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Overfitting in Deep Networks

Deep networks can be trained to zero
training error (for regression loss)

... with near state-of-the-art
performance

... even for noisy problems.

No tradeoff between fit to training data
and complexity!

Benign overfitting.

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) also (Belkin, Hsu, Ma, Mandal, 2018)
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Statistical Wisdom and Overfitting

“... interpolating fits... [are] unlikely to predict future

data well at all.”

see also (B. and Rakhlin, Simons Institute, May 2019)
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Benign Overfitting

A new statistical phenomenon:
good prediction with very small training error for regression loss

Statistical wisdom says a prediction rule should not fit too well.

But deep networks are trained to fit noisy data perfectly, and they
predict well.

Belkin, Hsu and Mitra, 2018; Belkin, Rakhlin and Tsybakov, 2018

Liang and Rakhlin, 2018;

Belkin, Hsu, Ma and Mandal, 2019; Belkin, Hsu and Xu, 2019; Bibas, Fogel and Feder, 2019; Hastie, Montanari, Rosset and
Tibshirani, 2019; Dereziński, Liang and Mahoney, 2019; Liang, Rakhlin and Zhai, 2019; Mei and Montanari, 2019; Mitra, 2019;
Muthukumar, Vodrahalli and Sahai, 2019; Nakkiran, 2019; Bunea, Strimas-Mackey, Wegkamp, 2020; Chinot and Lerasle, 2020;
Chinot, Löffler, van de Geer, 2020; Kobak, Lomond and Sanchez, 2020; Nakkiran, Venkat, Kakade and Ma, 2020; Hastie,
Montanari, Rosset and Tibshirani, 2020; Mei, Misiakiewicz, Montanari, 2021; Celentano, Misiakiewicz, Montanari, 2021; Zou,
Wu, Braverman, Gu and Kakade, 2021; Li, Zhou, Gretton, 2021; Minsker, Ndaoud, Shen, 2021;

Deep learning: a statistical viewpoint. B., Montanari, Rakhlin. Acta
Numerica. 2021. arXiv:2103.09177
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Tibshirani, 2019; Dereziński, Liang and Mahoney, 2019; Liang, Rakhlin and Zhai, 2019; Mei and Montanari, 2019; Mitra, 2019;
Muthukumar, Vodrahalli and Sahai, 2019; Nakkiran, 2019; Bunea, Strimas-Mackey, Wegkamp, 2020; Chinot and Lerasle, 2020;
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Benign Overfitting

Intuition

Benign overfitting prediction rule f̂ decomposes as

f̂ = f̂0 + ∆.

f̂0 = simple component useful for prediction.

∆ = spiky component useful for benign overfitting.

Classical statistical learning theory applies to f̂0.

∆ is not useful for prediction, but it is benign.

(Deep learning: a statistical viewpoint. B., Montanari, Rakhlin. Acta Numerica. 2021)
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Benign Overfitting

Example: kernel smoothing

with singular, compact kernels

f̂ (x) =
n∑

i=1

yiKh(x − xi )∑n
j=1 Kh(x − xj)

e.g., with Kh(x) =
1 [h‖x‖ ≤ 1]

h‖x‖α
.

Minimax rates (with suitable h). (Belkin, Rakhlin, Tsybakov, 2018), (Belkin, Hsu, Mitra, 2018)

6 / 41



Benign Overfitting

Example: kernel smoothing with singular, compact kernels

f̂ (x) =
n∑

i=1

yiKh(x − xi )∑n
j=1 Kh(x − xj)

e.g., with Kh(x) =
1 [h‖x‖ ≤ 1]

h‖x‖α
.

Minimax rates (with suitable h). (Belkin, Rakhlin, Tsybakov, 2018), (Belkin, Hsu, Mitra, 2018)

6 / 41



Benign Overfitting

Example: kernel smoothing with singular, compact kernels

f̂ (x) =
n∑

i=1

yiKh(x − xi )∑n
j=1 Kh(x − xj)

e.g., with Kh(x) =
1 [h‖x‖ ≤ 1]

h‖x‖α
.

Minimax rates (with suitable h). (Belkin, Rakhlin, Tsybakov, 2018), (Belkin, Hsu, Mitra, 2018)

Benign overfitting prediction rule f̂ decomposes as

f̂ = f̂0 + ∆.

f̂0 = simple component useful for prediction:
standard (e.g., constant) compact kernel

∆ = spiky component useful for benign overfitting:
spiky piece (with small norm in L2(P)).
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Outline

Linear regression

Characterizing benign overfitting

Ridge regression

Beyond linear settings
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Definitions

Simple Prediction Setting: Linear Regression

Covariate x ∈ H (Hilbert space); response y ∈ R.

Assumptions:
(x , y) subgaussian, mean zero, well-specified: E[y |x ] = x>θ∗.
x satisfies a small ball condition: ∃c > 0, Pr

(
‖x‖2 < cE‖x‖2

)
≤ δ.

Define:

Σ := Exx> =
∑
i

λiviv
>
i , (assume λ1 ≥ λ2 ≥ · · · )

θ∗ := arg min
θ

E
(
y − x>θ

)2
,

σ2 := E(y − x>θ∗)2.
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Definitions

Minimum norm estimator

Data: X ∈ Hn, y ∈ Rn.

Estimator θ̂ =
(
X>X

)†
X>y ,

which solves

min
θ∈H

‖θ‖2

s.t. ‖Xθ − y‖2 = min
β
‖Xβ − y‖2 .

X =


x>1
x>2
...

x>n

 y =


y1

y2

...

yn



Notice that gradient flow, initialized at 0:

θ0 = 0, θ̇t = −∇θ‖Xθ − y‖2

converges to the minimum norm solution.
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Definitions

Excess prediction error

R(θ̂) := E(x ,y)

(
y − x>θ̂

)2
−min

θ
E
(
y − x>θ

)2

︸ ︷︷ ︸
optimal prediction error

= E(x ,y)

[(
y − x>θ̂

)2
−
(
y − x>θ∗

)2
]

=
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
.

So Σ determines the importance of parameter directions.

(Recall that Σ =
∑
i

λiviv
>
i for orthonormal vi , λ1 ≥ λ2 ≥ · · · .)
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From regularization to overfitting

Regularized linear regression

min λ‖θ‖2 +
1

n
‖Xθ − y‖2 ,

min ‖Xθ − y‖2

s.t. ‖θ‖ ≤ b,

min ‖θ‖

s.t.
1

n
‖Xθ − y‖2 ≤ c .

The overfitting regime: c � minθ E
(
y − x>θ

)2
.
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Interpolating Linear Regression

Overfitting regime

We consider situations where minβ ‖Xβ − y‖2 = 0.

Estimator θ̂ =
(
X>X

)†
X>y solves

min
θ∈H

‖θ‖2

s.t. ‖Xθ − y‖2 = min
β
‖Xβ − y‖2 = 0.

Hence, y1 = x>1 θ̂, . . . , yn = x>n θ̂.

When can the label noise be hidden in θ̂ without hurting predictive
accuracy?
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Benign Overfitting: A Characterization

Theorem (B., Long, Lugosi, Tsigler, 2019), (Tsigler, B., 2020)

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0,

if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn} (effective dimension),

1 With high probability,

R(θ̂) ≤ c

(
bias(θ∗,Σ, n) + σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2 If X = Σ1/2Z where Z has independent components and θ∗ is
symmetrized (random sign flips of components),

ER(θ̂) ≥ 1

c

(
bias(θ∗,Σ, n) + σ2 min

{
k∗

n
+

n

Rk∗(Σ)
, 1

})
.

Here, bias(θ∗,Σ, n) = ‖θ∗k+1:∞‖2
Σk+1:∞

+ ‖θ∗1:k‖2
Σ−1

1:k

(∑
i>k λi
n

)2
.
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Notions of Effective Rank

Definition (Effective Ranks)

Recall that λ1 ≥ λ2 ≥ · · · are the eigenvalues of Σ.
For k ≥ 0, if λk+1 > 0, define the effective ranks

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

Lemma

1 ≤ rk(Σ) ≤ Rk(Σ) ≤ r2
k (Σ).
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Notions of Effective Rank

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

Examples

1 r0(Ip) = R0(Ip) = p.

2 If rank(Σ) = p, we can write

r0(Σ) = rank(Σ)s(Σ), R0(Σ) = rank(Σ)S(Σ),

with s(Σ) =
1/p

∑p
i=1 λi

λ1
, S(Σ) =

(
1/p

∑p
i=1 λi

)2

1/p
∑p

i=1 λ
2
i

.

Both s and S lie between 1/p (λ2 ≈ 0) and 1 (λi all equal).
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Benign Overfitting

Benign overfitting prediction rule f̂ decomposes as

f̂ = f̂0 + ∆.

f̂0 = prediction component:
k∗-dim subspace corresponding to λ1, . . . , λk∗ .

∆ = benign overfitting component:
orthogonal subspace. ∆ is benign only if Rk∗ � n.
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Benign Overfitting: A Characterization

Intuition

The mix of eigenvalues of Σ determines:
1 how the label noise is distributed in θ̂, and

2 how errors in θ̂ affect prediction accuracy.

To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions.

Overparameterization is essential for benign overfitting

Number of ‘small’ eigenvalues: large compared to n,
Small eigenvalues: roughly equal (but they can be more assymmetric if
there are many more than n of them).
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Benign Overfitting: Proof Ideas

Interpolation for linear prediction

Excess expected loss, has two components: (corresponding to x>θ∗ and y − x>θ∗)

1 θ̂ is a distorted version of θ∗, because the sample x1, . . . , xn distorts our
view of the covariance of x .

Not a problem, even in high dimensions (p > n).

2 θ̂ is corrupted by the noise in y1, . . . , yn.

Problematic.

When can the label noise be hidden in θ̂ without hurting predictive
accuracy?
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Benign Overfitting: Proof Ideas

Bias-variance decomposition

Define the noise vector ε by y = Xθ∗ + ε.

Estimator: θ̂ = (X>X )†X>y

= (X>X )†X>(Xθ∗ + ε),

Excess risk: R(θ̂) =
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)

≈ θ∗>
(
I − Σ̂Σ̂†

)(
Σ− Σ̂

)(
I − Σ̂†Σ̂

)
θ∗

+ σ2tr

((
X>X

)†
Σ

)
.
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Benign Overfitting: Two Examples

1. Low dimension

Suppose x ∼ N (0,Σ) with Σ = Ik and k � n.

Then X>X = nΣ̂ ≈ nΣ, and

R(θ̂) ≈ θ∗>
(
I − Σ̂Σ̂†

)(
Σ− Σ̂

)(
I − Σ̂†Σ̂

)
θ∗ + σ2tr

((
X>X

)†
Σ

)
,

σ2tr

((
X>X

)†
Σ

)
≈ σ2tr

(
(nΣ)−1Σ

)
=

k

n
σ2.
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Benign Overfitting: Two Examples

2. High dimension, isotropic

Suppose x ∼ N (0,Σ) with Σ = Ip and p � n.
Then Σ̂†Σ̂ is the projection on the span of the data in Rp. This is an
n-dimensional subspace that’s almost orthogonal to θ∗, so

R(θ̂) ≈
∥∥∥(I − Σ̂†Σ̂

)
θ∗
∥∥∥2

+ σ2tr

((
XX>

)−1
)

≈
(

1− n

p

)
‖θ∗‖2 +

n

p
σ2.

i.e., θ̂ is a low variance estimate of 0.
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Benign Overfitting: A Characterization

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn} (effective dimension),

1 With high probability,

R(θ̂) ≤ c

(
bias(θ∗,Σ, n) + σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

Here, bias(θ∗,Σ, n) = ‖θ∗k+1:∞‖2
Σk+1:∞

+ ‖θ∗1:k‖2
Σ−1

1:k

(∑
i>k λi
n

)2
.

If λ1 = · · · = λk = 1 and λk+1 = · · · = λp = ε with k � n� p � n/ε,
then k∗ = k and rk(Σ) = Rk(Σ) = p − k .
Low-dimension example: the heaviest k-dimensional subspace.
High-dimension example: the p − k-dimensional tail.
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Benign Overfitting: What kinds of eigenvalues?

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
bias(θ∗,Σ, n) + σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2 With some independence properties,

ER(θ̂) ≥ 1

c

(
bias(θ∗,Σ, n) + σ2 min

{
k∗

n
+

n

Rk∗(Σ)
, 1

})
.
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What kinds of eigenvalues?

We say {Σn} is asymptotically benign if

lim
n→∞

(
‖Σn‖

√
r0(Σn)

n
+

k∗n
n

+
n

Rk∗n (Σn)

)
= 0,

where k∗n = min {k ≥ 0 : rk(Σn) ≥ bn}.

Example

If λi = i−α ln−β(i + 1),
Σ is benign iff α = 1 and β > 1.

The
∑

i λi must almost diverge!!?!
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What kinds of eigenvalues?

Example: Finite dimension, fast λi decay, plus isotropic noise

If

λk,n =

{
e−k + εn if k ≤ pn,

0 otherwise,

then Σn is benign iff

pn = ω(n),

εnpn = o(n) and εnpn = ω(ne−n).

Furthermore, for pn = Ω(n) and εnpn = ω(ne−n),

R(θ̂) = O

(
εnpn
n

+ max

{
1

n
,
n

pn

})
.

Generic phenomenon:
quickly converging λi plus noise in all directions, pn � n.
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What kinds of eigenvalues?

Example: Finite dimension, slow eigenvalue decay

If

λk,n =

{
k−α if k ≤ pn,

0 otherwise,

then Σn is benign iff either

0 < α < 1, pn = ω(n) and pn = o
(
n1/(1−α)

)
, or

α = 1, pn = eω(
√
n) and pn = eo(n).

Universal phenomenon:
slowly converging λi , truncated at pn � n.
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Outline

Linear regression

Characterizing benign overfitting

Ridge regression

Beyond linear settings

29 / 41



Ridge Regression

Minimum norm ridge regression

θ̂λ = arg min ‖θ‖
s.t. θ ∈ arg min

β

{
‖Xβ − y‖2 + λ‖β‖2

2

}
= X>

(
XX> + λI

)−1
y .

Covers the range of solutions, from overfitting to regularized.

Tight bounds on bias and variance for λ ∈ R.

Effective ranks, rk and Rk , replaced by

rλk (Σ) =
λ+

∑
i>k λi

λk+1
, Rλk (Σ) =

(
λ+

∑
i>k λi

)2∑
i>k λ

2
i

.

In some cases (rk∗(Σ)� n), the optimal λ is negative: this decreases
bias without significantly affecting variance.
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Ridge Regression

Theorem (Tsigler and B., 2020)

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min

{
k ≥ 0 : rλk (Σ) ≥ bn

}
, the ridge regression

estimate θ̂λ satisfies

1 With high probability,

R(θ̂λ) ≤ c

(
bias(θ∗,Σ, n, λ) + σ2

(
k∗

n
+

n

Rλk∗(Σ)

))
,

2 If X = Σ1/2Z where Z has independent components and the
components of θ∗ are subject to random sign flips,

ER(θ̂λ) ≥ 1

c

(
bias(θ∗,Σ, n, λ) + σ2 min

{
k∗

n
+

n

Rλk∗(Σ)
, 1

})
.

Here, bias(θ∗,Σ, n, λ) = ‖θ∗k+1:∞‖2
Σk+1:∞

+ ‖θ∗1:k‖2
Σ−1

1:k

(
λ+

∑
i>k λi
n

)2
.
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Outline

Linear regression

Characterizing benign overfitting

Ridge regression

Beyond linear settings
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Benign Overfitting

Far from the regime of a tradeoff between fit to training data and
complexity.

In linear regression, a long, flat tail of the covariance eigenvalues is
necessary and sufficient for the minimum norm interpolant to predict
well: The noise is hidden in many unimportant directions.

Relies on many (roughly equally) unimportant parameter directions
Finite dimensional data is important:
infinite dimension requires specific eigenvalue decay;
it is a generic phenomenon for truncated slow decay.

From interpolation to ridge regression
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Benign Overfitting

Next steps

Linear regression: beyond minimum Euclidean norm
(Koehler, Zhou, Sutherland, Srebro, 2021)

Linear neural networks:
neural tangent kernels, random feature models

(Liang, Rakhlin, Zhai, 2020)

(Mei, Misiakiewicz, Montanari, 2021)
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Benign overfitting in deep networks?

Neural networks versus linear prediction

For wide enough randomly initialized neural networks, gradient descent
dynamics quickly converge to a min-norm interpolating solution in a
certain finite-dimensional reproducing kernel Hilbert space.

For example, for

f (x) =
1√
m

m∑
i=1

aiσ (〈wi , x〉) ,

the corresponding (random) kernel is

Km(x , xj) :=
1

m

m∑
i=1

a2
i σ
′ (〈wi , x〉)σ′ (〈wi , xj〉) 〈x , xj〉.

(Xie, Liang, Song, ’16), (Jacot, Gabriel, Hongler ’18), (Li and Liang, 2018), (Du, Poczós, Zhai, Singh, 2018), (Du, Lee, Li,

Wang, Zhai, 2018), (Arora, Du, Hu, Li, Wang, 2019).
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Benign Overfitting

Next steps

beyond linear settings

Linear regression: beyond minimum Euclidean norm
(Koehler, Zhou, Sutherland, Srebro, 2021)

Linear neural networks: neural tangent kernels,
random feature models (fix random wi , estimate ai )

(Liang, Rakhlin, Zhai, 2020)

(Mei, Misiakiewicz, Montanari, 2021)

High-dimensional logistic regression.
(Chatterji and Long, 2020)

Invariance to transformations of losses. (Shamir, 2022)

Classification with two-layer ReLU networks.
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Benign overfitting with two-layer ReLU networks

Classification with a linear signal with label noise

Clean data:
Class conditionals are µ-separated, 1-subgaussian, log-concave
distributions in Rd .

Plus noise:
Labels are flipped with probability η(x), and Eη(x) ≤ η.

For sample size n, probability of failure δ:

d = Ω̃(n‖µ‖2 + n2 log(1/δ)),
‖µ‖2 = Ω(log(n/δ)).
n = Ω(log(1/δ)).
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Benign overfitting with two-layer ReLU networks

Two-layer network, gradient descent

Smooth leaky ReLU: 0 < γ ≤ φ′(z) ≤ 1 and ‖φ′′‖∞ ≤ H.

m hidden units with adjustable parameters, fixed output parameters.

Low variance random initialization (no NTK).

Gradient descent on logistic loss with suitably small step-size.

Theorem (Chatterji, Frei, B., 2022)

After poly(‖µ‖, n, d ,m, 1/ε) steps, gradient descent finds weights with

Training loss below ε,

Test error within η + 2 exp

(
−cn‖µ‖4

d

)
of the optimal test error for

the clean distribution.
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Benign overfitting with two-layer ReLU networks

Remarks

The parameters change dramatically during training, even at the first
step. This is an essentially nonlinear method.

The analysis tracks a proxy loss, g(yf (x)) = −`′(yf (x)), and exploits
a PL-inequality (gradient bounded below by loss). (Frei, Cao, Gu, 2019)

Notice that the covariance of x has a single dominant direction, and
this is the signal direction (difference of class-conditional means).
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Benign Overfitting in Linear and Nonlinear Settings

Open Questions

Nonlinear signal models?

Deep networks?

f̂ = f̂0 + ∆?
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