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Why bother?

• In general, we have been quite lucky that 
cases have followed the epidemic.

• But ultimately they are biased by factors we
don’t understand like testing behaviour – e.g.
now (!) and last September when testing 
capacity was an issue.

• The ONS and REACT community surveys do
not suffer from such bias, particularly 
important when asymptomatic transmission is 
so key for policy.



Why households

Household models are an integral part of the history of infectious
disease epidemiology, alongside the better known
whole-population models like the SIR equations. Households are
important for various reasons:
I The close, repeated nature of contact within the household
means that within-household transmission of infectious
disease is common.

I Most of the population lives in relatively small, stable
households and so these are a natural unit for data collection.

I We can design interventions at the household level – this
pandemic, the emphasis has been on whole-household
isolation, and school LFD testing has a strong household
element, for example.



History

Personal view – there have been three ‘eras’:
�. Early-mid ��th century: Reed and Frost’s unpublished work in
the ����s on the first stochastic epidemic model (simulated
using a modified roulette table). Theoretical developments by
e.g. Bailey and symptom-based empirical observations by e.g.
Hope Simpson.

�. Late ��th century: General final-size formula from Ball,
Statistical work using this by e.g. Addy, Longini, Halloran on
e.g. Tecumseh study based on viral culture.

�. ��st century: Modern computational methods (e.g. MCMC –
Demiris and O’Neill) available as well as modern molecular
techniques such as PCR for empirical work.

As is o�en the case, in an emergency, we will use the last era’s
methods to get a timely answer!



This work

I Paper is on arXiv:����.�����: T. House L. Pellis, K. B. Pouwels,
S. Bacon, A. Eidukas, K. Jahanshahi, R. M. Eggo, A. S. Walker,
“Inferring Risks of Coronavirus Transmission from Community
Household Data.”

I Methodology developed in arXiv:����.�����: T. M. Kinyanjui and
T. House, “Generalised Linear Models for Dependent Binary
Outcomes with Applications to Household Stratified Pandemic
Influenza Data.”

I Uses data from the UK O�ice for National Statistics’ COVID-��
Infection Survey, a large longitudinal household study based
on (approximately) uniformly random sampling from the
population.†

†https://www.ons.gov.uk/peoplepopulationandcommunity/
healthandsocialcare/conditionsanddiseases/bulletins/
coronaviruscovid��infectionsurveypilot/previousReleases



ONS study design
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The study design involves weekly thenmonthly household visits for
a year, and uses tests for live virus. This reduces the sampling bias
of data obtained through case ascertainment in the public health
system, but at the cost that the actual transmission routes are not
observed.



Time periods

Our approach to analysis of the data must therefore be designed to
deal with the study design as detailed. We start by splitting the data
into the following tranches, with associated time periods and
notable events.
I Tranche �: �� April ���� to � September ����; low prevalence;
schools closed; B.�.�.� variant not emerged yet.

I Tranche �: � September ���� to �� November ����; high
prevalence; schools open; negligible B.�.�.� variant.

I Tranche �: �� November ���� to � January ����; high
prevalence; schools mainly open; B.�.�.� variant emerged.

I Tranche �: � January ���� to �� February ����; high
prevalence; schools mainly closed; B.�.�.� variant dominant.

Assume now that the following properties are indexed by tranche.



‘Table �’
We are also interested in the impact of the following on infection
risk:
I Household size
I The B.�.�.� variant (identified via S-gene target failure)
I Age of participant
I Work in patient-facing roles

These are distributed in the sample as below:

Tranche � Tranche � Tranche � Tranche � Overall
Number of participants ����� ������ ������ ������ ������
Number of households ����� ������ ������ ������ ������

Number of positive individuals ��� ���� ���� ���� �����
Households with 1+ positive ��� ���� ���� ���� �����

OR+N+S positives ��� ���� ���� ��� ����
OR+N positives �� ��� ���� ���� ����
Children<�� ���� ����� ����� ����� �����
Children ��–�� ���� ����� ����� ����� �����

Patient-facing participants ���� ���� ����� ����� �����



Setup

Suppose we have a set of n individuals (participants), indexed
i, j, . . . 2 [n], where we use the notation [k] to stand for the set of
integers from 1 to k inclusive. These individuals are members ofm
households, and we represent the a-th household using a set of
individual indicesHa. These are specified such that each individual
is in exactly one household, so formally,

Ha ✓ [n], 8a 2 [m] , Ha \Hb = ?, 8a 2 [m], b 2 [m] \ {a} ,

m[

a=1

Ha = [n] .

The size of the a-th household is then na = |Ha|. We let xi be the
length-p feature vector (also called covariates) associated with the
i-th individual, and yi be the test result so that yi = 1 if the swab is
positive and yi = 0 if not.



Exploratory analysis – histograms

I Before jumping in to modelling (as I teach MSc students!) we
should do an exploratory analysis of the data.

I The heights of the histogram bars are given by

Zk,` =
mX

a=1

{na=`} {
P

i2Ha
yi=k} ,

k 2 {2, 3, 4, 5, 6} , ` 2 {0, . . . , k} ,

where stands for the indicator function.
I Verbally,Zk,` is the count of households of size `with k
participants testing positive.



Histograms for Tranches � and �



Histograms for Tranches � and �



Exploratory analysis – Density plots
I The density plots are obtained by considering some feature (in
this case, age) that takes values 0 or 1. We then form a point
ra 2 [0, 1]2 for each householdHa such that
X

i2Ha

{yi=1} > 0 ,
X

i2Ha

{xi=1} > 0 ,
X

i2Ha

{xi=0} > 0 ,

through the definition

ra =

✓P
i2Ha {yi=1&xi=1}P

i2Ha {xi=1}
,

P
i2Ha {yi=1&xi=0}P

i2Ha {xi=0}

◆
.

I Then we can construct a kernel density estimate in the usual
way by summing then normalising kernel functions around the
points, in particular the width-w square kernel function

K(r, ra) = {||r�ra||1<w} .

I We use age (�� years old and under versus over �� years old) as
the feature in making the density plots below.



Density plots for Tranches � and �



Density plots for Tranches � and �



Residual analysis

I Pearson residuals let us tabulate features and positives in
households in a manner that allows their clustering to be
assessed.

I Let xi be the feature for individual i that takes values with
generic labelsA,B, . . . in particular PCR gene patterns.

I We are then interested in the table of pairs of individuals in
households in the setH ✓ [m]with certain properties,

YAB =
X

a2H,i2Ha,j2Ha\{i}

{xi=A} {xj=B} .

I Verbally, YAB is the count in the sample ofA-B pairs in the set
of households.



Residual analysis
I The null hypothesis to compare to is independent state
probabilities⇡ = (⇡A)with MLE

⇡̂A =
1

n

X

i2[n]

{xi=A} .

I The expected table under the null is

MAB = ⇡A⇡B

X

a2H

na(na � 1) .

I And the Pearson residual associated with the (A,B)-th table
entry is

RAB =
YAB �MAB

p
MAB

.

I Such residuals are typically interpreted such that values larger
than 2 are indicative of significant positive correlation, and
values smaller than�2 are indicative of significant negative
correlation.



Residual plots

(a) Tranche � (b) Tranche �

(c) Tranche � (d) Tranche �



Sellke construction
We are now going to think about how tomodel the
within-household epidemic, which starts with the Sellke
construction.
I We suppose that each individual i has a stochastic variable Ti

for its infectious period, picked from the infectious period
distribution, and that susceptible individuals have a random
threshold ⌅i ⇠ Exp(1).

I The individual then becomes infectious when their threshold is
exceeded by the total force of infection they have experienced.
To see why this is equivalent to the standard definition,
consider

Pr(⌅ > ⇤(t+ �t)|⌅ > ⇤(t)) =

R ⇤(t+�t)
0 exp(�⇠)d⇠
R ⇤(t)
0 exp(�⇠)d⇠

= 1� ⇤(t)�t+ o(�t) .



Final size equations
Wewill nowwrite down the relevant equations for a householdH of
size nwith outcome vector y and feature matrixX (i.e. suppressing
the household index a to simplify notation). In particular, given a
map ◆ : {0, 1}n ! {1, . . . , 2n}, we will be able to form the vector
P = (P◆(y))y2{0,1}n of probabilities of di�erent outcomes in the
household. This will be a solution to the set of linear equations

B(✓)P = 1 , (�)

where 1 is a length-2n vector of all ones, and
B = [B◆(⌫),◆(!)]⌫,!2{0,1}n , which has

B◆(⌫),◆(!) = B⌫,! =
1

Q
j2H

�
�P

i2H
(1� ⌫i)�ij

�
!j

Q
1�⌫j

j

,

⌫  ! 2 {0, 1}n, and other elements equal to zero, where we write
 between vectors to stand for the statement that each element on
the le�-hand side is less than or equal to the corresponding
element on the right-hand side.



i

Component 1: External infection 

Λi



Final size equations
The first model component is the probability of avoiding infection
from outside; for the i-th individual this is

Qi = e�⇤i , ⇤i = ⇤e↵·xi = e↵0+↵·xi .

In the language of infectious disease modelling,⇤i is the
cumulative force of infection experienced by the i-th individual.
Then exp(↵k) is the relative external exposure associated with the
k-th feature / covariate, meaning that it is the multiplier in front of
the baseline force of infection, which is that for an individual whose
feature vector is all zeros, 0. This baseline probability of avoiding
infection from outside is then

q = exp(�⇤) = exp(� exp(↵0)) , (�)

and we will report (1� q) in tables, alongside the relative external
exposures that are elements of the vector↵, although it would also
be possible to use (�) to relate this to the baseline force of infection
⇤ or intercept of the linear predictor, ↵0.



i k

Component 2: Within-household infection

λik



Final size equations
The second component of the model is variability in the
infectiousness at the individual level, usually interpreted as arising
from the distribution of infectious periods. We assume that each
individual picks from a unit-mean Gamma distribution since this
provides a natural one-parameter distribution with appropriate
support. The Laplace transform of this is used and is

�(s) = (1 + #s)�1/# .

The parameter # is the variance of the Gamma distribution, i.e. it is
larger for more individual variability. To see why the Laplace
transformation is appropriate, consider the Sellke construction and
assume a baseline rate of infection, �, to be multiplied by infectious
duration T to give total force of infection⇤ = �T , so

Pr(⌅ > ⇤) =

Z
1

0
F⌅(�t)fT (t)dt =

Z
1

0
e��t

fT (t)dt = L[fT ](�) .



Final size equations

The third component of the model is the infection rate from
individual j to individual i,

�ij = n
⌘
��i⌧j = n

⌘
�e�·xie�·xj = e�·xie�0+⌘ log(n)+�·xj . (�)

In this equation: � is the baseline rate of infection; �i = e�·xi is the
relative susceptibility of the i-th participant, and exp(�k) is the
relative susceptibility associated with the k-th feature; ⌧j = e�·xj is
the relative transmissibility of the j-th participant, and exp(�k) is
the relative transmissibility associated with the k-th feature /
covariate. As can be seen from (�), we can interpret log(�) as the
intercept of the linear predictor for transmissibility. The term n

⌘ is a
modelling approach to the e�ect of household size usually
attributed to Cauchemez; as can be seen from (�), this is equivalent
to taking log(n) as a covariate for transmissibility.



Likelihood function and fitting

I We can then produce a likelihood for the data from the
probability model.

I This will take the form of a product of probabilities derived
from solving the Ball equations (�).

I Actually fitting this model to �M observations on a secure
environment is non-trivial, and involves a significant numerical
linear algebra computational e�ort.

I For the results here, NumPy was su�icient, but we are
experimenting with implementation in Numba.

I We carried out approximate Bayesian inference.
I This was done using the Laplace approximation and a
standard normal prior on each parameter.

I Multi-restart numerical optimisation using a Quasi-Newton
method was used.



Results – ‘Table �’

Point estimates and CrIs for each parameter are:

Tranche � Tranche � Tranche � Tranche �
1� q �.��� (�.���,�.���) % �.�� (�.��,�.�) % �.�� (�.��,�.��) % �.�� (�.��,�.��) %
p2 ��.� (��.�,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) %
p3 ��.� (��.�,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) %
p4 ��.� (�.��,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) %
p5 ��.� (�.��,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) %
p6 ��.� (�.��,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) % ��.� (��.�,��.�) %

exp(↵�-��) �.��� (�.���,�.��) �.��� (�.���,�.���) �.�� (�.��,�.��) �.��� (�.��,�.��)
exp(↵��-��) �.��� (�.��,�.��) �.�� (�.��,�.��) �.�� (�.�,�.��) �.��� (�.���,�.��)
exp(↵PF) �.�� (�.��,�.��) �.�� (�.��,�.��) �.�� (�.��,�.��) �.�� (�.��,�.��)
exp(��-��) �.��� (�.���,�.��) �.��� (�.���,�.��) �.��� (�.�,�.��) �.��� (�.���,�.��)
exp(���-��) �.��� (�.���,�.��) �.��� (�.���,�.��) �.��� (�.��,�.��) �.��� (�.���,�.���)
exp(��-��) �.��� (�.���,�.�) �.��� (�.���,�.��) �.��� (�.���,�.��) �.��� (�.���,�.��)
exp(���-��) �.��� (�.���,�.�) �.��� (�.���,�.�) �.��� (�.���,�.���) �.�� (�.���,�.��)
exp(�OR+N) �.��� (�.���,�.��) �.��� (�.���,�.���) �.�� (�.��,�.��) �.�� (�.�,�.��)
exp(�oth) �.��� (�.���,�.���) �.��� (�.����,�.��) �.���� (�.����,�.���) �.���� (�.���,�.���)



Results – Overall infection from outside



Results – Within-household infection



Results –
E�ect sizes
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Ct threshold values, a proxy for viral load
in community SARS-CoV-2 cases,
demonstrate wide variation across
populations and over time
A Sarah Walker1,2,3,4*, Emma Pritchard1,2, Thomas House5,6, Julie V Robotham2,7,
Paul J Birrell7,8, Iain Bell9, John I Bell10, John N Newton11, Jeremy Farrar12,
Ian Diamond9, Ruth Studley9, Jodie Hay13,14, Karina-Doris Vihta1,2,
Timothy EA Peto1,2,3,15, Nicole Stoesser1,2,3,15†, Philippa C Matthews1,15†,
David W Eyre1,2,14,16†, Koen B Pouwels1,2,17, COVID-19 Infection Survey team

1Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom;
2The National Institute for Health Research Health Protection Research Unit in
Healthcare Associated Infections and Antimicrobial Resistance at the University of
Oxford, Oxford, United Kingdom; 3The National Institute for Health Research
Oxford Biomedical Research Centre, University of Oxford, Oxford, United
Kingdom; 4MRC Clinical Trials Unit at UCL, UCL, London, United Kingdom;
5Department of Mathematics, University of Manchester, Manchester, United
Kingdom; 6IBM Research, Hartree Centre, Sci-Tech Daresbury, United Kingdom;
7National Infection Service, Public Health England, London, United Kingdom; 8MRC
Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health,
Cambridge, United Kingdom; 9Office for National Statistics, Newport, United
Kingdom; 10Office of the Regius Professor of Medicine, University of Oxford,
Oxford, United Kingdom; 11Health Improvement Directorate, Public Health England,
London, United Kingdom; 12Wellcome Trust, London, United Kingdom; 13University
of Glasgow, Glasgow, United Kingdom; 14Lighthouse Laboratory in Glasgow, Queen
Elizabeth University Hospital, Glasgow, United Kingdom; 15Department of Infectious
Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust,
John Radcliffe Hospital, Oxford, United Kingdom; 16Big Data Institute, Nuffield
Department of Population Health, University of Oxford, Oxford, United Kingdom;
17Health Economics Research Centre, Nuffield Department of Population Health,
University of Oxford, Oxford, United Kingdom

Abstract
Background: Information on SARS-CoV-2 in representative community surveillance is limited,
particularly cycle threshold (Ct) values (a proxy for viral load).
Methods: We included all positive nose and throat swabs 26 April 2020 to 13 March 2021 from the
UK’s national COVID-19 Infection Survey, tested by RT-PCR for the N, S, and ORF1ab genes. We
investigated predictors of median Ct value using quantile regression.
Results: Of 3,312,159 nose and throat swabs, 27,902 (0.83%) were RT-PCR-positive, 10,317 (37%),
11,012 (40%), and 6550 (23%) for 3, 2, or 1 of the N, S, and ORF1ab genes, respectively, with
median Ct = 29.2 (~215 copies/ml; IQR Ct = 21.9–32.8, 14–56,400 copies/ml). Independent
predictors of lower Cts (i.e. higher viral load) included self-reported symptoms and more genes
detected, with at most small effects of sex, ethnicity, and age. Single-gene positives almost
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Appendix 1—figure 2. Directed acyclic graph of potential relationships between factors. *May also
depend on factors which effect self-swabbing efficiency, e.g., demographics.
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• We have plenty 
of evidence that 
there’s a lot 
behind actual 
transmission



leads to S-gene target failure (SGTF) and was estimated to account for 88% of SGTF from this time
(Public Health England, 2020). Where multiple genes were detected, the Cts were highly correlated
(Spearman rho = 0.98, p<0.0001). Taking the per-swab mean Ct across positive genes, the overall
median Ct was 29.2 (IQR 21.9–32.8; range 9.2–38.7), reflecting the study’s surveillance design test-
ing individuals in the community at fixed timepoints regardless of symptoms. Based on calibration
data (Appendix 1—figure 1), this corresponds to a median viral load of ~215 copies/ml (IQR 14–
56,400). Ct varied strongly by number of genes detected (Kruskal–Wallis p=0.0001), but not by their
specific pattern after adjusting for number (p=0.08). There is no fixed Ct threshold for determining
positivity (see Materials and methods); however, only 38 (0.1%) Ct values > 37 were recorded (five
positive on ORF1ab+N).

Of note, whilst single-gene positives almost invariably had Ct>30, with or without reported symp-
toms, triple-gene positives without reported symptoms had widely varying Ct, as did ORF1ab+N
positives after 16 November 2020 (SGTF, compatible with B.1.1.7) (Figure 1). Ct values were slightly
but significantly lower in other double-gene positives vs single-gene positives, with a small number
of low Ct values in ORF1ab+N positives before 16 November 2020 likely reflecting early B.1.1.7
cases. Furthermore, whilst the percentage reporting symptoms increased linearly as Ct values
dropped from 35 (~30% reporting symptoms around the positive test) to 28 (~60% reporting symp-
toms), below 28 the percentages reporting symptoms increased only slightly (to ~70% at Ct=10)
(Figure 2).

Evidence supporting positive results
Combining information on Ct values, symptoms and pre-test probability of being positive, 21,329
(77%), 4741 (17%), and 1809 (6%) positive tests had ‘higher’, ‘moderate’, or ‘lower’ evidence sup-
porting genuine presence of viral RNA (Table 2; definitions in Materials and methods). Even though
‘higher’ evidence was based only on number of genes detected (two or three), ‘higher’ evidence
positives were more likely to be symptomatic than ‘moderate’ evidence positives (p<0.0001), but

Figure 1. Distribution of Ct values at each positive test by genes detected and self-reported symptoms. Note:

Points show the median and boxes the interquartile range. OR=ORF1ab. Positives where only the ORF1ab+N

genes were detected are split by whether the swab was taken before or after 16 November 2020, reflecting the

expansion of B.1.1.7 (which has S-gene target failure on the assay used in the survey).
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Relationship with serostatus
One or more IgG S-antibody results were available for 6540 (30%) participants with positive swabs.
Less than 5% of antibody tests taken >30 days before the first positive swab (not necessarily the
onset of infection) were positive (Figure 5), rising to 12% in the 30 days before the first swab posi-
tive (likely reflecting late detection of infection), 47% in the following 14 days, and then 72–81%
thereafter. Overall, of 6189 participants with one or more antibody tests after their first positive
swab, 4808 (78%) were ever antibody-positive; with higher rates in those reporting symptoms
around their first positive swab (2945/3315 [89%] vs 1863/2874 [65%] of those not reporting symp-
toms, p<0.0001). Median (IQR) Ct values were also significantly lower in those ever antibody-positive
to date (24.9 [18.5–31.0] vs 33.0 [29.9–34.3] in those not antibody-positive, p<0.0001). Results were
similar restricting to 1477 (24%) with a negative antibody result within [!120, +21] days of their first
positive swab. A small number of participants appeared to have become infected despite anteced-
ent high anti-spike antibody titres, one case in particular which had ‘higher evidence’ positive swab
tests separated by four consecutive negative swabs with 65 days between positive swabs.

Discussion
In this large community surveillance study, we found wide variation in Ct values (a proxy for viral
load). Whilst Ct values were independently associated with several factors, including symptoms at/
around the test as previously reported (Edwards et al., 2020; Lee et al., 2020), their effects were
small compared with population-level variability. Notably both triple-gene positives and S-gene

Figure 3. Variation over calendar time in the distribution of Ct values in the UK (A) and England (B) together with
percentage positivity in England (B), and in self-reported symptoms (C) and evidence supporting positives (D).
Note: Panel (A) shows the distribution of Ct values each week including all positives across the UK. Panel (B) is
restricted to England shown together with the official estimates of positivity as reported by the Office for National

Statistics (black line) and periods of national ‘stay-at-home’ restrictions (schools shut in dark grey, schools open in

light gray). Panels (C) and (D) show the proportions reporting symptoms and with different levels of evidence

supporting the positive test, respectively. Variation in the width of 95% CI reflects the increase in size of the survey

from mid August (Supplementary file 1).
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