Immuno-epidemiology and herd immunity to COVID-19

An ecological view of infectious disease

Measures of Immune Efficacy

Immunity can protect in 3 ways:

Reduce *susceptibility* to infection: IE_s (reduces the probability of getting infected)

If an immune host becomes infected, immunity may:

- Reduce *pathology*: IE_P
 (and the probability of death)
- 3. Reduce *infectivity:* IE₁

(virus transmission from the infected individual).

Measles – the classic model

Immunity provides lifelong protection from subsequent infection

Immune individuals reduce the spread of infections in the population

long-term herd immunity

disease eradication possible

 $IE_s = 1$

Panum (1847) Faroe islands

Iceland

Scotland

Measles epidemics in 1781 and 1846.

During the 1846 epidemic

- 99.5% of susceptible individuals infected
- 0/98 survivors of 1781 epidemic infected

Norway

Endemic Human Coronaviruses

Evidence of re-infection

- Antibody levels get boosted every few years (IE_s<1).
- Cross-immunity within alpha and beta strains.

Endemic Human Coronaviruses

Weeks from enrollment

Galanti 2020 J. Inf. Dis.

Endemic Human Coronaviruses – reinfection studies

Galanti 2020 J. Inf. Dis.

Weeks from enrollment

Weeks from enrollment

Zhou et al (2013) BMC Inf. Dis.

Endemic Human Coronaviruses

Immunity wanes:

1. individuals get re-infected ($|E_S < 1$)

2. Virtually no severe disease ($IE_P \sim 1$)

3. Transmission from secondary infections($IE_I < 1$)

Lavine et al Science 2021

Novel CoV - transition to endemicity

At t=0,

primary infections in all age groups.

Over time, primary infections are restricted to the youngest age group.

Time to endemicity depends on:

- R₀
- waning of immunity

Proportion of

Disease Severity During the Transition to Endemicity

1. At t=0, primary infections in all age groups Over years, primary infections restricted to the youngest age group

In conclusion ...

What do we need to measure?

to validate or disprove our model for the transition to benign endemicity

Does prior infection or vaccination provide long-lasting protection from pathology (high IE_P)? Does it hold for:

- 1. CoV-2
- Is one infection/vaccination sufficient to generate protective immunity? (does it depend on the age of the individual)
- What is the effect of virus variants?
 (Is there a change in age-dependence of disease severity?)
- 4. What is the effect of waning of the different components of immunity.

Acknowledgements:

Jennie Lavine

Ottar Bjornstad

Concepts of immune efficacy inspired by framework of vaccine efficacy of Betz Halloran

Support from the NIH