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State transitions

� The simplest form of within-host (WH) dynamics are transitions 
between states: 

▪ Traditionally modelled with ODEs

� Sensible starting point:
▪ Simple
▪ ODE numerical tools

� Limitations:
▪ Constant rates
▪ Exponential waiting times
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Extensions

� Gamma (Erlang) distributions, by adding multiple compartments:

� Phase-type distributions

� Different infectivities in different compartments

� Problems:
▪ Number of compartments grows fast
▪ In the limit of a constant duration, we need      compartments
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Our COVID-19 model

Overton*, Pellis* et al., to be submitted soon
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Time-since-infection (TSI) models      

� Function          to describe infectivity in terms of time-since-infection 



Real-time growth rate

� Dynamics:

�  Linearise:

� Look for exponential solutions:

� Euler-Lotka equation

� Given                           , it’s easy to see that 

Diekmann & Heesterbeer (2000); Diekmann, Heesterbeek & Britton (2012)



Time-since-infection (TSI) models      

� Function          to describe infectivity in terms of time-since-infection 



Time-since-infection (TSI) models      

� Function          to describe infectivity in terms of time-since-infection 

� We can also use a random version of it:
▪ General enough to encompass all previous cases    



Time-since-infection models      

� Function          to describe infectivity in terms of time-since-infection 

� We can also use a random version of it:
▪ General enough to encompass all previous cases    

� Drawbacks:
▪ Harder to study (PDEs or integral equations/DDEs)
▪ Computationally intensive to integrate
▪ Require initial conditions on an interval (the support of         )



WHY TIME-SINCE-INFECTION?



Why using TSI?

� More general



Why using TSI?

� More general



Why using TSI?

� More general

� Closer to biology / experiments:
▪ Detailed time evolution of infection is deemed important
▪ Complex / long infectivity profiles (e.g. HIV)
▪ Available data



Why using TSI?

� More general

� Closer to biology / experiments:
▪ Detailed time evolution of infection is deemed important
▪ Complex / long infectivity profiles (e.g. HIV)
▪ Available data



Superinfection data

Laurie et al (2015), JID



Why using TSI?

� More general

� Closer to biology / experiments:
▪ Detailed time evolution of infection is deemed important
▪ Complex / long infectivity profiles (e.g. HIV)
▪ Available data

� Suitable to encapsulate complex within-host (WH) dynamics



Why using TSI?

� More general

� Closer to biology / experiments:
▪ Detailed time evolution of infection is deemed important
▪ Complex / long infectivity profiles (e.g. HIV)
▪ Available data

� Suitable to encapsulate complex within-host (WH) dynamics



Examples (dengue)

� Model 1: Target cell limited

susceptible cells
infected cells
free virus

� Model 2: Innate immune response

susceptible cells
infected cells
natural killer cells

Ben-Shachar & Koelle (2014), Interface



Examples (dengue)

� Model 3: Innate + adaptive cellular immune response

susceptible cells
infected cells
natural killer cells
T cells

Ben-Shachar & Koelle (2014), Interface



Gilchrist & Sasaki (2002)

� First example: Gilchrist & Sasaki (2002)
▪ Within-host dynamics: pathogen load

level immunity

▪ Between-host
    dynamics:

▪ Link: 

Gilchrist & Sasaki (2002), J Theor Biol



Example

� Model: specific + aspecific immunity

pathogen load
level of specific immuntity
(constant) level of aspecific immunity

Pugliese & Gandolfi (2008), Math Biosc
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EXAMPLE 1: HIV WITHIN-HOST 
METAPOPULATION MODEL

[ Lythgoe, Blanquart, Pellis & Fraser (2016), PLoS Biology ]



Set-point viral load

Fraser, Lythgoe et al (2014), Science 



Motivation

� SPVL varies by at least 4 orders of magnitude between patients:

� What is causing this variation?

time since infection
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Factors determining SPVL

� Speed at which virus replicates and infects new cells

� Efficacy of CTL immune response

� …

However, in “well-mixed” models, these factors only mildly affect SPVL, 
unless we are close to the extinction threshold
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But is HIV “well-mixed” 
within the host?

Probably not:

� Viral replication focused within 
specific regions of the body, e.g. 
lymph nodes

� We estimate there are between 
1,000 and 10,000 of these sites 
of replication in the human body

� Viral populations genetically 
structured at a small spatial 
scale (though it might not 
persist over time)

Within-host HIV dynamics are best 
described using a metapopulation 
model 



HIV metapopulation model
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HIV metapopulation model

Site of HIV 
replication

Susceptible 
CD4+ T cells CTLs

storage



Full equations
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Within-patch equations



Analytical approximation

If immigration of infected cells is negligible (after the first seeding): 

� Within-patch dynamics 

lead to a rate at which a patch infect other patches:

� Dynamics

� Patch reproduction number:

� If                there is no infection



Within-patch dynamics

� 3 possible outcomes:

1. No or small burst of infection (            )

       Disease-free equilibrium (DFE)

2. Short but big enough burst (                   )

       Shifting-mosaic steady state (SMSS)

3. Reaching endemic equilibrium (             )

       Full equilibrium (FE)



‘Shifting mosaic’ steady state

Bormann & Likens, 1979

Catastrophe

Time

Although each patch is at a different phase, 
the total biomass of the landscape is fairly constant



Full equilibrium VS SMSS 

SMSS

FE



SMSS dynamics



Sensitivity to parameters
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Sensitivity to parameters

Time

To
ta

l 
In

fe
ct

ed
 c

el
ls

Site of HIV 
replication Obliteration of infected cells by 

immune system (e.g. CD8+ T cells)









END OF EXAMPLE 1

[ Lythgoe, Blanquart, Pellis & Fraser (2016), PLoS Biology ]
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EXAMPLE 2: HIV WITHIN- & 
BETWEEN-HOST MODEL

[ Lythgoe, Pellis & Fraser (2013), Evolution ]



Set-point viral load

Fraser, Lythgoe et al (2014), Science 



� Predicts infectiousness

� Transmission potential           
= overall infectivity

� Predicts duration of 
asymptomatic stage

Set-point viral load (SPVL)

Fraser et al (2007), PNAS



Evolution of SPVL

� SPVL is highly heritable

� Steadily increasing for 25 years

� Now seems to have plateaued

� The current mean value is very close to maximum transmission 
potential

Fraser et al (2007), PNAS
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HIV transmission potential
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HIV transmission potential
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HIV transmission potential
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Population structure

� Deterministic model

� All susceptibles identical

� Homogeneous mixing

� Vital dynamics:
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Population structure

� Deterministic model

� All susceptibles identical

� Homogeneous mixing

� Vital dynamics:

Total 
birth rate Per-capita

death rate



Infection spread

� SI model

� Infection caused by a single virion

� Type-   case = infected with a virus of strain 

� Infector strain                SPVL                infectiousness and duration

�               rate at which type-   case transmit strain 
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Infection spread

� SI model

� Infection caused by a single virion

� Type-   case = infected with a virus of strain 

� Infector strain                SPVL                infectiousness and duration

�               rate at which type-   case transmit strain 



Dynamics:

             incidence of type-   cases

             duration of life of type-   cases

Equilibrium:

= Next-Generation Matrix

Equations



Infectivity profiles

Ideally, we want a within-host model to construct the

Two choices:

� Virus – immune system competition model:
▪ Possible
▪ Slow
▪ No hope to get a non-unimodal infectivity profile

� Impose “artificially” a shape            for the infectivity profile of type 
and model changes in frequencies with the quasispecies equation
▪ Very flexible
▪ Fast
▪ But requires many assumptions



The quasispecies equation

� Consider     strains and let
number of virions of strain 
vector of reproduction rates of strain   
mutation matrix
reproduction-mutation matrix

� Then the system for the unbounded growth is

� Consider the frequencies

� Quasispecies equation:

                                                                         where 



Linking within- and between-host



Linking within- and between-host

Infectivity profile
of type-   case



Linking within- and between-host

Infectivity profile
of type-   caseFrequency of strain

at time    after initial 
infection with strain 
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Infectivity profile
of type-   caseFrequency of strain

at time    after initial 
infection with strain 

between-host
transmissibility
of strain-  virus



Within- and between-host fitness

Strain index:
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Within- and between-host fitness
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Within- and between-host fitness

Strain index:

Within-host fitness:

Between-host fitness:

5-fold difference



Reproduction-mutation matrix

� Flat:

� Hill-climb:

� Rugged: 



Infectivity 
profile

Flat

Hill-climb

Rugged



Infectivity profiles (4 strains)

Flat

Hill-climb

Rugged



Dynamics:

             incidence of type-   cases

             duration of life of type-   cases

Equilibrium:

= Next-Generation Matrix

Equations



Equilibria



Overview of assumptions

� Structural assumptions:
▪ No external events
▪ No superinfection



Dynamics:

             incidence of type-   cases

             duration of life of type-   cases

Equilibrium:

= Next-Generation Matrix

Equations of Example 2

Lythgoe*, Pellis* & Fraser (2013), Evolution
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� Structural assumptions:
▪ No external events
▪ No superinfection

� Implications:
▪ Can use a time-since-infection framework
▪ Can use a next-generation matrix (NGM) approach
▪ Within- and between-host levels are linked
▪ But no “full” feedback loop (no evolving population immunity)



Overview of assumptions

� Structural assumptions:
▪ No external events
▪ No superinfection

� Implications:
▪ Can use a time-since-infection framework
▪ Can use a next-generation matrix (NGM) approach
▪ Within- and between-host levels are linked
▪ But no “full” feedback loop (no evolving population immunity)

� Other assumptions that may be relaxed:
▪ Single-virion infection (easy)
▪ All-identical susceptibles (hard)



Dynamics:

             incidence of type-   cases

             duration of life of type-   cases

Equilibrium:

= Next-Generation Matrix

Equations of Example 2

Lythgoe*, Pellis* & Fraser (2013), Evolution



OPEN CHALLENGES



Nested models

� Names: “nested”, “immuno-epidemiological”, “Within-between-host”

� Can always be constructed, as long as WH dynamics allow the 
construction of a between-host (BH) transmission rate

� They can be written as PDEs or DDEs/integral equations

� Caveat:
▪ Most of the time they assume such the between-scale link (e.g., 

pathogen load and transmission rate)

❖ Agreed terminology? Definition of “nested” model?

❖ Any benefit of using PDEs rather than DDEs?

❖ Experimental studies of between-scale links?



Generation time for 
complex models?

Flat

Hill-climb

Rugged



Reinfection

� Second infection after recovery, affected by past disease history

� Difficult: both population infectivity and susceptibility determine new 
cases

� Main reason: understanding the ecology of influenza:
▪ Julia Gog
▪ Viggo Andreasen
▪ Adam Kucharski

� Problems:
▪ With many strains, curse of dimensionality
▪ Strong assumptions to reduce dimensions, e.g. past history does 

not reduce susceptiblity, or does not reduce infectivity
▪ All ODE-based
▪ Limited to acute infections



Superinfection

� A second infection before the first is “complete”

� Why do we need it?
▪ Chronic infections (e.g. HIV, HCV)
▪ HIV has high superinfection rates [Redd et al. (2014), JID and (2014), AIDS]

▪ Data is becoming available [Laurie et al. (2015), JID and (2017), JID]

� Same problems as reinfection, but in addition:
▪ Timing is probably very important
▪ The TSI framework falls apart, i.e. WH evolution non-autonomous
▪ Unclear usefulness of NGM, or even of 
▪ All ODE-based
▪ Limited to acute infections
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Summary

� The concept of generation time distribution is strongly linked with 
time-since-infection models

TSI harder than ODEs, but have some benefits:

� Useful for multi-scale / within- and between-host models
▪ Probably more useful for chronic infections 

� Useful when shape of infectivity profile is key. For COVID-19, e.g.
▪ Contact tracing
▪ Optimal timing of testing to keep infection out of closed settings

� Challenges:
▪ The link between the two scales is almost always assumed
▪ Concept of generation-time for complex models, e.g. multi-strain
▪ TSI with reinfection / superinfection
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Limitations of ODEs

� ODEs are extremely useful and easy to use

� But have many limitations:
▪ Oversimplified emergence of resistance:

▪ Time-scale separation argument:

▪ Superinfection:
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