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Brief Recap:

Statistical Learning Theory




A Bit More Formal....

Still Informal Definition:
Let X, ), and Z be measurable spaces. In a learning task, one is given

datain Z and
a loss function L: M(X,Y) x Z = R.
The goal is to choose a hypothesis set F C M(X,Y) and construct a
learning algorithm, i.e., a mapping
A: U Zm - F,
meN

which uses training data s = (z(i))f’;l € Z™ to find a model
fs = A(s) € F that

performs well on the training data s and

generalizes to unseen data z € Z.

Here, performance is measured via the loss function £ and the

corresponding loss L(fs, z).




Our Focus: Prediction Tasks

Definition:
In a prediction task, we have that Z := X x ), i.e., we are given training
data s = ((x{), y(D))™  that consist of input features x() € X and
corresponding labels y() € .
For one-dimensional regression tasks with ) C R, we consider the
quadratic loss

£(f7 (X7.y)) = (f(X) - .y)2
and, for binary classification tasks with )) = {—1,1}, we consider the 0-1
loss

L(f,(%,¥)) = L(—o0,0 (¥ (x))-

We assume that our input features are in Euclidean space, i.e., X C R?
with input dimension d € N.




Our Hypothesis Class

Hypothesis Sets of Neural Networks:
Let a = (N, g) be a neural network architecture with input dimension
No = d, output dimension Ny = 1, and measurable activation function p.

For regression tasks the corresponding hypothesis set is given by
Fa={0,(-,0): 6 ¢ RFIM}

and for classification tasks by

1, ifx>0,

Fasgn = {sgn(®,(-,0)): 6 € RPML wh =
asgn = 158n(Pa (-, 0)) }o where sgn(x) ~1, ifx<O0.




Learning Algorithm: Empirical Risk Minimization

Definition (Empirical Risk):
For training data s = (z())™, € Z™ and a function f € M(X,)), we
define the empirical risk by

. 1 & ,
R = — ().
(F) = > (£, 2)
i=1
...measures the average loss on the given training data.

Definition (ERM Learning Algorithm):

Given a hypothesis set F, an empirical risk minimization algorithm A®™
chooses for training data s € Z™ a minimizer f; € F of the empirical risk
in F, ie.,

A (s) € argmin R (f).
feF




Average Out-Of-Sample Performance of a Model

Assumption (Independent and ldentically Distributed data):

We assume that z(1, ..., z(M 7 are realizations of i.i.d. random variables
zW o zm 7z,

Definition:
For a function f € M(X,)), we define the risk by

R(f) == E[L(f, Z)] :/Zﬁ(f,z)dIP’Z(z).

Defining S := (Z())™ |, the risk of a model fs = A(S) is thus given by
R(fs) = E[L(fs, Z)|S].




Regression and Classification Risk

Definition:
A function f* € M(X,)Y) achieving the smallest risk, the Bayes risk
R*:= inf R(f),
feEM(X,Y)

is called a Bayes-optimal function.
Lemma:

For a regression task with V[Y] < oo, the risk can be decomposed
into
R(f) =E[(f(X) —E[Y|X])?] + R*, fe M(X.D),
which is minimized by the regression function f*(x) = E[Y|X = x].
For a classification task, the risk can be decomposed into
R(f) = E[[E[Y IX][1(—oo o) EIYIXIF(X))] + R, f € M(X,D),

which is minimized by the Bayes classifier .
*(x) = sgn(E[Y|X = x]). LM




Error Decomposition

Let fz € argming.» R(f) be a best approximation in F, such that we can
bound the error

R(fs) —R*

= R(fs) — Rs(fs) + Rs(fs) — Rs(ff) + Rs(fr) — R(F£) + R(fz) — R*
S Eopt + 26gen +€approx

by
an optimization error
Pt = Rs(fs) — Rs(fs) > Rs(fs) — Rs(ff),

a (uniform) generalization error

5" = ;g;rmf)—ﬁs(f)\ > max{R(fs)— Rs(fs), Rs(f7) —R(f5)},

an approximation error

PP = R(fE) — R,




The Optimization Error

Remark:

This error is primarily influenced by the numerical algorithm A.

We will focus on the setting where such an algorithm aims to
approximately minimize the empirical risk

~ 1 & )
Rs(f) = — > L(f,27).
i=1

The most common are gradient-based methods!




Gradient Descent
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The Optimization Error

Remark:

This error is primarily influenced by the numerical algorithm A.

We will focus on the setting where such an algorithm aims to
approximately minimize the empirical risk

~ 1 < )
Rs(f) = — > c(f.20).
i=1

The most common are gradient-based methods!




The Optimization Error

Remark:

This error is primarily influenced by the numerical algorithm A.

We will focus on the setting where such an algorithm aims to
approximately minimize the empirical risk

~ 1 < )
Rs(f) = — > c(f.20).
i=1

The most common are gradient-based methods!

Key Questions:

How fast does the algorithm converges?
Does it converge to a ‘“good” local minimum?

What are good starting values?




Stochastic Gradient Descent




Stochastic Gradient Descent

Core Algorithm (Robbins, Monro; 1951):

Input : Differentiable function r: RP — R
Sequence of step-sizes 7, € (0,00), k € [K]
RP-valued random variable ©(©)
Output: Sequence of RP-valued random variables (©(K)K_,
for k=1,...,K do
Let D) be a random variable such that
E[D®)|@k-1D] = vr(@k-1),
Set ©K) .= o(k-1) _p, p(K).

Gradient Descent:

Choose D) is deterministically.




Gradient Descent versus Stochastic Gradient Descent

EEu sy

Source: Berner, Grohs, K, Petersen. The Modern Mathematics of Deep Learning. In: Mathematical

Aspects of Deep Learning, Cambridge, 2022.



Stochastic Gradient Descent (Continued)

Minimizing the Empirical Loss:
Choose r: RP(N) 5 R as

r(0) = Rs(a(-,0)).
Choose a batch-size m' € N with m’ < m and consider
ok — glk-1) _ Tk TN VoL (@a( 0% ), 2).
zeS’

S’ is a mini-batch of size |S’| = m’ chosen uniformly at random from
the training data s.

(nk)ken is called learning rate.




Stochastic Gradient Descent (Continued)

Minimizing the Empirical Loss:
Choose r: RP(N) 5 R as
r(0) = Rs(®a(-,0)).
Choose a batch-size m' € N with m’ < m and consider
oM = glk-1) _ Tk TN VoL(@a(, 07 Y), 2).
zeS’

S’ is a mini-batch of size |S’| = m’ chosen uniformly at random from
the training data s.

(nk)ken is called learning rate.

Output of Algorithm:
After K steps, this leads to

fo = A(s) = ®a(-,9),

where § can be chosen as the realization of ©(K).




Convergence of SGD

Theorem (Nemirovski, Juditsky, Lan, Shapiro; 2009):

Let p, K € N and let r: RP O B;1(0) — R be differentiable and convex.
Further let (@(k))k’(:1 be the output of stochastic gradient descent with
initialization ©(%) = 0, step-sizes n, = K~1/2, k € [K], and random
variables (D(K))K_ satisfying that ||D(¥)||, < 1 almost surely for all

k € [K]. Then

_ . 1
EIA8)] —r(0") < .

where © = £ 37K, ©() and ¢* € argming_g, (g r(6).




Convergence of SGD

Theorem (Nemirovski, Juditsky, Lan, Shapiro; 2009):

Let p, K € N and let r: RP O B;1(0) — R be differentiable and convex.
Further let (@(k))k’(:1 be the output of stochastic gradient descent with
initialization ©(%) = 0, step-sizes n, = K~1/2, k € [K], and random
variables (D(K))K_ satisfying that ||D(¥)||, < 1 almost surely for all

k € [K]. Then

_ . 1
EIA8)] —r(0") < .

where © = £ 37K, ©() and ¢* € argming_g, (g r(6).

Remark: If r is not convex, then stochastic gradient descent may converge
to a local, non-global minimum.




The Mystery

Observe:
The empirical risk is severely nonconvex, may exhibit

(higher-order) saddle points,
seriously suboptimal local minima, and
wide flat areas where the gradient is very small.

In applications, excellent performance of SGD is observed.




The Mystery

Observe:
The empirical risk is severely nonconvex, may exhibit

(higher-order) saddle points,
seriously suboptimal local minima, and
wide flat areas where the gradient is very small.

In applications, excellent performance of SGD is observed.

True?

The trajectory of the optimization routine misses suboptimal critical points

and other areas that may lead to slow convergence. .
LM




Analyzing the Loss Landscape




The Loss Landscape

Definition:
Let ®(-,0) be a neural network and let s € Z™ be training data. Then the
graph of the function 6 — r(0) = Rs(P(-,0)) is called the /oss landscape.




The Loss Landscape

Definition:
Let ®(-,0) be a neural network and let s € Z™ be training data. Then the
graph of the function 6 — r(0) = Rs(P(-,0)) is called the /oss landscape.

Idea: Analyze stochastic gradient descent through the shape of this
high-dimensional surface.

\,,

<
| |




lllustration of the Loss Landscape

Source: Berner, Grohs, K, Petersen. The Modern Mathematics of Deep Learning. In: Mathematical

Aspects of Deep Learning, Cambridge, 2022.



Some Approaches: Paths and Level Sets

Idea:
Analyze paths through the parameter space.

Focus on those, for which the associated
empirical risks are monotone.

Aim for paths of non-increasing empirical
risk to the global minimum.

~> No such path can escape a minimum.




Some Approaches: Paths and Level Sets

Idea:
Analyze paths through the parameter space.

Focus on those, for which the associated
empirical risks are monotone.

Aim for paths of non-increasing empirical
risk to the global minimum.

~> No such path can escape a minimum.

Some Results... (Freeman, Bruna; '17) (Venturi, Bandeira, Bruna; '18)
...about the presence or absence of spurious valleys, defined as connected
components of sub-level sets that do not include a global minimum.




Some Approaches: Spin Glass Interpretation

“Definition”: The Hamiltonian of the spin glass model is a random
function on the (n — 1)-dimensional sphere of radius \/n.




Some Approaches: Spin Glass Interpretation

“Definition”: The Hamiltonian of the spin glass model is a random
function on the (n — 1)-dimensional sphere of radius \/n.

Theorem (Choromanska, Henaff, Mathieu, Arous, LeCun; 2015):
“The loss of a neural network with random inputs can be considered as the

Hamiltonian of a spin glass model, where the inputs of the model are the
parameters of the neural network.”




Some Approaches: Spin Glass Interpretation

“Definition”: The Hamiltonian of the spin glass model is a random
function on the (n — 1)-dimensional sphere of radius \/n.

Theorem (Choromanska, Henaff, Mathieu, Arous, LeCun; 2015):
“The loss of a neural network with random inputs can be considered as the
Hamiltonian of a spin glass model, where the inputs of the model are the
parameters of the neural network.”

Implications:

The set of critical points leads to the relative
number of directions in which the loss landscape
has negative curvature.

Being further away from the optimal loss, then the critical points
become more unstable.

Being in a local minimum, implies that the loss is close to
the global minimum.




Lazy Training




A Strange Effect

Observation:

During the training of highly overparametrized neural networks, the
parameters seem to barely change.
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Source: Berner, Grohs, K, Petersen. The Modern Mathematics of Deep Learning. In: Mathematical
Aspects of Deep Learning, Cambridge, 2022.




A Simple Learning Model

Our Setting: Assume that...
the neural network model is

R? 5 x = d(x,0) = i@}z)g((ﬁ}l), {)1(] )),

j=1
where 0" € R for j € [n], 9 € R" with a smooth activation function o
which is not affine linear.

training data s = ((x(0,y())m, € (R? x R)™, where x; # x; for all i # j.
the empirical risk is given by

~ 1 Z . .
_R0) = LS (0. 9) - Y2,
0 = Relt) = 1 306.0) )
for the initialization © = (@), ©()), @J(-l) ~ N(0,1/n)9*+t j € [n], and
@1(2) ~ N(0,1/n), j € [n], are independent random variables. .
LM




Introducing A Peculiar Kernel

Goal: Analyze the gradient Vr(©) over © = (0(1), ©(),




Introducing A Peculiar Kernel

Goal: Analyze the gradient Vr(©) over © = (0(1), ©(),

We obtain
2

\

4 |I< i i i
IVor@)IF = —5|| 3 Vo 0(x, ©)(@(x7,0) = y)|
i=1
4 i Nm \T 2 j ) \m
= ?((CD(X( )7 @) - y( ))izl) K@(CD(X(J), @) - y(J) j=1>
where Ko is a random R™*™-valued kernel given by

(Ko)ij = (Voo ®(x),0)) Voo d(x¥),0), i,je[m].
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o0, ~o((00[])). xcr. ke




Introducing A Peculiar Kernel

Goal: Analyze the gradient Vr(©) over © = (0(1), ©(),

We obtain

2

\

4 |I< i i i
IVor@)IF = —5|| 3 Vo 0(x, ©)(@(x7,0) = y)|
i=1
4 i Nm \T 2 j ) \m
= ?((CD(X( )7 @) - y( ))izl) K@(CD(X(J), @) - y(J) j=1>
where Ko is a random R™*™-valued kernel given by

(Ko)ij = (Voo ®(x),0)) Voo d(x¥),0), i,je[m].

For our two-layer neural networks,

o0, ~o((00[])). xcr. ke
Thus,

_ n () m
Ko = Z vy with v, = <Q <<@E(1), {Xl }>)> eR™, ke [n]. .
k=1 i=1 LM




Controlling the Gradient

Recall:
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Recall:

_ n (1) m
Ko = Z v with v, = (g (<6$<1), [Xl ]>>) eR™,  keln].
k=1 i=1

Key Property of the Kernel: _
For sufficiently large n, with high probability Ke is a positive definite kernel with
smallest eigenvalue A\y,in(Ko) scaling linearly with n.




Controlling the Gradient

Recall:

_ n (1) m
Ko = Z v with v, = (g (<6$<1), [Xl ]>>) eR™,  keln].
k=1 i=1

Key Property of the Kernel: _
For sufficiently large n, with high probability Ke is a positive definite kernel with
smallest eigenvalue A\y,in(Ko) scaling linearly with n.

Controlling the Gradient:
With high probability,

4 _ . )
IV6r(©)I13 > —5 Amin(Ko) I(®(x1,©) — y )7 |15 2

n
- m m

r(©).




Controlling the Gradient (Continued)

Recall: Controlling the Gradient:
With high probability,

4 i i\ym
IVer(©)II3 = —5Amin(Ko)[[((x),©) = y'"N1 15 2 —r(O).

n
m




Controlling the Gradient (Continued)

Recall: Controlling the Gradient:
With high probability,

4 i i\ym
IVer(©)II3 = —5Amin(Ko)[[((x),©) = y'"N1 15 2 —r(O).

n
m
Let § € B;(0). Then, with high probability,

_ 4 1 . _ . _ A2
2 - (@) (0 —y(®
IVor@+ 0B = | §' Vo ®(x2,0 + 8)(0(x,© +§) - y) |

- HZ Voo ®(x,0) + O(1)) (e (x1) e+§)—y<"))H§

vV

#(Amm(ke) + OO, 0 +8) YD)z, 2
%r(@ +0).

vV




Exponential Convergence

Result of our Argumentation:
For sufficiently small step sizes 1 and [|©@(%) — ©| < 1 for all k € [K + 1],

K
r(©% ) x r(©K)) — 5[ Vor(@®) 5 < (1- =1 )r(@®) 5 (1- <127,

m

for c € (0,00) so that [|Vor(©¥)|3 > <2 r(©W) for all k € [K].




Exponential Convergence

Result of our Argumentation:
For sufficiently small step sizes 1 and [|©@(%) — ©| < 1 for all k € [K + 1],

K
r(©K ) ~ r(00)) — 5| Vor(@¥ )3 < (1 - Clm”)r(@(K)) S (1 a Cim”) ’

for c € (0,00) so that [|Vor(©¥)|3 > <2 r(©W) for all k € [K].

Extension:

If also [|[Var(© + 0)|13 < 2r(© + 6), then

n
m

|0%) — @2 <1 forall k £ v/m/(s7n).
Also, K
(1 - %) <e cvn/m

m




Exponential Convergence

Theorem (Chizat, Oyallon, Bach; 2019):

“Gradient descent converges with an exponential rate to an arbitrary
small empirical risk if the width n is sufficiently large.”

“The iterates of the descent algorithm stay in a small fixed
neighborhood of the initialization during training.”

~> Lazy Training!




Neural Collapse




Single-Label Classification Problem

Goal: Predict probabilities of classes {1,..., N} for inputs x € D




Single-Label Classification Problem

Goal: Predict probabilities of classes {1,..., N} for inputs x € D

Train network ®: RY — RN computing pre-softmax scores

Inputs Features Outputs

x h(x)  Wh(x)+b

Feature engineering Linear
classifier




Equiangular Tight Frame

Definition:

An equiangular tight frame is a family of vectors {x;}"_; in R with
il = 1 for all i,
|(xi,xj)| = c for all i # j and some constant c,
430 (%, xi)x; = x for all x € RY.

Remark:

An equiangular tight frame is a type of optimal packing of lines in
Euclidean space.




Neural Collapse (Papyan, Han, Dono

[llustration

For 3 classes, features of training samples:

Initialization

Notation

T QY

class n

., := features of samples in

1K (k)
hn = % > 4y hn’ class-n mean

h:= L3N h, global mean

Neural Collapse Phenomena

(in the terminal phase of training)




Neural Collapse (Papyan, Han, Dono

[llustration Neural Collapse Phenomena

For 3 classes, features of training samples: (in the terminal phase of training)

Notation

hfvl), a00g A = features of samples in
class n

— 1K (k)
hn = % > 41 by’ class-n mean

h:= %3N h, global mean




Neural Collapse (Papyan, Han, Don

[llustration

For 3 classes, features of training samples:

- .,
e :
Notation
A, ... hY) = features of samples in
class n

1K (k)
hn = %> 41 ha’ class-n mean

h:= L3N h, global mean

Neural Collapse Phenomena
(in the terminal phase of training)

@ Variability collapse:
1A = hall2 = 0




Neural Collapse (Papyan, Han, Don

[llustration

For 3 classes, features of training samples:
[ ]

...in the limit

Notation
ORI Y

:= features of samples in
class n

1 K (k)
hn =% > 41 ha’ class-n mean

h:= %3N  h, global mean

Neural Collapse Phenomena
(in the terminal phase of training)

@ Variability collapse:
1A = hall2 =0




Neural Collapse (Papyan, Han,

[llustration

For 3 classes, features of training samples:

oh

Ch ...in the limit
ho o hs

¢ e

Notation
AV,
class n

1K
h” T K k=1

h:=4% SN | h, global mean

Ak

., ) .= features of samples in

K
hf,) class-n mean

Neural Collapse Phenomena
(in the terminal phase of training)
@ Variability collapse:
) — halla — O

@® Simplex equiangular tight frame
(ETF) configuration:
[lhn— hll2— [|hm —hll2 — 0
cos £(h, — h, hp, — h) —
1

N—-1

e



Neural Collapse (Papyan, Han,

[llustration

For 3 classes, features of training samples:

oh

Ch ...in the limit
ho o hs

¢ e

Notation
AV,
class n

1K
h” T K k=1

h:=4% SN | h, global mean

Ak

., ) .= features of samples in

K
hf,) class-n mean

Neural Collapse Phenomena
(in the terminal phase of training)

@ Variability collapse:
) — halla — O

@® Simplex equiangular tight frame
(ETF) configuration:

[[hn—hll2 = lAm —hll2 = 0
cos £(h, — h, hp, — h) —
__1

N—-1

© Duality: ||hn — h — Cw,||2 — 0 for
some C € R

e



Neural Collapse (Papyan, Han,

[llustration

For 3 classes, features of training samples:

. eh
h ...in the limit
ho o hs

¢ e

Notation

AV,
class n

1K
h” T K k=1

h:=4% SN | h, global mean

Ak

., ) .= features of samples in

K
hf,) class-n mean

Neural Collapse Phenomena
(in the terminal phase of training)
@ Variability collapse:
|55 = hall2 — 0
@® Simplex equiangular tight frame
(ETF) configuration:
[[hn—hll2 = lAm —hll2 = 0
cos £(h, — h, hp, — h) —
1
T N-1

© Duality: ||hn — h — Cw,||2 — 0 for
some C € R

@ Nearest class center behavior

e



Neural Collapse

Source: Papyan, Han, Donoho. Prevalence of Neural Collapse during the terminal phase
of deep learning training. PNAS 117 (2020), 24652-24663.




Considerations

Terminal Phase of Training:

The last-layer features are not only linearly separable, but actually
collapsed to an equi-angular tight frame.

The last-layer classifier is behaviorally equivalent to the Nearest
Class-Center decision rule.

Additional Work:
Mixon, Parshall, Pi; 2020
Nguyen, Levie, K, Bruna; 2021
Kornblith, Chen, Lee, Norouzi: 2021




Is Training Necessary?




Convolutional Neural Networks (CNNs)

Schematic lllustration:

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0);

Convolutions and RelLU

B G A I P I P A A T I G A P P I g

f fax
LT LT T L LA T LT - - - - LA

Convolutions and RelLU

o s P R A 4 AV B W 4
ﬂ « .« [

I”’ VW ST

Convolutions and RelU

Operation in each Layer:
Input — Convolution — Activation — Pooling — Output




A Mathematical Approach

A Very Nice ldea...
The scattering transform (Mallat, 2014) is a special convolutional neural

network:
It uses fixed predefined (wavelet) filters.

It performs almost as good as a trained neural network in some
applications.

It is more accessible to theoretical analysis.
There exists a continuous as well as discrete theory.




Scattering Transform
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Scattering Transform
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Scattering Transform

Definition: Let
Vo, = {0, Ianen,, ¥, € LHRY) N L2(R?) with
> NF v llb < Ballfl3 forall f € L(R),
An€An
For R, > 1 the subsampling factor, let

(Un[AalF)(x) = R3IF % 9y, [(Rax), A €RY,
For a path of index sets g = (A1,...Ap), Aj € A; let
U[q]f = Un[An](Unfl[)‘nfl] - (Ul[Al]f))a

Xn—1 = 1y, for every n € N.
The associated scattering transformation ®¢q is defined by

o0

f s Do(f) == [ J{UIg]F * Xn-1}q=(r, ) -
n=0

- _
Interpretation: Feature vector




Translation Invariance of the Scattering Transform

Theorem (Mallat; 2014)(Wiatowski at al.; 2016):

Let ®q be a scattering transformation with R, := 1 for all n. Then &, is
translation invariant, i.e.

S (Tef) = T:dq(f)
for all t € R? with (T.f)(x) = f(x — t),x € RY, in particular,

Ulgl(Tef) * xn-1 = Te(U[qlf * xn-1)
for all t € RY.




Deformation Stability of the Scattering Transform

Theorem (Mallat; 2014)(Wiatowski at al.; 2016):
Let ®q be a scattering transformation with max,cy max{B,, B,L2} < 1.
Then for any K > 0, the scattering transformation ®q is stable on £2(RY)
with respect to deformations.
This means that for every K > 0, there exists Cx > 0 such that for all
f € E2(RY) and 7 € C}(RY,RY) with
1 1
I7lloo < 5 and [[D7lloc < 7,
we have .
l|®a(Frf) — Pa(f)Ill < CklIll5,

where (F+F)(x) = f(x — 7(x)). %ﬁ




Some Final Thoughts...




Conclusions

Optimization:
Stochastic gradient descent is the typical choice.
Due to the severe nonconvexity, it is a mystery why “good” local minima
are found.
Unraveling the Mystery:
Analyzing the loss landscape
Lazy training

Neural Collapse

Is Training Necessary?

Scattering Transform
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