(0)} = 0$, step-sizes $\eta_k = K^{-1/2}$, $k \in [K]$, and random variables $(D^{(k)})_{k=1}^K$ satisfying that $\|D^{(k)}\|_2 \leq 1$ almost surely for all $k \in [K]$. Then

$$\mathbb{E}[r(ar{\Theta})] - r(heta^*) \leq rac{1}{\sqrt{\mathcal{K}}},$$

where $\bar{\Theta} \coloneqq \frac{1}{K} \sum_{k=1}^{K} \Theta^{(k)}$ and $\theta^* \in \operatorname{argmin}_{\theta \in B_1(0)} r(\theta)$.

Theorem (Nemirovski, Juditsky, Lan, Shapiro; 2009):

Let $p, K \in \mathbb{N}$ and let $r : \mathbb{R}^p \supset B_1(0) \to \mathbb{R}$ be differentiable and *convex*. Further let $(\Theta^{(k)})_{k=1}^K$ be the output of stochastic gradient descent with initialization $\Theta^{(0)} = 0$, step-sizes $\eta_k = K^{-1/2}$, $k \in [K]$, and random variables $(D^{(k)})_{k=1}^K$ satisfying that $\|D^{(k)}\|_2 \leq 1$ almost surely for all $k \in [K]$. Then

$$\mathbb{E}[r(ar{\Theta})] - r(heta^*) \leq rac{1}{\sqrt{\mathcal{K}}},$$

where $\bar{\Theta} \coloneqq \frac{1}{K} \sum_{k=1}^{K} \Theta^{(k)}$ and $\theta^* \in \operatorname{argmin}_{\theta \in B_1(0)} r(\theta)$.

Remark: If *r* is *not convex*, then stochastic gradient descent may converge to a local, non-global minimum.

The Mystery

Observe:

- The empirical risk is severely nonconvex, may exhibit
 - (higher-order) saddle points,
 - seriously suboptimal local minima, and
 - wide flat areas where the gradient is very small.
- ▶ In applications, excellent performance of SGD is observed.

Observe:

- The empirical risk is severely nonconvex, may exhibit
 - (higher-order) saddle points,
 - seriously suboptimal local minima, and
 - wide flat areas where the gradient is very small.
- In applications, excellent performance of SGD is observed.

True?

The trajectory of the optimization routine misses suboptimal critical points and other areas that may lead to slow convergence.

Analyzing the Loss Landscape

Definition:

Let $\Phi(\cdot, \theta)$ be a neural network and let $s \in \mathbb{Z}^m$ be training data. Then the graph of the function $\theta \mapsto r(\theta) \coloneqq \widehat{\mathcal{R}}_s(\Phi(\cdot, \theta))$ is called the *loss landscape*.

Definition:

Let $\Phi(\cdot, \theta)$ be a neural network and let $s \in \mathbb{Z}^m$ be training data. Then the graph of the function $\theta \mapsto r(\theta) \coloneqq \widehat{\mathcal{R}}_s(\Phi(\cdot, \theta))$ is called the *loss landscape*.

Idea: Analyze stochastic gradient descent through the shape of this high-dimensional surface.

Illustration of the Loss Landscape

Source: Berner, Grohs, K, Petersen. The Modern Mathematics of Deep Learning. In: Mathematical Aspects of Deep Learning, Cambridge, 2022.

Idea:

- Analyze paths through the parameter space.
- Focus on those, for which the associated empirical risks are monotone.
- Aim for paths of non-increasing empirical risk to the global minimum.
- \rightsquigarrow No such path can escape a minimum.

Idea:

- Analyze paths through the parameter space.
- Focus on those, for which the associated empirical risks are monotone.
- Aim for paths of non-increasing empirical risk to the global minimum.
- \rightsquigarrow No such path can escape a minimum.

Some Results... (Freeman, Bruna; '17) (Venturi, Bandeira, Bruna; '18) ...about the presence or absence of *spurious valleys*, defined as connected components of sub-level sets that do not include a global minimum.

Some Approaches: Spin Glass Interpretation

"Definition": The Hamiltonian of the *spin glass model* is a random function on the (n-1)-dimensional sphere of radius \sqrt{n} .

Some Approaches: Spin Glass Interpretation

"Definition": The Hamiltonian of the *spin glass model* is a random function on the (n-1)-dimensional sphere of radius \sqrt{n} .

Theorem (Choromanska, Henaff, Mathieu, Arous, LeCun; 2015): "The loss of a neural network with random inputs can be considered as the Hamiltonian of a *spin glass model*, where the inputs of the model are the parameters of the neural network."

Some Approaches: Spin Glass Interpretation

"Definition": The Hamiltonian of the *spin glass model* is a random function on the (n - 1)-dimensional sphere of radius \sqrt{n} .

Theorem (Choromanska, Henaff, Mathieu, Arous, LeCun; 2015): "The loss of a neural network with random inputs can be considered as the Hamiltonian of a *spin glass model*, where the inputs of the model are the parameters of the neural network."

Implications:

The *set of critical points* leads to the relative number of directions in which the loss landscape has negative curvature.

- Being further away from the optimal loss, then the critical points become more unstable.
- Being in a local minimum, implies that the loss is close to the global minimum.

Lazy Training

Observation:

During the training of highly overparametrized neural networks, the parameters seem to barely change.

Source: Berner, Grohs, K, Petersen. The Modern Mathematics of Deep Learning. In: Mathematical Aspects of Deep Learning, Cambridge, 2022.

A Simple Learning Model

Our Setting: Assume that...

the neural network model is

$$\mathbb{R}^d
i x \mapsto \Phi(x, heta) \coloneqq \sum_{j=1}^n heta_j^{(2)} arrhoig(\langle heta_j^{(1)}, ig[x] 1ig]
angleig),$$

where $\theta_j^{(1)} \in \mathbb{R}^{d+1}$ for $j \in [n]$, $\theta^{(2)} \in \mathbb{R}^n$ with a smooth activation function ϱ which is not affine linear.

- ▶ training data $s = ((x^{(i)}, y^{(i)}))_{i=1}^m \in (\mathbb{R}^d \times \mathbb{R})^m$, where $x_i \neq x_j$ for all $i \neq j$.
- ▶ the *empirical risk* is given by

$$r(\theta) = \widehat{\mathcal{R}}_s(\theta) = \frac{1}{m} \sum_{i=1}^m (\Phi(x^{(i)}, \theta) - y^{(i)})^2.$$

▶ for the *initialization* $\Theta = (\Theta^{(1)}, \Theta^{(2)}), \ \Theta_j^{(1)} \sim \mathcal{N}(0, 1/n)^{d+1}, \ j \in [n]$, and $\Theta_j^{(2)} \sim \mathcal{N}(0, 1/n), \ j \in [n]$, are independent random variables.

Goal: Analyze the gradient $\nabla_{\theta} r(\Theta)$ over $\Theta = (\Theta^{(1)}, \Theta^{(2)})$.

Goal: Analyze the gradient $\nabla_{\theta} r(\Theta)$ over $\Theta = (\Theta^{(1)}, \Theta^{(2)})$.

We obtain

$$\begin{split} \|\nabla_{\theta} r(\Theta)\|_{2}^{2} &\geq \quad \frac{4}{m^{2}} \Big\| \sum_{i=1}^{m} \nabla_{\theta^{(2)}} \Phi(x^{(i)}, \Theta) (\Phi(x^{(i)}, \Theta) - y^{(i)}) \Big\|_{2}^{2} \\ &= \quad \frac{4}{m^{2}} \big((\Phi(x^{(i)}, \Theta) - y^{(i)})_{i=1}^{m} \big)^{T} \bar{K}_{\Theta} (\Phi(x^{(j)}, \Theta) - y^{(j)})_{j=1}^{m}, \end{split}$$

where \overline{K}_{Θ} is a random $\mathbb{R}^{m \times m}$ -valued kernel given by

$$(ar{\mathcal{K}}_{\Theta})_{i,j}\coloneqq \left(
abla_{ heta^{(2)}} \Phi(x^{(i)},\Theta)
ight)^T
abla_{ heta^{(2)}} \Phi(x^{(j)},\Theta), \quad i,j\in [m].$$

Goal: Analyze the gradient $\nabla_{\theta} r(\Theta)$ over $\Theta = (\Theta^{(1)}, \Theta^{(2)})$.

We obtain

$$\begin{split} \|\nabla_{\theta} r(\Theta)\|_{2}^{2} &\geq \quad \frac{4}{m^{2}} \Big\| \sum_{i=1}^{m} \nabla_{\theta^{(2)}} \Phi(x^{(i)}, \Theta) (\Phi(x^{(i)}, \Theta) - y^{(i)}) \Big\|_{2}^{2} \\ &= \quad \frac{4}{m^{2}} \big((\Phi(x^{(i)}, \Theta) - y^{(i)})_{i=1}^{m} \big)^{T} \bar{K}_{\Theta} (\Phi(x^{(j)}, \Theta) - y^{(j)})_{j=1}^{m}, \end{split}$$

where \bar{K}_{Θ} is a random $\mathbb{R}^{m \times m}$ -valued kernel given by

$$(\bar{K}_{\Theta})_{i,j} \coloneqq \left(
abla_{ heta^{(2)}} \Phi(x^{(i)}, \Theta)
ight)^T
abla_{ heta^{(2)}} \Phi(x^{(j)}, \Theta), \quad i, j \in [m].$$

For our two-layer neural networks,

$$\left(\nabla_{\theta^{(2)}}\Phi(x,\Theta)\right)_k = \varrho\left(\left\langle\Theta_k^{(1)}, \begin{bmatrix}x\\1\end{bmatrix}\right\rangle\right), \quad x \in \mathbb{R}^d, \ k \in [n].$$

Goal: Analyze the gradient $\nabla_{\theta} r(\Theta)$ over $\Theta = (\Theta^{(1)}, \Theta^{(2)})$.

We obtain

$$\begin{split} \|\nabla_{\theta} r(\Theta)\|_{2}^{2} &\geq \quad \frac{4}{m^{2}} \Big\| \sum_{i=1}^{m} \nabla_{\theta^{(2)}} \Phi(x^{(i)}, \Theta) (\Phi(x^{(i)}, \Theta) - y^{(i)}) \Big\|_{2}^{2} \\ &= \quad \frac{4}{m^{2}} \big((\Phi(x^{(i)}, \Theta) - y^{(i)})_{i=1}^{m} \big)^{T} \bar{K}_{\Theta} (\Phi(x^{(j)}, \Theta) - y^{(j)})_{j=1}^{m}, \end{split}$$

where \bar{K}_{Θ} is a random $\mathbb{R}^{m \times m}$ -valued kernel given by

$$(\bar{K}_{\Theta})_{i,j} \coloneqq \left(
abla_{ heta^{(2)}} \Phi(x^{(i)}, \Theta)
ight)^T
abla_{ heta^{(2)}} \Phi(x^{(j)}, \Theta), \quad i, j \in [m].$$

For our two-layer neural networks,

$$\left(
abla_{ heta^{(2)}} \Phi(x, \Theta)
ight)_k = \varrho \left(\left\langle \Theta^{(1)}_k, \begin{bmatrix} x \\ 1 \end{bmatrix} \right\rangle \right), \quad x \in \mathbb{R}^d, \ k \in [n].$$

Thus,

$$\bar{K}_{\Theta} = \sum_{k=1}^{n} v_k v_k^{T} \quad \text{with } v_k = \left(\varrho \left(\left\langle \Theta_k^{(1)}, \begin{bmatrix} x^{(i)} \\ 1 \end{bmatrix} \right\rangle \right) \right)_{i=1}^{m} \in \mathbb{R}^m, \ k \in [n].$$

Controlling the Gradient

Recall:

$$\bar{\mathcal{K}}_{\Theta} = \sum_{k=1}^{n} v_k v_k^{\mathsf{T}} \quad \text{with} \quad v_k = \left(\varrho \left(\left\langle \Theta_k^{(1)}, \begin{bmatrix} x^{(i)} \\ 1 \end{bmatrix} \right\rangle \right) \right)_{i=1}^{m} \in \mathbb{R}^m, \quad k \in [n].$$

Recall:

$$\bar{\mathcal{K}}_{\Theta} = \sum_{k=1}^{n} v_k v_k^{\mathcal{T}} \qquad \text{with} \quad v_k = \left(\varrho \left(\left\langle \Theta_k^{(1)}, \begin{bmatrix} x^{(i)} \\ 1 \end{bmatrix} \right\rangle \right) \right)_{i=1}^{m} \in \mathbb{R}^m, \quad k \in [n].$$

Key Property of the Kernel:

For sufficiently large n, with high probability \bar{K}_{Θ} is a positive definite kernel with smallest eigenvalue $\lambda_{\min}(\bar{K}_{\Theta})$ scaling linearly with n.

Recall:

$$\bar{\mathcal{K}}_{\Theta} = \sum_{k=1}^{n} v_k v_k^{\mathcal{T}} \qquad \text{with} \quad v_k = \left(\varrho \left(\left\langle \Theta_k^{(1)}, \begin{bmatrix} x^{(i)} \\ 1 \end{bmatrix} \right\rangle \right) \right)_{i=1}^{m} \in \mathbb{R}^m, \quad k \in [n].$$

Key Property of the Kernel:

For sufficiently large n, with high probability \bar{K}_{Θ} is a positive definite kernel with smallest eigenvalue $\lambda_{\min}(\bar{K}_{\Theta})$ scaling linearly with n.

Controlling the Gradient:

With high probability,

$$\|\nabla_{\theta} r(\Theta)\|_2^2 \geq \frac{4}{m^2} \lambda_{\min}(\bar{K}_{\Theta}) \|(\Phi(x^{(i)},\Theta) - y^{(i)})_{i=1}^m\|_2^2 \gtrsim \frac{n}{m} r(\Theta).$$

Controlling the Gradient (Continued)

Recall: Controlling the Gradient:

With high probability,

$$\|\nabla_{\theta} r(\Theta)\|_2^2 \geq \frac{4}{m^2} \lambda_{\min}(\bar{K}_{\Theta}) \|(\Phi(x^{(i)},\Theta) - y^{(i)})_{i=1}^m\|_2^2 \gtrsim \frac{n}{m} r(\Theta).$$

Controlling the Gradient (Continued)

Recall: Controlling the Gradient:

With high probability,

$$\|
abla_ heta r(\Theta)\|_2^2 \geq rac{4}{m^2}\lambda_{\min}(ar{K}_\Theta)\|(\Phi(x^{(i)},\Theta)-y^{(i)})_{i=1}^m\|_2^2 \gtrsim rac{n}{m}r(\Theta).$$

Let $\bar{\theta} \in B_1(0)$. Then, with high probability,

$$\begin{split} \|\nabla_{\theta} r(\Theta + \bar{\theta})\|_{2}^{2} &\geq \frac{4}{m^{2}} \Big\| \sum_{i=1}^{m} \nabla_{\theta^{(2)}} \Phi(x^{(i)}, \Theta + \bar{\theta}) (\Phi(x^{(i)}, \Theta + \bar{\theta}) - y^{(i)}) \Big\|_{2}^{2} \\ &= \frac{4}{m^{2}} \Big\| \sum_{i=1}^{m} (\nabla_{\theta^{(2)}} \Phi(x^{(i)}, \Theta) + \mathcal{O}(1)) (\Phi(x^{(i)}, \Theta + \bar{\theta}) - y^{(i)}) \Big\|_{2}^{2} \\ &\gtrsim \frac{1}{m^{2}} (\lambda_{\min}(\bar{K}_{\Theta}) + \mathcal{O}(1)) \| (\Phi(x^{(i)}, \Theta + \bar{\theta}) - y^{(i)})_{i=1}^{m} \|_{2}^{2} \\ &\gtrsim \frac{n}{m} r(\Theta + \bar{\theta}). \end{split}$$

Result of our Argumentation:

For sufficiently small step sizes η and $\|\Theta^{(k)} - \Theta\| \le 1$ for all $k \in [K + 1]$,

$$r(\Theta^{(K+1)}) \approx r(\Theta^{(K)}) - \eta \|\nabla_{\theta} r(\Theta^{(K)})\|_2^2 \leq \left(1 - \frac{c\eta n}{m}\right) r(\Theta^{(K)}) \lesssim \left(1 - \frac{c\eta n}{m}\right)^K,$$

for $c \in (0,\infty)$ so that $\|\nabla_{\theta} r(\Theta^{(k)})\|_2^2 \ge \frac{cn}{m} r(\Theta^{(k)})$ for all $k \in [K]$.

Result of our Argumentation:

For sufficiently small step sizes η and $\|\Theta^{(k)} - \Theta\| \le 1$ for all $k \in [K + 1]$,

$$r(\Theta^{(K+1)}) \approx r(\Theta^{(K)}) - \eta \|\nabla_{\theta} r(\Theta^{(K)})\|_{2}^{2} \leq \left(1 - \frac{c\eta n}{m}\right) r(\Theta^{(K)}) \lesssim \left(1 - \frac{c\eta n}{m}\right)^{K},$$

for $c \in (0,\infty)$ so that $\|\nabla_{\theta} r(\Theta^{(k)})\|_2^2 \ge \frac{cn}{m} r(\Theta^{(k)})$ for all $k \in [K]$.

Extension:

If also $\|
abla_{ heta} r(\Theta + ar{ heta})\|_2^2 \lesssim rac{n}{m} r(\Theta + ar{ heta})$, then

$$\|\Theta^{(k)}-\Theta\|_2\leq 1$$
 for all $k\lesssim \sqrt{m/(\eta^2 n)}.$

Also,

$$\left(1-\frac{c\eta n}{m}\right)^{\kappa} \leq e^{-c\sqrt{n/m}}.$$

Theorem (Chizat, Oyallon, Bach; 2019):

- (1) "Gradient descent converges with an exponential rate to an arbitrary small empirical risk if the width n is sufficiently large."
- (ii) "The iterates of the descent algorithm stay in a small fixed neighborhood of the initialization during training."

 \sim Lazy Training!

Neural Collapse

Single-Label Classification Problem

▶ **Goal:** Predict probabilities of classes $\{1, ..., N\}$ for inputs $x \in D$

Single-Label Classification Problem

- ► **Goal:** Predict probabilities of classes $\{1, ..., N\}$ for inputs $x \in D$
- ▶ Train network Φ : $\mathbb{R}^d \to \mathbb{R}^N$ computing pre-softmax scores

Definition:

An equiangular tight frame is a family of vectors $\{x_i\}_{i=1}^n$ in \mathbb{R}^d with

(1)
$$||x_i|| = 1$$
 for all *i*,

(2)
$$|\langle x_i, x_j \rangle| = c$$
 for all $i \neq j$ and some constant c ,

(3)
$$\frac{d}{n}\sum_{i=1}^{n}\langle x, x_i\rangle x_i = x$$
 for all $x \in \mathbb{R}^d$.

Remark:

An equiangular tight frame is a type of optimal packing of lines in Euclidean space.

For 3 classes, features of training samples:

Notation

- ▶ h_n⁽¹⁾,..., h_n^(K) := features of samples in class n
- $h_n := \frac{1}{\kappa} \sum_{k=1}^{\kappa} h_n^{(k)}$ class-*n* mean
- ▶ $h := \frac{1}{N} \sum_{n=1}^{N} h_n$ global mean

Neural Collapse Phenomena

(in the *terminal phase* of training)

Neural Collapse (Papyan, Han, Donoho; 2020)

Illustration

For 3 classes, features of training samples:

Notation

- ▶ h_n⁽¹⁾,..., h_n^(K) := features of samples in class n
- $h_n := \frac{1}{K} \sum_{k=1}^{K} h_n^{(k)} \text{ class-} n \text{ mean}$
- ► $h := \frac{1}{N} \sum_{n=1}^{N} h_n$ global mean

Neural Collapse Phenomena

(in the terminal phase of training)

Neural Collapse (Papyan, Han, Donoho; 2020)

Illustration

For 3 classes, features of training samples:

Notation

- ▶ h_n⁽¹⁾,..., h_n^(K) := features of samples in class n
- $h_n := \frac{1}{\kappa} \sum_{k=1}^{\kappa} h_n^{(k)} \text{ class-} n \text{ mean}$
- ▶ $h := \frac{1}{N} \sum_{n=1}^{N} h_n$ global mean

Neural Collapse Phenomena

(in the terminal phase of training)

1 Variability collapse: $\|h_n^{(k)} - h_n\|_2 \to 0$

Neural Collapse (Papyan, Han, Donoho; 2020)

Neural Collapse Phenomena

(in the *terminal phase* of training)

1 Variability collapse: $\|h_n^{(k)} - h_n\|_2 \rightarrow 0$

For 3 classes, features of training samples:

Notation

- ▶ $h_n^{(1)}, \ldots, h_n^{(K)} :=$ features of samples in class n
- $h_n := \frac{1}{K} \sum_{k=1}^{K} h_n^{(k)}$ class-*n* mean
- $h := \frac{1}{N} \sum_{n=1}^{N} h_n$ global mean

Neural Collapse Phenomena

(in the *terminal phase* of training)

- 1 Variability collapse: $\|h_n^{(k)} - h_n\|_2 \rightarrow 0$
- 2 Simplex equiangular tight frame (ETF) configuration:

 $\|h_n - h\|_2 - \|h_m - h\|_2 \to 0$ $\cos \measuredangle (h_n - h, h_m - h) \to$ $-\frac{1}{N-1}$

For 3 classes, features of training samples:

Notation

- ▶ h_n⁽¹⁾,..., h_n^(K) := features of samples in class n
- $h_n := \frac{1}{K} \sum_{k=1}^{K} h_n^{(k)}$ class-*n* mean
- $h := \frac{1}{N} \sum_{n=1}^{N} h_n$ global mean

Neural Collapse Phenomena

(in the *terminal phase* of training)

- 1 Variability collapse: $\|h_n^{(k)} - h_n\|_2 \rightarrow 0$
- 2 Simplex equiangular tight frame (ETF) configuration:
 - $\|h_n h\|_2 \|h_m h\|_2 \to 0$ $\cos \measuredangle (h_n - h, h_m - h) \to -\frac{1}{N-1}$
- **3** Duality: $||h_n h Cw_n||_2 \rightarrow 0$ for some $C \in \mathbb{R}$

For 3 classes, features of training samples:

Notation

- ▶ $h_n^{(1)}, \ldots, h_n^{(K)} :=$ features of samples in class n
- $h_n := \frac{1}{K} \sum_{k=1}^{K} h_n^{(k)}$ class-*n* mean
- $h := \frac{1}{N} \sum_{n=1}^{N} h_n$ global mean

Neural Collapse Phenomena

(in the *terminal phase* of training)

- 1 Variability collapse: $\|h_n^{(k)} - h_n\|_2 \rightarrow 0$
- 2 Simplex equiangular tight frame (ETF) configuration:
 - $\|h_n h\|_2 \|h_m h\|_2 \to 0$ $\cos \measuredangle (h_n - h, h_m - h) \to$ $- \frac{1}{N-1}$
- **3** Duality: $||h_n h Cw_n||_2 \rightarrow 0$ for some $C \in \mathbb{R}$
- 4 Nearest class center behavior

Neural Collapse

Source: Papyan, Han, Donoho. Prevalence of Neural Collapse during the terminal phase of deep learning training. PNAS 117 (2020), 24652–24663.

Terminal Phase of Training:

- The last-layer features are not only linearly separable, but actually collapsed to an *equi-angular tight frame*.
- The last-layer classifier is behaviorally equivalent to the Nearest Class-Center decision rule.

Additional Work:

…

- Mixon, Parshall, Pi; 2020
- Nguyen, Levie, K, Bruna; 2021
- Kornblith, Chen, Lee, Norouzi; 2021

Is Training Necessary?

Convolutional Neural Networks (CNNs)

Schematic Illustration:

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Operation in each Layer:

 $\mathsf{Input} \to \mathsf{Convolution} \to \mathsf{Activation} \to \mathsf{Pooling} \to \mathsf{Output}$

A Very Nice Idea...

The *scattering transform* (Mallat, 2014) is a special convolutional neural network:

- It uses fixed predefined (wavelet) filters.
- It performs almost as good as a trained neural network in some applications.
- It is more accessible to theoretical analysis.
- There exists a continuous as well as discrete theory.

Scattering Transform

Scattering Transform

Scattering Transform

Definition: Let

$$\begin{split} \blacktriangleright \ \Psi_n &= \{\psi_{\lambda_n}\}_{\lambda_n \in \Lambda_n}, \psi_{\lambda_n} \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d) \text{ with } \\ &\sum_{\lambda_n \in \Lambda_n} \|f * \psi_{\lambda_n}\|_2^2 \leq B_n \|f\|_2^2 \quad \text{for all } f \in L^2(\mathbb{R}), \end{split}$$

• For $R_n \ge 1$ the subsampling factor, let

$$(U_n[\lambda_n]f)(x) = R_n^2 | f * \psi_{\lambda_n}|(R_n x), \quad \lambda \in \mathbb{R}^d$$

▶ For a path of index sets $q = (\lambda_1, ... \lambda_n)$, $\lambda_i \in \Lambda_i$ let

$$U[q]f = U_n[\lambda_n](U_{n-1}[\lambda_{n-1}] - (U_1[\lambda_1]f)),$$

► $\chi_{n-1} := \psi_{\lambda_n}$ for every $n \in \mathbb{N}$.

The associated scattering transformation Φ_Ω is defined by

$$f \mapsto \Phi_{\Omega}(f) := \bigcup_{\substack{n=0 \\ Interpretation: Feature vector}}^{\infty} \{ U[q]f * \chi_{n-1} \}_{q=(\lambda_1,...\lambda_n)}.$$

Theorem (Mallat; 2014)(Wiatowski at al.; 2016):

Let Φ_{Ω} be a scattering transformation with $R_n := 1$ for all n. Then Φ_n is *translation invariant*, i.e.

$$\Phi_{\Omega}(T_t f) = T_t \Phi_{\Omega}(f)$$

for all $t \in \mathbb{R}^d$ with $(T_t f)(x) = f(x - t), x \in \mathbb{R}^d$, in particular,
 $U[q](T_t f) * \chi_{n-1} = T_t(U[q]f * \chi_{n-1})$

for all $t \in \mathbb{R}^d$.

Theorem (Mallat; 2014)(Wiatowski at al.; 2016):

Let Φ_{Ω} be a scattering transformation with $\max_{n \in \mathbb{N}} \max\{B_n, B_n L_n^2\} \leq 1$. Then for any K > 0, the scattering transformation Φ_{Ω} is *stable on* $\mathcal{E}_s^2(\mathbb{R}^d)$ with respect to deformations.

This means that for every K > 0, there exists $C_K > 0$ such that for all $f \in \mathcal{E}^2_s(\mathbb{R}^d)$ and $\tau \in \mathcal{C}^1(\mathbb{R}^d, \mathbb{R}^d)$ with

$$\| au\|_\infty \leq rac{1}{2} \quad ext{and} \quad \|D au\|_\infty \leq rac{1}{2d},$$

we have

$$\||\Phi_{\Omega}(F_{\tau}f)-\Phi_{\Omega}(f)|\|\leq C_{\mathcal{K}}\|\tau\|_{\infty}^{rac{1}{2}},$$

where

$$(F_{\tau}f)(x) = f(x - \tau(x)).$$

Some Final Thoughts...

Optimization:

- Stochastic gradient descent is the typical choice.
- Due to the severe nonconvexity, it is a *mystery* why "good" local minima are found.

Unraveling the Mystery:

- Analyzing the loss landscape
- Lazy training
- Neural Collapse

Is Training Necessary?

Scattering Transform

THANK YOU!

References available at:

www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):

Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning.

Check related information on Twitter at:

@GittaKutyniok

Upcoming Book:

P. Grohs and G. Kutyniok, eds. Mathematical Aspects of Deep Learning Cambridge University Press, to appear.

