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Statistical Wisdom and Overfitting

interpolating fits... [are] unlikely to predict future
data well at all.”

< Trevor Hastie
RobertTishirani

Jetome Friedman

22 2. How to Construct Nonparametric Regression Estimates? RO,

Y4

Lészl6 Gybrfi Michael Kohler
Adam Krzyzak Harro Walk

Figure 2.3. The estimate on the right seems to be more reasonable than the
estimate on the left, which interpolates the data.

over F,. Least squares estimates are defined by minimizing the empirical
L, risk over a general set of functions F,, (instead of (2.7)). Observe that
it doesn’t make sense to minimize (2.9) over all (measurable) functions f,
because this may lead to a function which interpolates the data and hence is

not a reasonable estimate. Thus one has to restrict the set of functions over L

V. ———
see also (B. and Rakhlin, Simons Institute, May 2019)
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Benign Overfitting

A new statistical phenomenon:

good prediction with very small training error for regression loss

@ Statistical wisdom says a prediction rule should not fit too well.

@ But deep networks are trained to fit noisy data perfectly, and they
predict well.

Belkin, Hsu and Mitra, 2018; Belkin, Rakhlin and Tsybakov, 2018
Liang and Rakhlin, 2018;
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Benign Overfitting

@ Benign overfitting prediction rule fdecomposes as

f=fh+A.
o fy = simple component useful for prediction.
@ A = spiky component useful for benign overfitting.

@ Classical statistical learning theory applies to fo.

@ A is not useful for prediction, but it is benign.

(Deep learning: a statistical viewpoint. B., Montanari, Rakhlin. Acta Numerica. 2021)
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Benign Overfitting

Example: kernel smoothing
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Benign Overfitting

Example: kernel smoothing with singular, compact kernels

Kn(x — 1[h <1
Z KX =) o with Ky = LX)
« 3= Knl(x = xj) hl|x||
Mlnlmax rates (Wlth suitable h). (Belkin, Rakhlin, Tsybakov, 2018), (Belkin, Hsu, Mitra, 2018)
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Benign Overfitting

Example: kernel smoothing with singular, compact kernels

Kin(x — 1[h||x|| < 1
Z Yi h X XI) e.g., with Kh(X) _ [ HXH ; ]
< ST Kalx— ) ]
Mlnlmax rates (Wlth suitable h). (Belkin, Rakhlin, Tsybakov, 2018), (Belkin, Hsu, Mitra, 2018)

@ Benign overfitting prediction rule f decomposes as

f=fh+A.
o fy = simple component useful for prediction:
standard (e.g., constant) compact kernel

o A = spiky component useful for benign overfitting:
spiky piece (with small norm in Ly(P)).
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Linear regression
Characterizing benign overfitting

Ridge regression

Beyond linear settings
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Definitions

Minimum norm estimator

e Data: X e H", y € R".

o Estimator § = (XTX) X7y, X7 "
which solves M X L I
min (6
st X0yl = minlIX6 - yIP. 2 o

Notice that gradient flow, initialized at 0:

0o=0, 0 =—Vy|X0—y|?

converges to the minimum norm solution.
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Definitions

Excess prediction error

2

R(é) = E(x,y) (y — XT9)2 — meinE (y — XT9>

/

optimal prediction error

— B |y - x70) = (= xT0")]
_ (éfe*)Tz@fe*).




Definitions

Excess prediction error

2

R(é) = E(x,y) (y — XT67)2 — meinE (y — XT9>

optimal prediction error

/

So X determines the importance of parameter directions.
(Recall that X = 2:)\,-v,-v,-T for orthonormal v;, A\ > Ao > -+ )

1
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From regularization to overfitting

Regularized linear regression

: 1
min  AJ6]* + = [ X6 — ylI?,
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From regularization to overfitting

Regularized linear regression

1
A6IZ + = 11X6 -y,

min

] 2
min  [X0—y]
s.t. 0] < b,
min 161l

1
st. S |IX0—yl’<c.
n
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From regularization to overfitting

Regularized linear regression

: 1
min  AJ6]* + = [ X6 — ylI?,

min X0~y
s.t. 16| < b,
min 161l

1
st. S |IX0—yl’<c.
n

@ The overfitting regime: c < ming E (y — XT9)2.

v
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Interpolating Linear Regression
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Interpolating Linear Regression

Overfitting regime
@ We consider situations where ming || X3 — y|?=0.

o Estimator § = (XTX)TXTy solves

min 1162

HcH

st [IX6—y|? =min|X5 - y|* =0.
@ Hence, ylleTé,...,y,,:x,THA.

@ When can the label noise be hidden in 6 without hurting predictive
accuracy?
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Benign Overfitting: A Characterization

Theorem

(B., Long, Lugosi, Tsigler, 2019), (Tsigler, B., 2020)
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Q If X = ¥1/27 where Z has independent components and 6* is
symmetrized (random sign flips of components),

ER()) > (b.as(e* Y, n) + o mln{k* Rk*”(z) 1})

A 2
Here, bias(6", T, 1) = [0 1ol . + 105121 (Z520)

n
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Notions of Effective Rank

Definition (Effective Ranks)

Recall that A\; > A > --- are the eigenvalues of X.
For k > 0, if Ag41 > 0, define the effective ranks

Z'>k Ai (Z'>k )‘i)z
y) = ==K R (X)) = ==~ |
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Notions of Effective Rank

Definition (Effective Ranks)

Recall that A\; > A > --- are the eigenvalues of X.
For k > 0, if Ag41 > 0, define the effective ranks

2
Ei>k Ai Rk(Z) _ (Zi>k )‘i) '
Myl Dok A7

v
Lemma

rk(Z) =

15/41
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Notions of Effective Rank

(Zi>k )‘i)2

Zi>k Ai
’ Dk A7

W(®) = Ak+1

Rk(X) =

v

Q rno(lp) = Ro(lp) =p
@ If rank(X) = p, we can write

r(X) = rank(X)s(X), Ro(X) = rank(X)S(X),
Py, 2
with s(X) = 1/192/\:1,-1)\:7 S(¥) = (11//[;%1)

Both s and S lie between 1/p (A2 =~ 0) and 1 (\; all equal).
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Benign Overfitting: A Characterization

Theorem

For universal constants b, ¢, and any linear regression problem (6*, o2, Y)
with A\, > 0, if k* = min{k > 0: r,(X) > bn} (effective dimension),
@ With high probability,

R(0) < c (bias(a*, ¥, n) + 02 </; + Rk”(z)>> ,

e With some independence properties,

AN L/ e L n
> = _— .
ER(6) > - (blas(G ,X,n)+o mln{ p + Rk*(2)71}>
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Benign Overfitting: A Characterization

For universal constants b, ¢, and any linear regression problem (6*, o2, Y)
with Ay > 0, if k* =min{k > 0: r,(X) > bn} (effective dimension),
@ With high probability,

R(0) < c (bias(a*, ¥, n) + 02 <kn + Rk”(z)>> ,

e With some independence properties,

ER()) > % (b.as(a* ¥, n) + o mln{k* Rk*”(z) 1})

H * i Ai
bias(8%, %) = 051003, + 105402 (25

n
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Benign Overfitting

o Benign overfitting prediction rule f decomposes as
f=h+A.
o fy = prediction component:

k*-dim subspace corresponding to A1,..., Agx.

@ A = benign overfitting component:
orthogonal subspace. A is benign only if Rex > n.

18/41



Benign Overfitting: A Characterization

@ The mix of eigenvalues of ¥ determines:
© how the label noise is distributed in 9, and

19/41



Benign Overfitting: A Characterization

@ The mix of eigenvalues of ¥ determines:

© how the label noise is distributed in 9, and
@ how errors in 0 affect prediction accuracy.

19/41



Benign Overfitting: A Characterization

@ The mix of eigenvalues of ¥ determines:

© how the label noise is distributed in 9, and
@ how errors in 0 affect prediction accuracy.

@ To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions.

19/41



Benign Overfitting: A Characterization

@ The mix of eigenvalues of ¥ determines:

© how the label noise is distributed in 9, and
@ how errors in 0 affect prediction accuracy.

@ To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions.
e Overparameterization is essential for benign overfitting

19/41



Benign Overfitting: A Characterization

@ The mix of eigenvalues of ¥ determines:

© how the label noise is distributed in 9, and
@ how errors in 0 affect prediction accuracy.

@ To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions.
e Overparameterization is essential for benign overfitting
e Number of ‘small’ eigenvalues: large compared to n,

19/41



Benign Overfitting: A Characterization

@ The mix of eigenvalues of ¥ determines:

© how the label noise is distributed in 9, and
@ how errors in 0 affect prediction accuracy.

@ To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions.
e Overparameterization is essential for benign overfitting

e Number of ‘small’ eigenvalues: large compared to n,
o Small eigenvalues: roughly equal (but they can be more assymmetric if
there are many more than n of them).

v
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Benign Overfitting: Proof Ideas

Interpolation for linear prediction

@ Excess expected loss, has two components: (coresponding to xT6* and y — xT 6*)
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Benign Overfitting: Proof Ideas

Bias-variance decomposition

Define the noise vector € by y = X60* + €.

Estimator: 0=(XTX)XTy =(XTX)'XT(X0* +¢),

(é— 9*)Tz (é— 0*)

Excess risk: R(6)
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Benign Overfitting: Proof Ideas

Bias-variance decomposition

Define the noise vector € by y = X60* + €.
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Benign Overfitting: Two Examples

Suppose x ~ N (0,X) with ¥ = [, and k < n.
Then XTX = ny. ~ nX, and

R(A) ~ 0°T (/ - ii*) (z - z) (/ - iﬁ) 0* + o2tr <()<Tx)T z> ,

22/41



Benign Overfitting: Two Examples

Suppose x ~ N (0,X) with ¥ = [, and k < n.
Then XTX = ny. ~ nX, and

R(A) ~ 0°T (/ - ii*) (z - z) (/ - iﬁ) 0* + o2tr <()<Tx)T z> ,

otr | (XTX TZ ~ o%tr ((nX) 1% 2502.
(emg ) metetozrm =g
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Benign Overfitting: Two Examples

2. High dimension, isotropic

Suppose x ~ N(0,X) with X =/, and p > n.
Then Y3 is the projection on the span of the data in RP. This is an
n-dimensional subspace that's almost orthogonal to 8%, so

2 —1
+ o?tr <(XXT> )
~ (1 . ”) 16712 + 22,
P P

i.e., 0 is a low variance estimate of 0.

R(D) ~ H(/ - iTi) 0*
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Benign Overfitting: A Characterization

Theorem

For universal constants b, ¢, and any linear regression problem (6%, o2,
with A\, > 0, if k* =min{k > 0: r,(X) > bn} (effective dimension),
@ With high probability,

R(0) < c (bias(a*, ¥, n) + 02 <kn + Rk"(z)>> ,

0 Z,’ )\i .
Here, bias(6", =, 1) = 0,103, + 10140122 (Z5)

n

)

IfA{=---=X¢=1and )\k+1:'--:)\p:€With k< ngpk n/e,
then k* = k and r(X) = Re(X) = p — k.

Low-dimension example: the heaviest k-dimensional subspace.
High-dimension example: the p — k-dimensional tail.
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Benign Overfitting: What kinds of eigenvalues?

Theorem

For universal constants b, c, and any linear regression problem (6%, 02, ¥)
with A, > 0, if k* =min{k > 0: r(X) > bn},

@ With high probability,

R(@) < c (bias(ﬁ** ¥, n)+0® <k,7 * Rk*n(2)>> ’

e With some independence properties,

ER(D) > = <b|as(«9* Y, n) + o mln{k* d 1})

25/41




What kinds of eigenvalues?

We say {¥,} is asymptotically benign if

I|m <|Z,, Rk* )) =0,

where ki = min{k > 0: r(X,) > bn}.
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What kinds of eigenvalues?

We say {¥,} is asymptotically benign if

lim <|Z |

where ki = min{k > 0: r(X,) > bn}.

If \j = i~*In=P(i + 1),
Y is benign iff « =1 and g > 1.

The >, A must almost diverge!!?! J
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What kinds of eigenvalues?

Example: Finite dimension, fast \; decay, plus isotropic noise

If

eik"i‘fn if kK < pn,
>\k,n = . 008
0 otherwise,
then X, is benign iff
® p, =w(n),
@ €,pp = o(n) and € p, = w(ne™"). o —e——————
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What kinds of eigenvalues?

Example: Finite dimension, fast \; decay, plus isotropic noise

If

\ e k+e, ifk<pp
k,n = i
" 0 otherwise,
then ¥, is benign iff
® p, =w(n),
@ €,pp = o(n) and € p, = w(ne™"). o —e——————

Furthermore, for p, = Q(n) and e p, = w(ne™"),

R() =0 (6,7[3,, I max{l,n}> .
n n’ pn

Generic phenomenon:
quickly converging A; plus noise in all directions, p, > n.
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What kinds of eigenvalues?

Example: Finite dimension, slow eigenvalue decay

If
Akn:

)

k= if k < pp,
0 otherwise,

then ¥, is benign iff either
e 0<a<l, p,=w(n)and p,=o0 (nl/(l_o‘)), or
o a=1, p,=e“0V" and p, = e,
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What kinds of eigenvalues?

Example: Finite dimension, slow eigenvalue decay

Akn:

)

k= if k < pp,
0 otherwise,

then ¥, is benign iff either
e 0<a<l, p,=w(n)and p,=o0 (nl/(l_o‘)), or
o a=1, p,=e“0V" and p, = e,

Universal phenomenon:

slowly converging A;, truncated at p, > n.
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Linear regression
Characterizing benign overfitting

Ridge regression

Beyond linear settings
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Ridge Regression

Minimum norm ridge regression

~

0, = arg min 161l
s.t. 0 € argmin {||I X8 — y|I* + A|I8I3}
e
—XT (XXT + /\/) y.
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Ridge Regression

Minimum norm ridge regression

0, = argmin 161l
- 2 2
st. S argmﬁm{llXﬁ—yH + MBI}
—I
= X7 (XXT + /\/) y.
@ Covers the range of solutions, from overfitting to regularized.

@ Tight bounds on bias and variance for A € R.

30/41



Ridge Regression

Minimum norm ridge regression

0, = arg min 161l
: 2 2
s.t. 6 € argmin {||IXB — y|I> + A|IB]5}
e
= X7 (xxT + /\/) y.

Covers the range of solutions, from overfitting to regularized.

Tight bounds on bias and variance for A € R.

o Effective ranks, r, and Ry, replaced by
2
A 5 :/\+Zi>k)\i R)\ T) — ()\+Zi>k>\i)
R(E) = = R(s) all
k+1 Disk Af

In some cases (rc«(X) > n), the optimal ) is negative: this decreases
bias without significantly affecting variance.

v
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Ridge Regression

Theorem (Tsigler and B., 2020)

For universal constants b, ¢, and any linear regression problem (6*, o2, Y)
with A, > 0, if k* = min {k > 0:r;(X) > bn}, the ridge regression
estimate 67)\ satisfies

@ With high probability,

. * 2
R < e (s 500 07 (T4 2 ) )

Q If X = ¥1/27 where Z has independent components and the
components of 6 are subject to random sign flips,

A 1 k*
ER(6)) > . (blas(H ,nm\)+o mln{ RAn(Z) 1})
o * AD i 2
Here, bias(0*, %, n, \) = H0k+1oo”):k+1m + 1|63 k” (ﬂ) '

n
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Linear regression
Characterizing benign overfitting

Ridge regression

Beyond linear settings
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Benign Overfitting

o Far from the regime of a tradeoff between fit to training data and
complexity.
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Benign Overfitting

o Far from the regime of a tradeoff between fit to training data and
complexity.
@ In linear regression, a long, flat tail of the covariance eigenvalues is

necessary and sufficient for the minimum norm interpolant to predict
well: The noise is hidden in many unimportant directions.

o Relies on many (roughly equally) unimportant parameter directions
e Finite dimensional data is important:

infinite dimension requires specific eigenvalue decay;

it is a generic phenomenon for truncated slow decay.

@ From interpolation to ridge regression
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Benign overfitting in deep networks?

Neural networks versus linear prediction

For wide enough randomly initialized neural networks, gradient descent
dynamics quickly converge to a min-norm interpolating solution in a
certain finite-dimensional reproducing kernel Hilbert space.
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Benign overfitting in deep networks?

Neural networks versus linear prediction

For wide enough randomly initialized neural networks, gradient descent
dynamics quickly converge to a min-norm interpolating solution in a
certain finite-dimensional reproducing kernel Hilbert space.

For example, for
1 m
= =3 s ((wiyx)),
vm

the corresponding (random) kernel is

K™ (x, ) : Za ({wi, x)) 0" ({wi, ) (x, x5).

(Xie, Liang, Song, '16), (Jacot, Gabriel, Hongler '18), (Li and Liang, 2018), (Du, Poczés, Zhai, Singh, 2018), (Du, Lee, Li,

Wang, Zhai, 2018), (Arora, Du, Hu, Li, Wang, 2019).

35/41



Benign Overfitting

Next steps

@ Linear regression: beyond minimum Euclidean norm
(Koehler, Zhou, Sutherland, Srebro, 2021)

@ Linear neural networks: neural tangent kernels,
random feature models (fix random w;, estimate a;)
(Liang, Rakhlin, Zhai, 2020)
(Mei, Misiakiewicz, Montanari, 2021)
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Benign Overfitting

Next steps beyond linear settings

@ Linear regression: beyond minimum Euclidean norm
(Koehler, Zhou, Sutherland, Srebro, 2021)

@ Linear neural networks: neural tangent kernels,
random feature models (fix random w;, estimate a;)
(Liang, Rakhlin, Zhai, 2020)
(Mei, Misiakiewicz, Montanari, 2021)

High-dimensional logistic regression.
(Chatterji and Long, 2020)

Invariance to transformations of losses. (Shamir, 2022)

Classification with two-layer ReLU networks.

36/41



Benign overfitting with two-layer ReLU networks

Classification with a linear signal with label noise
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Benign overfitting with two-layer ReLU networks

Classification with a linear signal with label noise

@ Clean data:

Class conditionals are p-separated, 1-subgaussian, log-concave
distributions in RY.

@ Plus noise:
Labels are flipped with probability 1(x), and En(x) < n.
@ For sample size n, probability of failure 4:
o d = Q(njull? + nlog(1/3)),
o [|ull® = Q(log(n/d)).
o n = Q(log(1/9)).

37/41



Benign overfitting with two-layer ReLU networks

Two-layer network, gradient descent
@ Smooth leaky ReLU: 0 < v < ¢(z) <1 and |[¢"||oc < H.
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Two-layer network, gradient descent

@ Smooth leaky ReLU: 0 < v < ¢/(z) <1 and ||¢"||c < H.
@ m hidden units with adjustable parameters, fixed output parameters.

@ Low variance random initialization (no NTK).

@ Gradient descent on logistic loss with suitably small step-size.

Theorem (Chatterji, Frei, B., 2022)
After poly(||ul||, n,d, m,1/€) steps, gradient descent finds weights with

@ Training loss below e,
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Benign overfitting with two-layer ReLU networks

Two-layer network, gradient descent
@ Smooth leaky ReLU: 0 < v < ¢'(z) <1 and ||¢" || < H.
@ m hidden units with adjustable parameters, fixed output parameters.

@ Low variance random initialization (no NTK).

@ Gradient descent on logistic loss with suitably small step-size.

Theorem (Chatterji, Frei, B., 2022)
After poly(||ul||, n,d, m,1/€) steps, gradient descent finds weights with

@ Training loss below e,
cnllpl*

@ Test error within 1 + 2 exp <— > of the optimal test error for

the clean distribution.

A,
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Benign overfitting with two-layer ReLU networks

@ The parameters change dramatically during training, even at the first
step. This is an essentially nonlinear method.
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Benign overfitting with two-layer ReLU networks

Remarks
@ The parameters change dramatically during training, even at the first
step. This is an essentially nonlinear method.
@ The analysis tracks a proxy loss, g(yf(x)) = —¢(yf(x)), and exploits
a PL-inequality (gradient bounded below by loss). (Frei, Cao, Gu, 2019)
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Benign overfitting with two-layer ReLU networks

@ The parameters change dramatically during training, even at the first
step. This is an essentially nonlinear method.

@ The analysis tracks a proxy loss, g(yf(x)) = —¢(yf(x)), and exploits
a PL-inequality (gradient bounded below by loss). (Frei, Cao, Gu, 2019)

@ Notice that the covariance of x has a single dominant direction, and
this is the signal direction (difference of class-conditional means).

39/41



Benign Overfitting in Linear and Nonlinear Settings
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Benign Overfitting in Linear and Nonlinear Settings

Open Questions
@ Nonlinear signal models?

>
Il
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@ Deep networks? + A?
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Benign Overfitting in Linear and Nonlinear Settings
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