

Within- and between-host modelling Lessons from other diseases

Lorenzo Pellis

Sir Henry Dale Fellow, University of Manchester, UK JUNIPER Consortium <u>https://maths.org/juniper/</u> Alan Turing Institute, London, UK

Understanding the Generation Time for COVID-19 Isaac Newton Institute, 28-30 July 2021

Outline

□ Introduction

- Compartmental models
- Time-since-infection models
- □ Why time-since-infection?
 - Arguments
 - Example 1: within-host HIV metapopulation model
 - Example 2: within- and between-host HIV model
- Open challenges:
 - Link between scales
 - Generation-time for complex models
 - Reinfection / superinfection

The University of Manchester

Compartmental models Time-since-infection models

INTRODUCTION

The University of Manchester

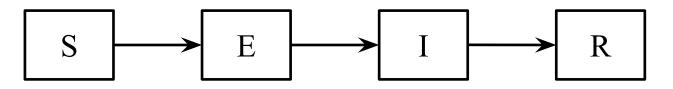
Compartmental models

Time-since-infection models

INTRODUCTION

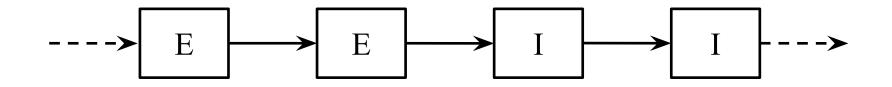
State transitions

The simplest form of within-host (WH) dynamics are transitions between states:



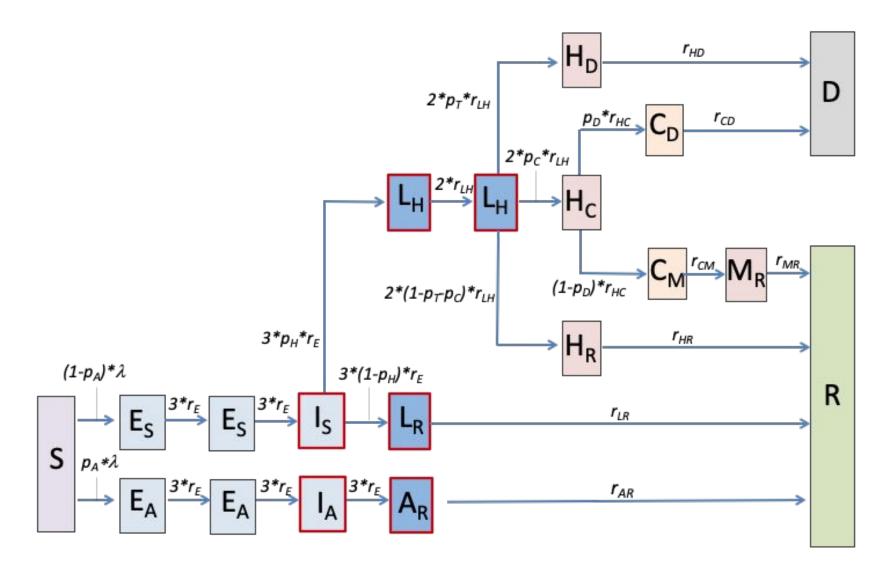
- Traditionally modelled with ODEs
- □ Sensible starting point:
 - Simple
 - ODE numerical tools
- □ Limitations:
 - Constant rates
 - Exponential waiting times

Gamma (Erlang) distributions, by adding multiple compartments:



- Phase-type distributions
- Different infectivities in different compartments
- Problems:
 - Number of compartments grows fast
 - In the limit of a constant duration, we need ∞ compartments

Our COVID-19 model



Overton*, Pellis* et al., to be submitted soon

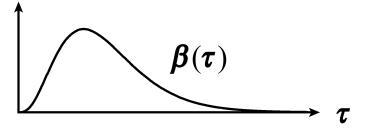
The University of Manchester

Compartmental models Time-since-infection models

INTRODUCTION

Time-since-infection (TSI) mode Suniversity of Manchester

Example 1 Function $\beta(\tau)$ to describe infectivity in terms of time-since-infection τ



Real-time growth rate

Dynamics:

$$H(t) = \frac{S(t)}{N} \int_{0}^{+\infty} \beta(\tau) H(t-\tau) \,\mathrm{d}\tau$$

□ Linearise:

$$S(t) \approx N \qquad \Rightarrow \qquad H(t) = \int \beta(\tau) H(t-\tau) \,\mathrm{d}\tau$$

□ Look for exponential solutions:

$$H(t) = k e^{rt} \qquad \Rightarrow \qquad k e^{rt} = \int_0^\infty \beta(\tau) k e^{r(t-\tau)} d\tau$$

Euler-Lotka equation

$$\int_0^\infty \boldsymbol{\beta}(\boldsymbol{\tau}) \mathrm{e}^{-r\boldsymbol{\tau}} \,\mathrm{d}\boldsymbol{\tau} = 1$$

Given $\mathbf{R}_0 = \int_0^\infty \boldsymbol{\beta}(\boldsymbol{\tau}) d\boldsymbol{\tau}$, it's easy to see that $\mathbf{r} = 0 \iff \mathbf{R}_0 = 1$

Diekmann & Heesterbeer (2000); Diekmann, Heesterbeek & Britton (2012)

 $+\infty$

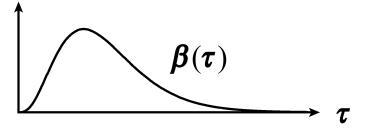
0

MANCHESTER

The University of Manchester

Time-since-infection (TSI) mode Suniversity of Manchester

Example 1 Function $\beta(\tau)$ to describe infectivity in terms of time-since-infection τ

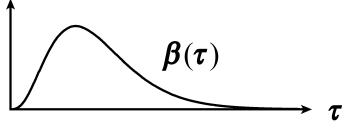


Time-since-infection (TSI) model Suniversity of Manchester

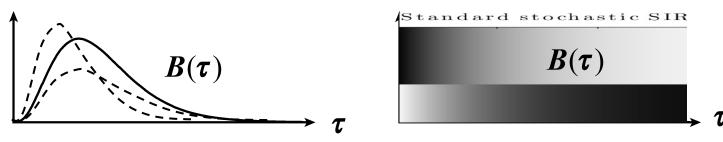
MANCH

ΈR

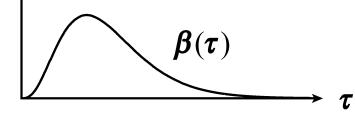
Function $\beta(\tau)$ to describe infectivity in terms of time-since-infection τ



- □ We can also use a random version of it:
 - General enough to encompass all previous cases



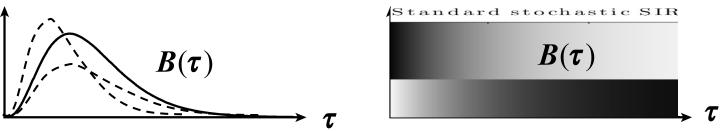
Example 1 Function $oldsymbol{eta}(au)$ to describe infectivity in terms of time-since-infection au



MANCH

The University of Manchester

- □ We can also use a random version of it:
 - General enough to encompass all previous cases



Drawbacks:

- Harder to study (PDEs or integral equations/DDEs)
- Computationally intensive to integrate
- Require initial conditions on an interval (the support of $oldsymbol{eta}(au))$

The University of Manchester

WHY TIME-SINCE-INFECTION?

The University of Manchester

More general

The University of Manchester

□ More general

MANCHESTER

The University of Manchester

- Closer to biology / experiments:
 - Detailed time evolution of infection is deemed important
 - Complex / long infectivity profiles (e.g. HIV)
 - Available data

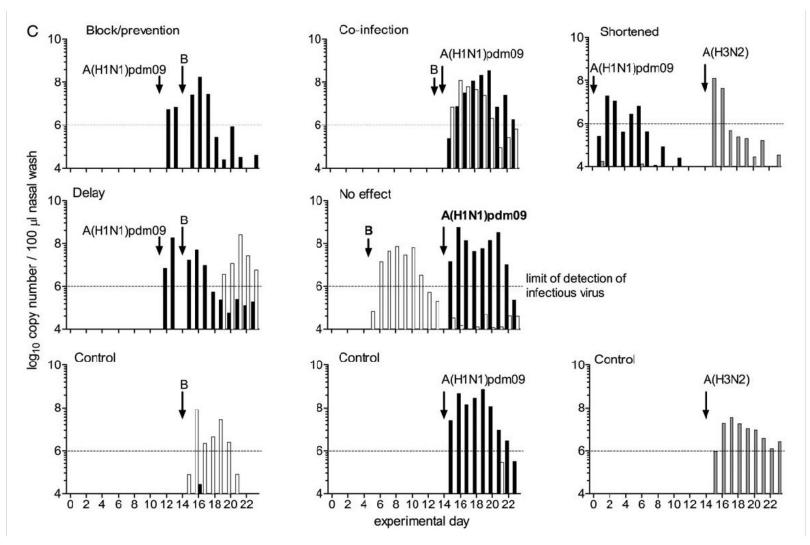
□ More general

- □ Closer to biology / experiments:
 - Detailed time evolution of infection is deemed important
 - Complex / long infectivity profiles (e.g. HIV)
 - Available data

Superinfection data

The University of Manchester

MANCHESTER



Laurie et al (2015), JID

□ More general

- □ Closer to biology / experiments:
 - Detailed time evolution of infection is deemed important
 - Complex / long infectivity profiles (e.g. HIV)
 - Available data

Suitable to encapsulate complex within-host (WH) dynamics

- □ More general
- □ Closer to biology / experiments:
 - Detailed time evolution of infection is deemed important
 - Complex / long infectivity profiles (e.g. HIV)
 - Available data
- □ Suitable to encapsulate complex within-host (WH) dynamics

Examples (dengue)

□ Model 1: Target cell limited

$$\begin{cases} \dot{S} = -\beta VS & \text{susceptible cell} S = \\ \dot{I} = \beta VS - \delta I & \text{infected cell} S = \\ \dot{V} = pI - cV & \text{free virus } V = \end{cases}$$

□ Model 2: Innate immune response

$$\begin{cases} \dot{S} = -\beta\rho IS & \text{susceptible cell} S = \\ infected cell S = \\ \dot{I} = \beta\rho IS - \delta I - \kappa IN \\ \text{natural kille} \text{Ncells} \\ \dot{N} = qI - dN & \rho = p / c \end{cases}$$

Examples (dengue)

□ Model 3: Innate + adaptive cellular immune response

$$\begin{cases} \dot{S} = -\beta\rho IS & \text{susceptible cell} \\ \dot{I} = \beta\rho IS - \kappa IN - \delta IT \\ \delta$$

MANCHESTER

The University of Manchester

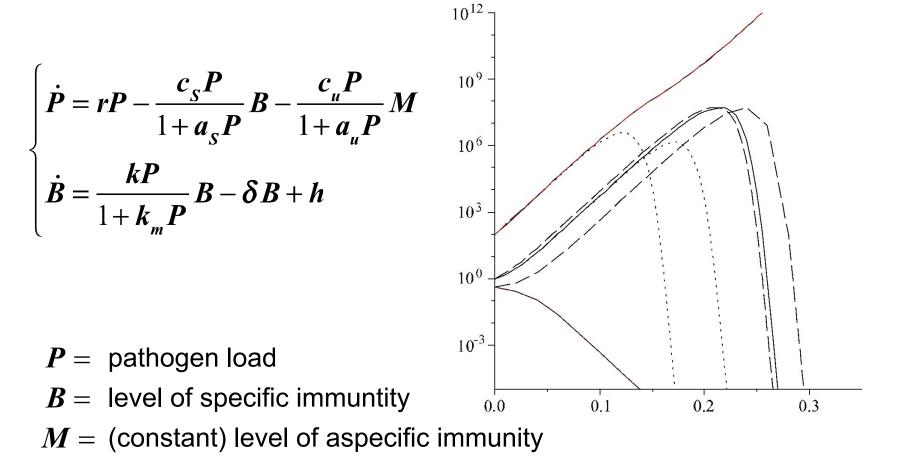
□ First example: *Gilchrist & Sasaki* (2002)

• Within-host dynamics: $\begin{cases} \dot{P} = rP - \varepsilon BP \text{ athog} P \text{ bad} \\ \text{level immunity} \\ B = aBP \end{cases}$ $\frac{\mathrm{d}S}{\mathrm{d}t} = bN(t) - S(t) \int_0^T \beta(\tau) I(t,\tau) \mathrm{d}\tau - dS(t)$ Between-host dynamics: $\frac{\partial I}{\partial t} + \frac{\partial I}{\partial \tau} = -\left(\alpha(\tau) - \iota(\tau) - d\right)I(t,\tau)$ $\frac{\mathrm{d}\boldsymbol{R}}{\mathrm{d}\boldsymbol{t}} = \boldsymbol{I}(\boldsymbol{T},\boldsymbol{t}) - \boldsymbol{d}\boldsymbol{R}(\boldsymbol{t})$ Link: $\beta(\tau) = cP(\tau)$ $\frac{dt}{dt} = I(I, t) - uR(t)$ $N(t) = S(t) + \int_0^T I(t, \tau) d\tau + R(t)$

Example

The University of Manchester

□ Model: specific + aspecific immunity



- □ More general
- □ Closer to biology / experiments:
 - Available data
 - Detailed time evolution of infection is deemed important
 - Complex / long infectivity profiles (e.g. HIV)
- □ Suitable to encapsulate complex within-host (WH) dynamics
- Can enhance understanding of more complex models

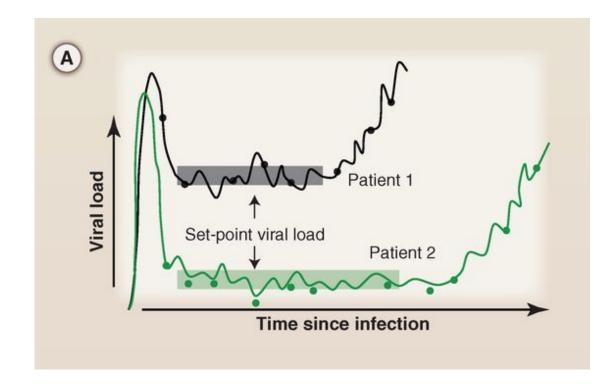
- □ More general
- □ Closer to biology / experiments:
 - Available data
 - Detailed time evolution of infection is deemed important
 - Complex / long infectivity profiles (e.g. HIV)
- □ Suitable to encapsulate complex within-host (WH) dynamics
- □ Can enhance understanding of more complex models

The University of Manchester

[Lythgoe, Blanquart, Pellis & Fraser (2016), PLoS Biology]

EXAMPLE 1: HIV WITHIN-HOST METAPOPULATION MODEL

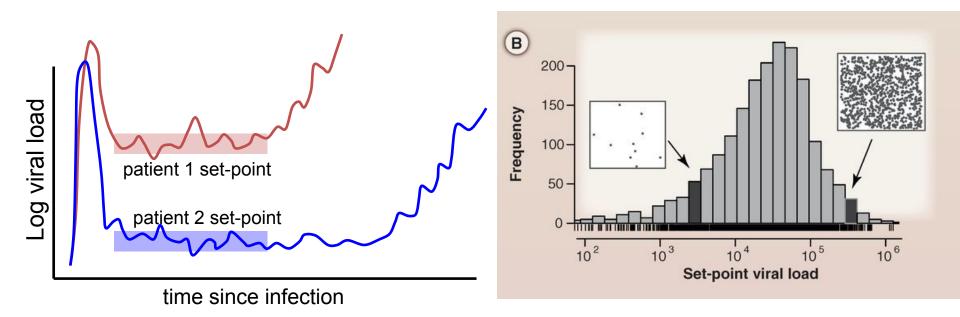
Set-point viral load



Fraser, Lythgoe et al (2014), Science

Motivation

□ SPVL varies by at least 4 orders of magnitude between patients:

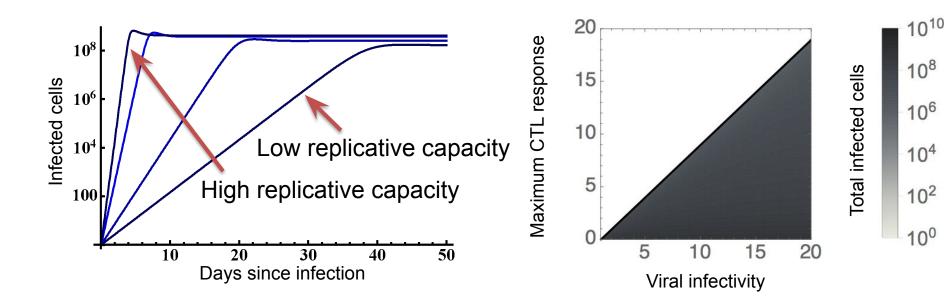


Factors determining SPVL

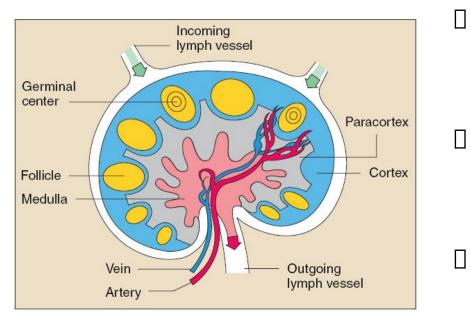
- □ Speed at which virus replicates and infects new cells
- Efficacy of CTL immune response

Π

However, in "well-mixed" models, these factors only mildly affect SPVL, unless we are close to the extinction threshold



But is HIV "well-mixed" within the host?



Probably not:

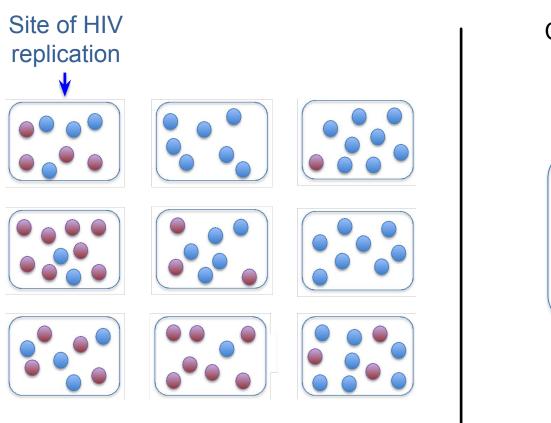
Viral replication focused within specific regions of the body, e.g. lymph nodes

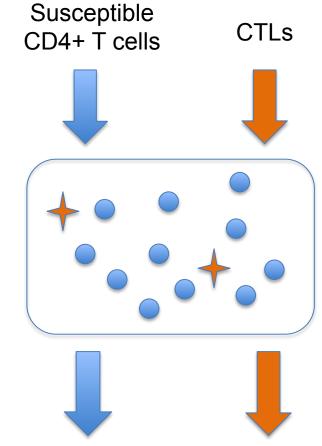
MANCHESTER

The University of Manchester

- We estimate there are between 1,000 and 10,000 of these sites of replication in the human body
- Viral populations genetically structured at a small spatial scale (though it might not persist over time)

Within-host HIV dynamics are best described using a metapopulation model



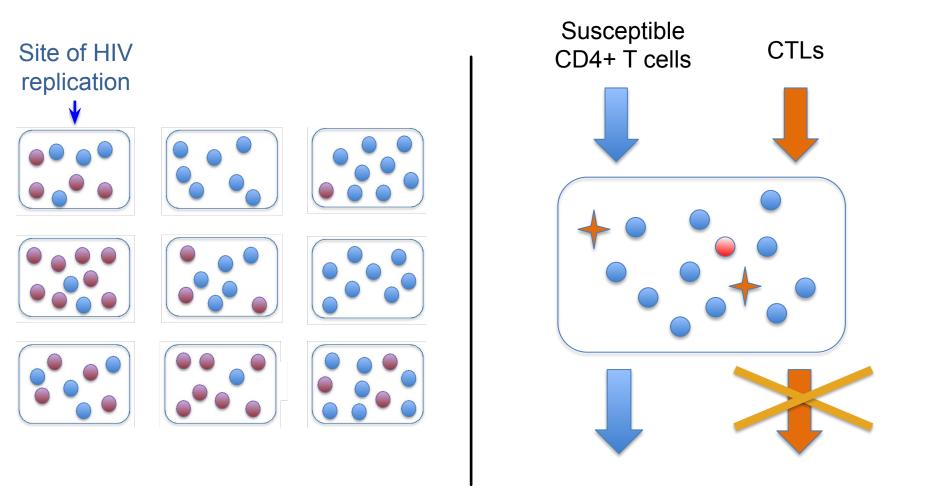


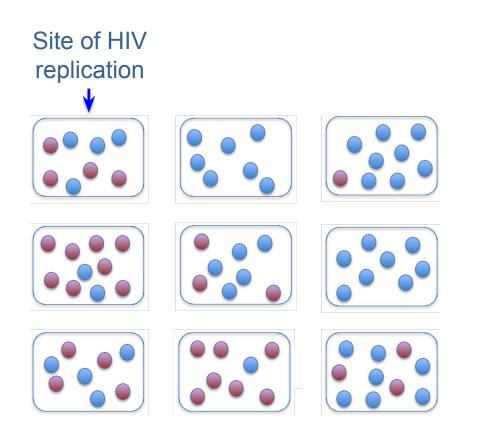
MANCHESTER

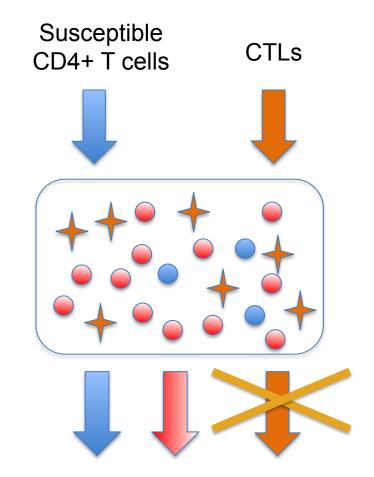
The University of Manchester

MANCHESTER

The University of Manchester





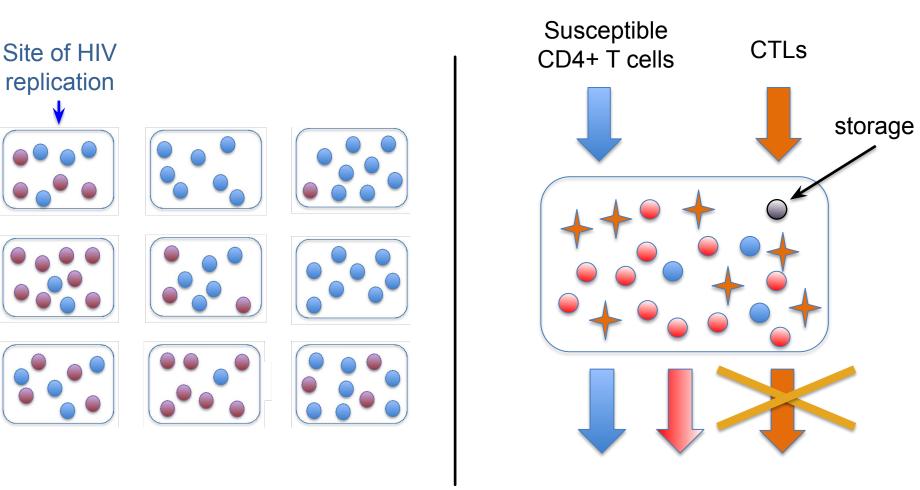


MANCHESTER

The University of Manchester

MANCHESTER

The University of Manchester



Full equations

$$\frac{d}{dt}x_{i}(t) = \gamma_{i}Mx_{B} - \frac{x_{i}(t)}{x_{i}^{max}}\beta_{i}y_{i}(t) - \left[d + \varepsilon\right]x_{i}(t)$$

$$\frac{d}{dt}y_{i}(t) = (1 - \lambda)\frac{x_{i}(t)}{x_{i}^{max}}\beta_{i}y_{i}(t) + \gamma_{i}\left[My_{B}(t) + \omega\rho S(t)\right] - \left[\delta + \varepsilon + k\frac{z_{i}}{z_{i}^{max}}\right]y_{i}(t)$$

$$\frac{d}{dt}y_{B}(t) = \sum_{j}\varepsilon y_{j}(t) - My_{B}(t) - \delta_{B}y_{B}(t)$$

$$\frac{d}{dt}z_{i}(t) = cz_{i}^{max}\left[1 - \frac{z_{i}}{z_{i}^{max}}\right] - \varepsilon z_{i}(t)\mathbb{I}_{y_{i}(t)=0}$$

$$\frac{d}{dt}S(t) = \sum_{j}\lambda\frac{x_{j}(t)}{x_{j}^{max}}\beta_{j}y_{j}(t) - (\rho + \delta_{S})S(t)$$

$$\frac{d}{dt}x(t) = \gamma M x_{B} - \frac{x(t)}{x^{max}}\beta y(t) - \left[d + \varepsilon\right]x(t)$$

$$\frac{d}{dt}y(t) = (1 - \lambda)\frac{x(t)}{x^{max}}\beta y(t) + \gamma \left[M y_{B}(t) + \omega \rho S(t)\right] - \left[\delta + \varepsilon + k\frac{z}{z^{max}}\right]y(t)$$

$$\frac{d}{dt}z(t) = cz^{max}\left[1 - \frac{z}{z^{max}}\right] - \varepsilon z(t)\mathbb{I}_{y(t)=0}$$

Within-patch equations

$$\frac{d}{dt}x(t) = \gamma M x_{B} - \frac{x(t)}{x^{max}}\beta y(t) - \left[d + \varepsilon\right]x(t)$$

$$\frac{d}{dt}y(t) = (1 - \lambda)\frac{x(t)}{x^{max}}\beta y(t) + \gamma \left[M y_{B}(t) + \omega \rho S(t)\right] - \left[\delta + \varepsilon + k\frac{z}{z^{max}}\right]y(t)$$

$$\frac{d}{dt}z(t) = cz^{max}\left[1 - \frac{z}{z^{max}}\right] - \varepsilon z(t)\mathbb{I}_{y(t)=0}$$

Within-patch equations

$$\frac{d}{dt}x(t) = \gamma M x_{B} - \frac{x(t)}{x^{max}}\beta y(t) - \left[d + \varepsilon\right]x(t)$$

$$\frac{d}{dt}y(t) = (1 - \lambda)\frac{x(t)}{x^{max}}\beta y(t) + \gamma \left[My_{B}(t) + \varpi \rho S(t)\right] - \left[\delta + \varepsilon + k\frac{z}{z^{max}}\right]y(t)$$

$$\frac{d}{dt}z(t) = cz^{max}\left[1 - \frac{z}{z^{max}}\right] - \varepsilon z(t)\mathbb{I}_{y(t)=0}$$

If immigration of infected cells is negligible (after the first seeding):

- Log₁₀ infected cells Within-patch dynamics 4 3 2 $y(\tau)$ 5 10 15 20 Days lead to a rate at which a patch infect other patches: $\beta_{p}(\tau) = \frac{M}{M + \delta_{r}} \varepsilon y(\tau)$ $H(t) = \frac{S(t)}{N} \int_{0}^{+\infty} H(t-\tau) \beta_{p}(\tau) \,\mathrm{d}\tau$ **Dynamics** Patch reproduction number: $R_p = \int^{+\infty} \beta_p(\tau) \, \mathrm{d}\tau$
- □ If $\boldsymbol{R}_{p} \leq 1$ there is no infection

Within-patch dynamics

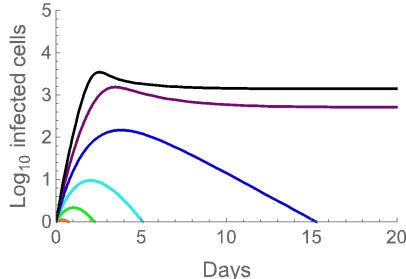
□ 3 possible outcomes:

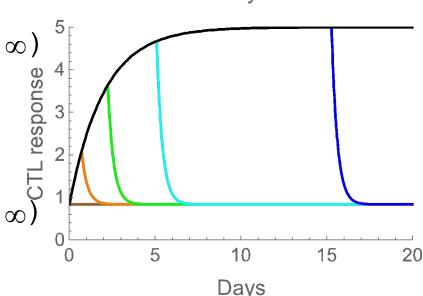
1. No or small burst of infection ($\mathbf{R}_{p} \leq 1$) Disease-free equilibrium (DFE)

2. Short but big enough burst ($1 < R_p < \infty$)

➡ Shifting-mosaic steady state (SMSS)

3. Reaching endemic equilibrium ($\mathbf{R}_{p} = \infty$) Full equilibrium (FE)



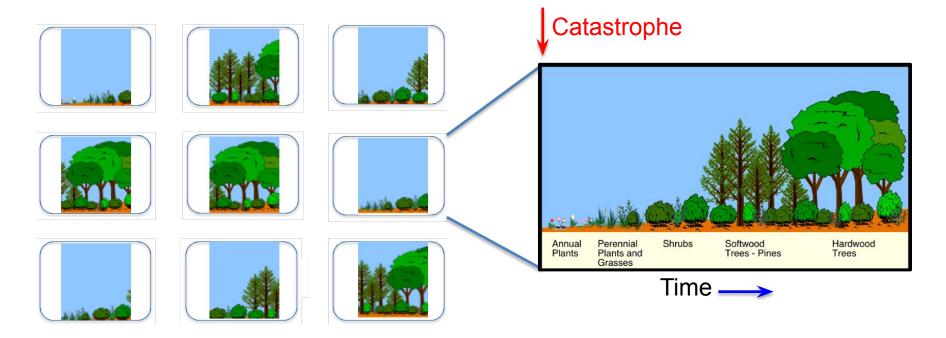


The University of Manchester

'Shifting mosaic' steady state The University of Manchester

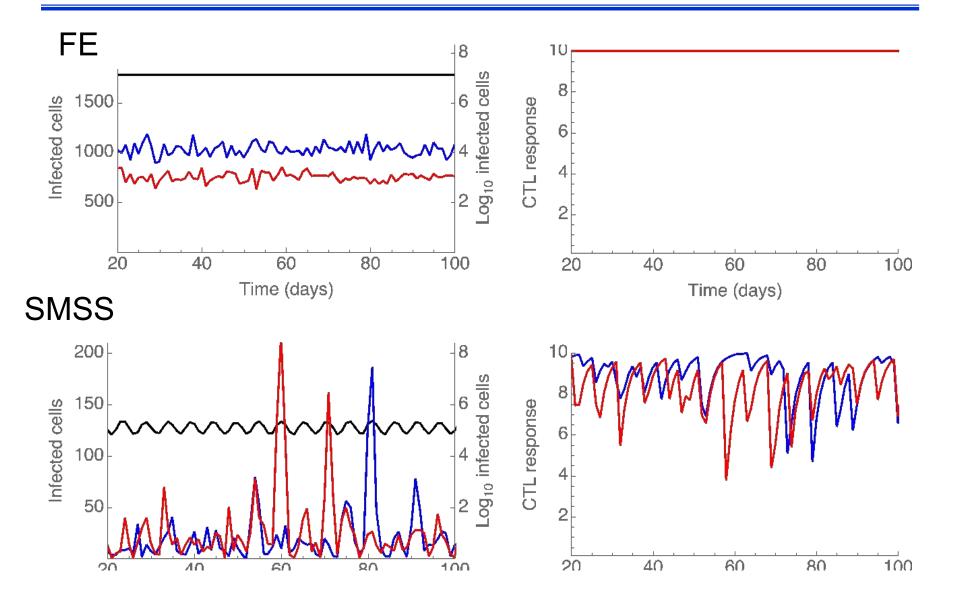
MANCHESTER

Bormann & Likens, 1979



Although each patch is at a different phase, the total biomass of the landscape is fairly constant

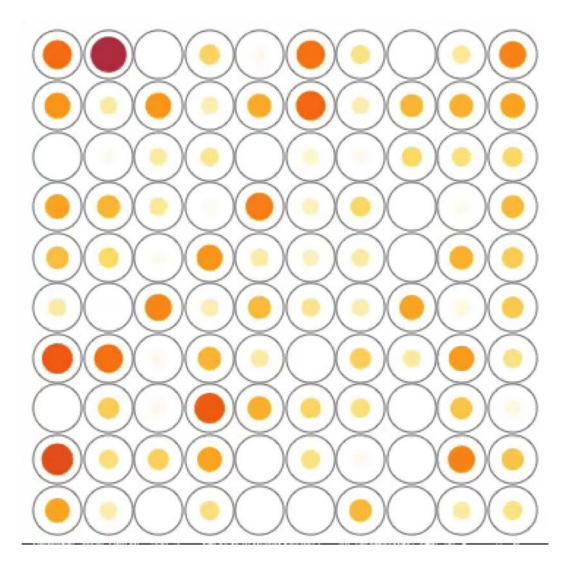
Full equilibrium VS SMSS



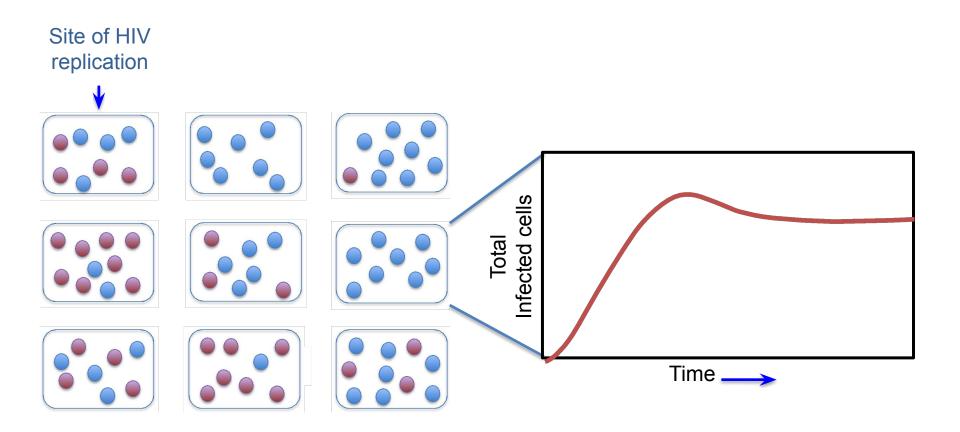
MANCHESTER 1824 The University of Manchester

SMSS dynamics

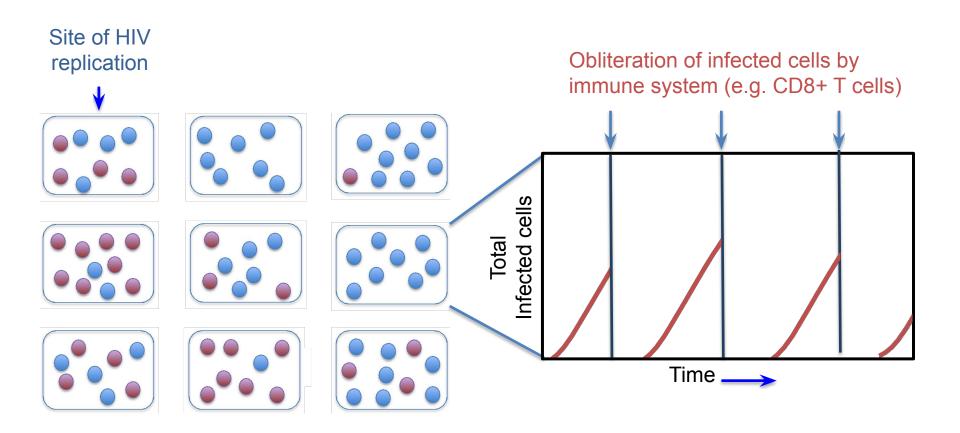
The University of Manchester

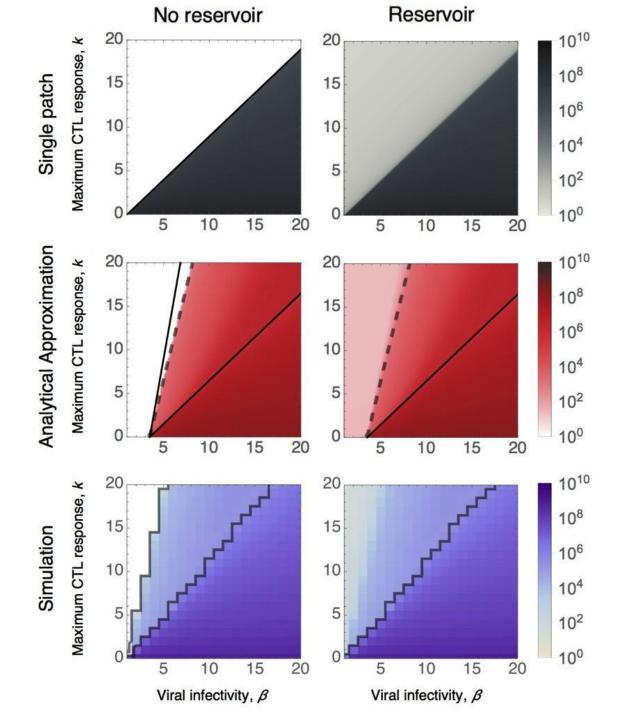


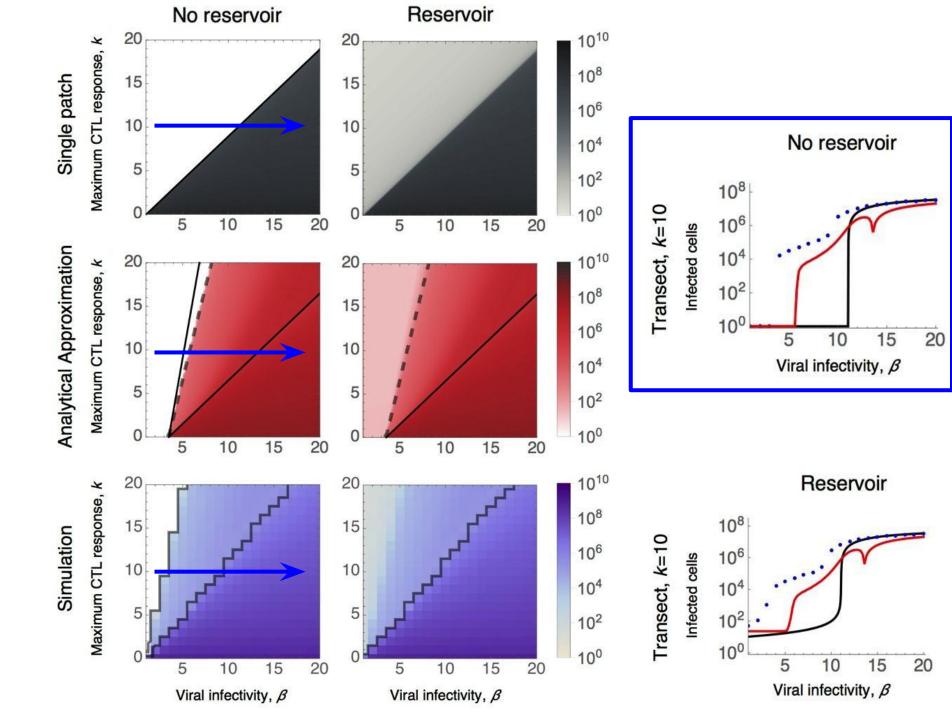
Sensitivity to parameters

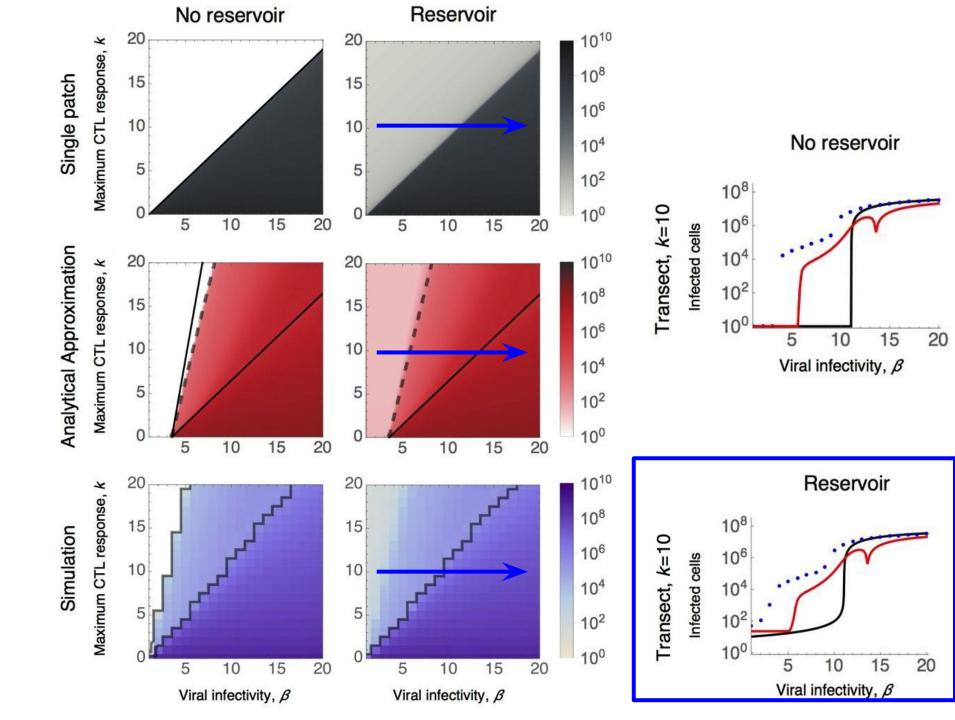


Sensitivity to parameters









The University of Manchester

[Lythgoe, Blanquart, Pellis & Fraser (2016), PLoS Biology]

END OF <u>EXAMPLE 1</u>

Why using TSI?

□ More general

- □ Closer to biology / experiments:
 - Available data
 - Detailed time evolution of infection is deemed important
 - Complex / long infectivity profiles (e.g. HIV)
- □ Suitable to encapsulate complex within-host (WH) dynamics
- □ Can enhance understanding of more complex models
- Harder to study, so it requires more thinking about which assumptions are really responsible for the results we see

Why using TSI?

□ More general

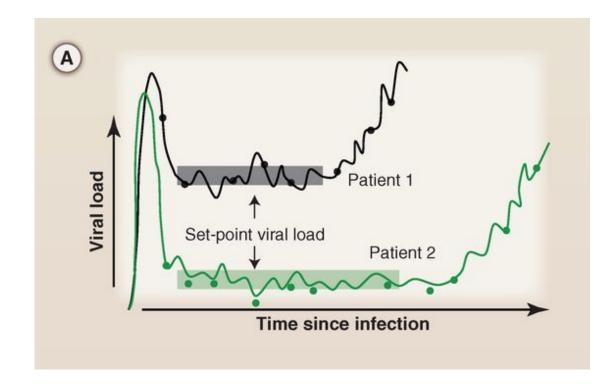
- □ Closer to biology / experiments:
 - Available data
 - Detailed time evolution of infection is deemed important
 - Complex / long infectivity profiles (e.g. HIV)
- □ Suitable to encapsulate complex within-host (WH) dynamics
- □ Can enhance understanding of more complex models
- Harder to study, so it requires more thinking about which assumptions are really responsible for the results we see

The University of Manchester

[Lythgoe, Pellis & Fraser (2013), Evolution]

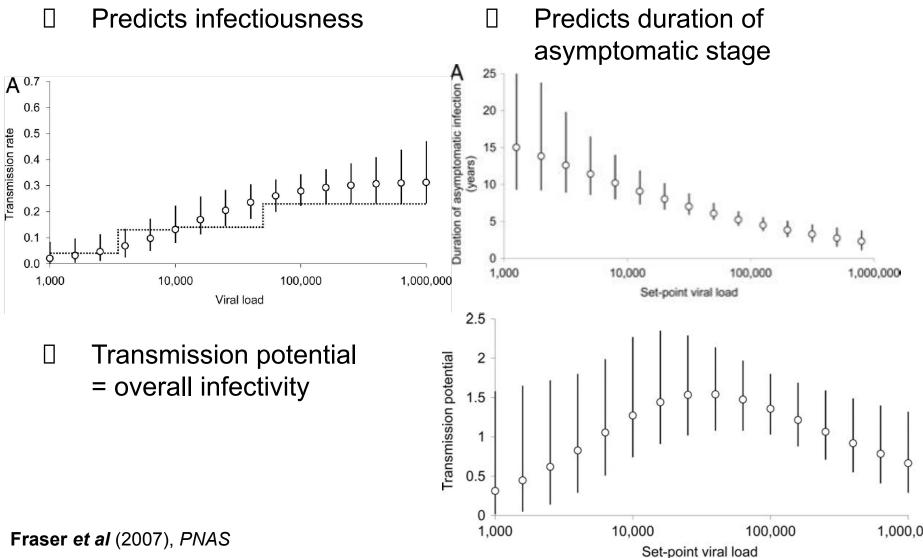
EXAMPLE 2: HIV WITHIN- & BETWEEN-HOST MODEL

Set-point viral load



Fraser, Lythgoe et al (2014), Science

Set-point viral load (SPVL)



Fraser et al (2007), PNAS

1,000,000

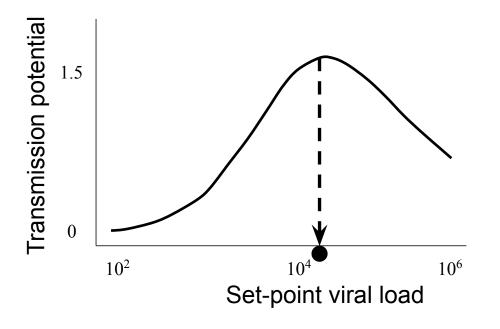
MANCH

The University of Manchester

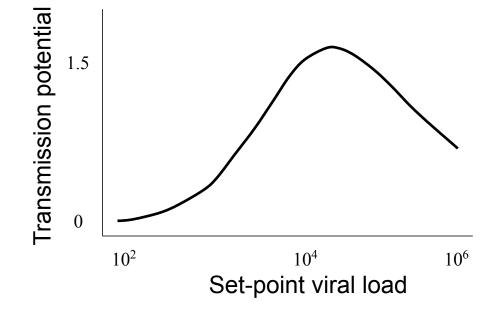
ESTER

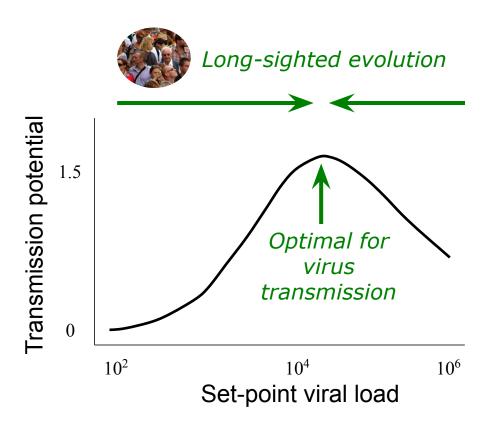
Evolution of SPVL

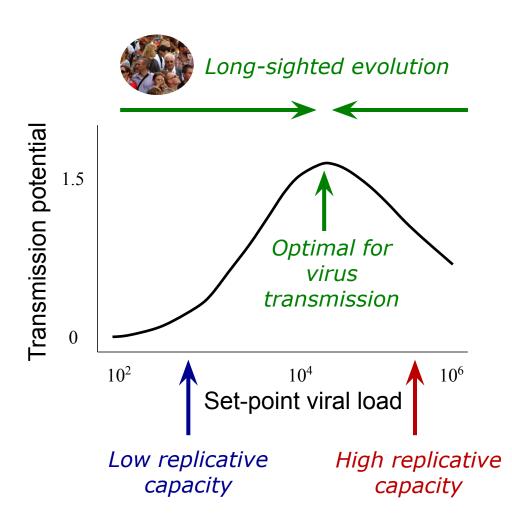
- □ SPVL is highly heritable
- □ Steadily increasing for 25 years
- □ Now seems to have plateaued
- The current mean value is very close to maximum transmission potential



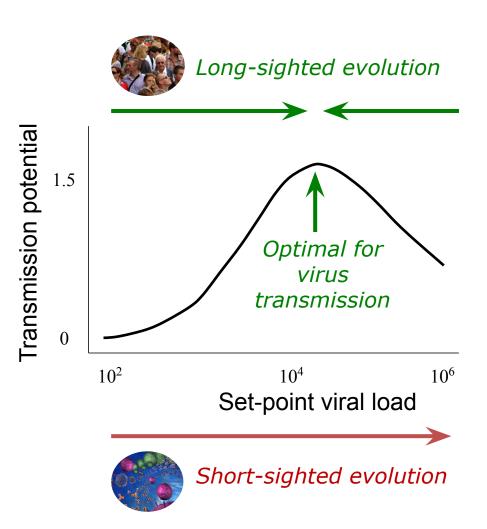
Fraser et al (2007), PNAS







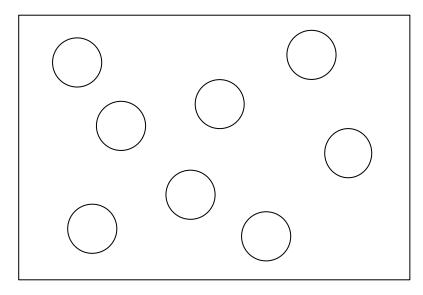
MANCHESTER 1824 The University of Manchester



1824 The University of Manchester

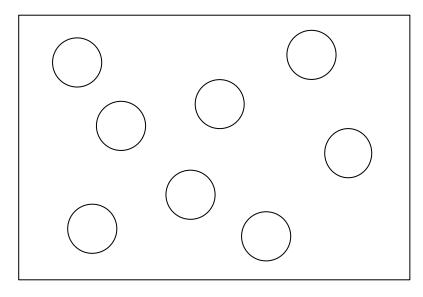
MANCHESTER

Population structure



- Deterministic model
- □ All susceptibles identical
- □ Homogeneous mixing
- \Box Vital dynamics: $\frac{\mathrm{d}N(t)}{\mathrm{d}t} = B \mu N(t)$

Population structure



dN(t)

d*t*

- Deterministic model
- □ All susceptibles identical
- □ Homogeneous mixing
- □ Vital dynamics:

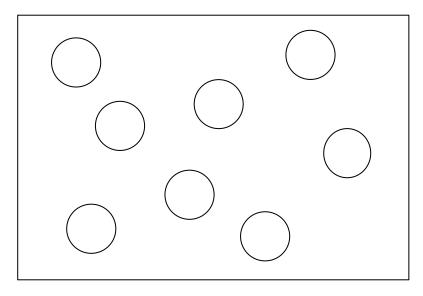
Total birth rate

μ

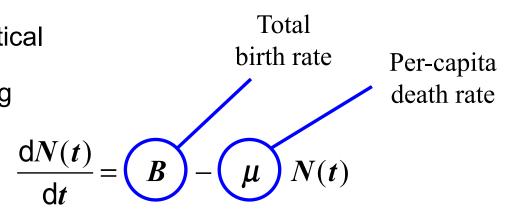
N(t)

B

Population structure



- Deterministic model
- □ All susceptibles identical
- □ Homogeneous mixing
- □ Vital dynamics:



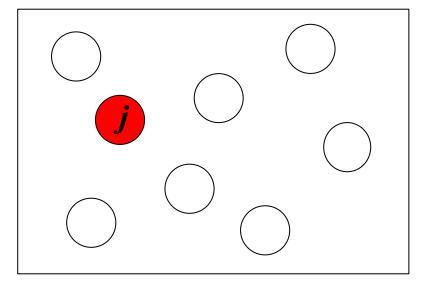
The University of Manchester



□ SI model

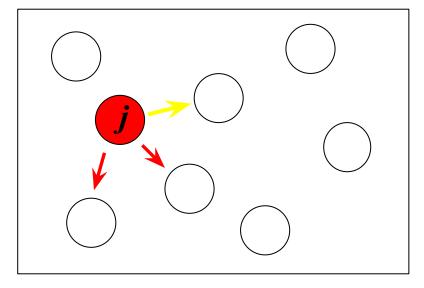
- \Box Infection caused by a single virion j
- \Box Type-*j* case = infected with a virus of strain *j*
- □ Infector strain → SPVL → infectiousness and duration
- $\square \quad \boldsymbol{\beta}_{ij}(\boldsymbol{\tau}) = \text{rate at which type-} \boldsymbol{j} \text{ case transmit strain } \boldsymbol{i}$

The University of Manchester



- □ SI model
- \Box Infection caused by a single virion j
- \Box Type-*j* case = infected with a virus of strain *j*
- □ Infector strain → SPVL → infectiousness and duration
- $\square \quad \boldsymbol{\beta}_{ij}(\boldsymbol{\tau}) = \text{rate at which type-} \boldsymbol{j} \text{ case transmit strain } \boldsymbol{i}$

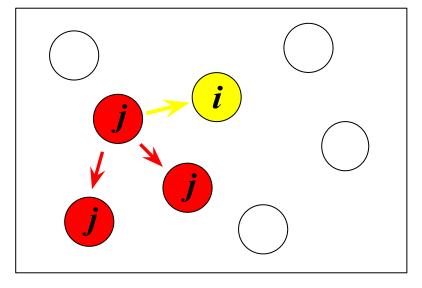
The University of Manchester



□ SI model

- \Box Infection caused by a single virion j
- \Box Type-*j* case = infected with a virus of strain *j*
- □ Infector strain → SPVL → infectiousness and duration
- $\square \quad \boldsymbol{\beta}_{ij}(\boldsymbol{\tau}) = \text{rate at which type-} \boldsymbol{j} \text{ case transmit strain } \boldsymbol{i}$

The University of Manchester



- □ SI model
- \Box Infection caused by a single virion j
- \Box Type-*j* case = infected with a virus of strain *j*
- □ Infector strain → SPVL → infectiousness and duration
- $\square \quad \boldsymbol{\beta}_{ij}(\boldsymbol{\tau}) = \text{rate at which type-} \boldsymbol{j} \text{ case transmit strain } \boldsymbol{i}$

Equations

$$H_{i}(t) = \frac{S(t)}{N(t)} \sum_{j=1}^{n} \int_{0}^{T_{j}} \beta_{ij}(\tau) H_{j}(t-\tau) e^{-\mu\tau} d\tau$$

$$S(t) = N(t) - \sum_{i=1}^{n} \int_{0}^{t_{i}} H_{i}(t-\tau) \mathrm{e}^{-\mu\tau} \,\mathrm{d}\tau$$

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = B - \mu N(t) - \sum_{i=1}^{n} H_i(t - T_i) \mathrm{e}^{-\mu T_i}$$

$$H_{i}(t) = \text{incidence of type-} i \text{ cases} \qquad N^{*} \qquad R_{0}$$
$$T_{i} = \text{duration of life of type-} i \text{ cases} \qquad \underline{H}^{*} = v(K)$$
$$K = \left(k_{ij}\right) = \left(\int_{0}^{\infty} \beta_{ij}(\tau) e^{-\mu\tau} d\tau\right) = \text{Next-Generation Matrix}$$

MANCHESTER 1824 The University of Manchester

Equilibrium:

$$\underline{\boldsymbol{H}}^* = (\boldsymbol{H}_i^*)$$
$$\boldsymbol{R}_0 = \boldsymbol{\rho}(\boldsymbol{K})$$
$$\Downarrow$$

$$\underline{\underline{H}}^{*} = \frac{\underline{S}^{*}}{N^{*}} \underline{K} \underline{\underline{H}}^{*}$$
$$\frac{\underline{S}^{*}}{N^{*}} = \frac{1}{\underline{R}}$$

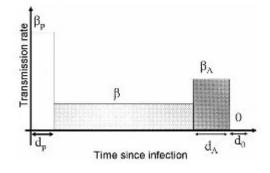
$$\underline{H}^* = v(K)$$

Infectivity profiles

Ideally, we want a within-host model to construct the $\beta_{ii}(\tau)$

Two choices:

- □ Virus immune system competition model:
 - Possible
 - Slow
 - No hope to get a non-unimodal infectivity profile
- Impose "artificially" a shape $\alpha_j(\tau)$ for the infectivity profile of type jand model changes in frequencies with the quasispecies equation
 - Very flexible
 - Fast
 - But requires many assumptions



MANCH

The University of Manchester

Consider *n* strains and let $\underline{\mathbf{y}}(t) = (y_i(t))$ where of virions of strain *i* $\underline{\mathbf{g}} = (g_i)$ extor of reproduction rates of strain *i* $M = (m_{ij})$ whetation matrix $Q = (m_{ij}g_j)$ extored the production matrix

□ Then the system for the unbounded growth is

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = \mathbf{Q}\mathbf{y}$$

Consider the frequencies

$$\underline{\mathbf{x}}(t) = \left(x_i(t) \right) = \left(\frac{y_i(t)}{\sum_j y_j(t)} \right)$$

Quasispecies equation:

$$\frac{\mathsf{d}\underline{\mathbf{x}}}{\mathsf{d}t} = Q\underline{\mathbf{x}} - \overline{g}\underline{\mathbf{x}}$$

where $\overline{g}(t) = \sum_{i} g_{i} x_{i}(t)$

Linking within- and between-host University of Manchester

$$\beta_{ij}(\tau) = G_i \quad x_{ij}(\tau) \quad \alpha_j(\tau)$$

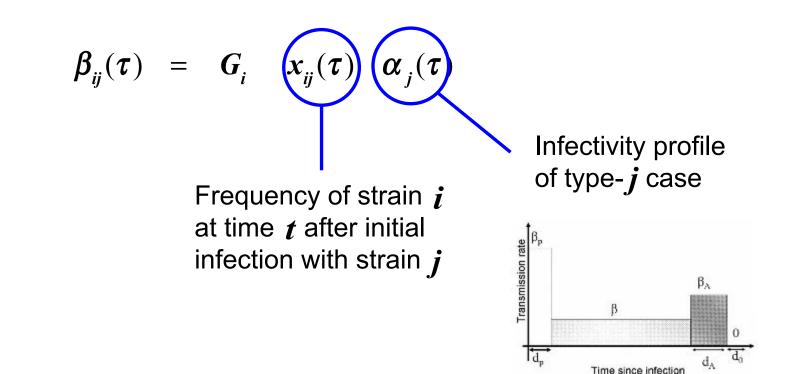
Linking within- and between-host University of Manchester

MANCHESTER

$$\beta_{ij}(\tau) = G_i \quad x_{ij}(\tau) \quad \alpha_j(\tau)$$
Infectivity profile
of type-*j* case
$$\int_{\text{Time since infection}}^{\beta_p} \int_{\text{Time since infection}}^{\beta_A} \int_{\text{Time since infection}}^{\beta$$

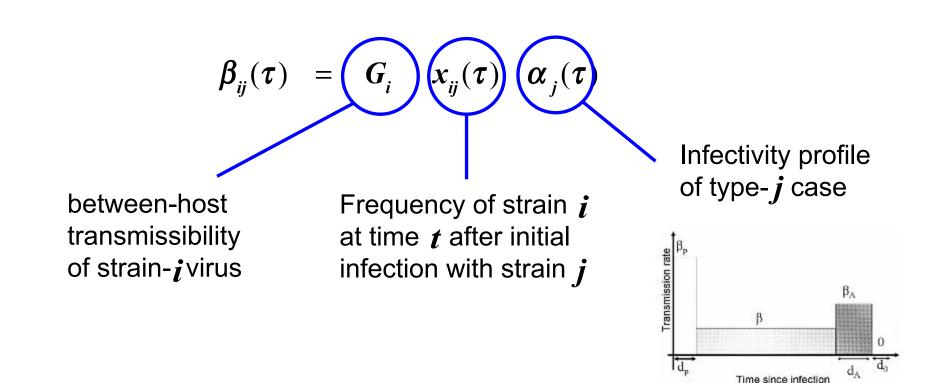
Linking within- and between-host University of Manchester

MANCHESTER



Linking within- and between-host University of Manchester

MANCHESTER



MANCHESTER

Strain index:

i = 1 2 ... n

MANCHESTER

Strain index:

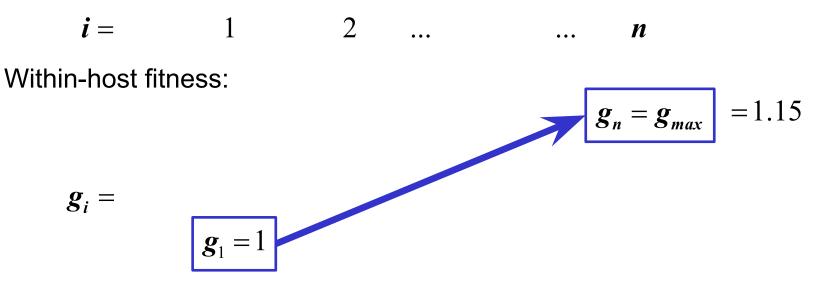
$$i = 1 2 ... n$$

Within-host fitness:

 $\boldsymbol{g}_i =$ $\boldsymbol{g}_1 = 1$ $\boldsymbol{g}_n = \boldsymbol{g}_{max} = 1$

MANCHESTER

Strain index:



MANCHESTER

Strain index:

$$i = 1 2 \dots n$$

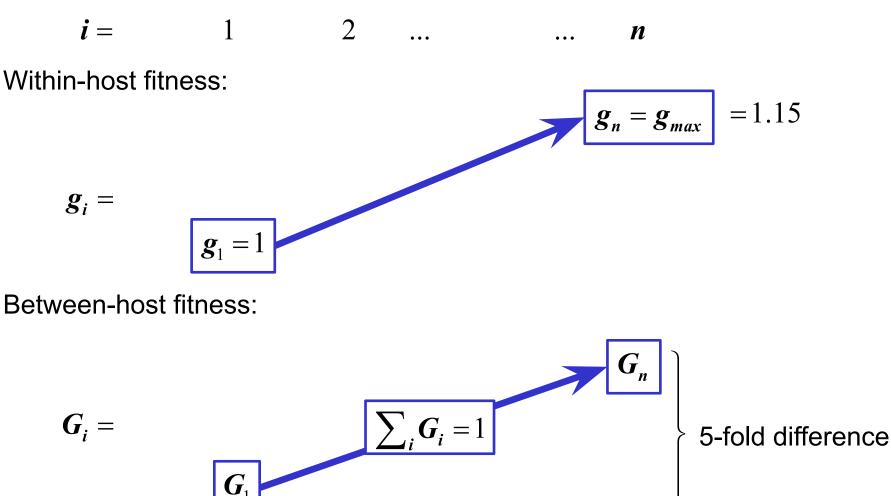
Within-host fitness:
 $g_i = g_{ni} = 1.15$

Between-host fitness:

$$G_i = \sum_i G_i = 1$$
 G_n

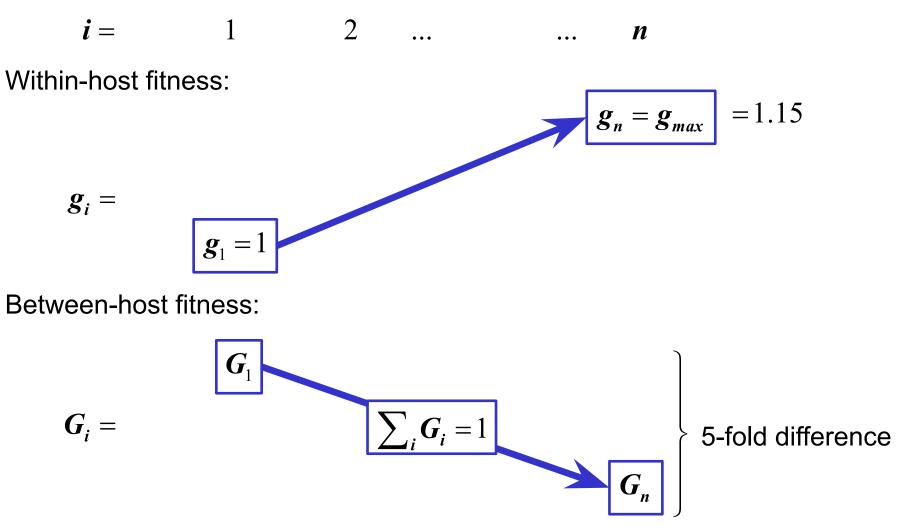
MANCHESTER

Strain index:



MANCHESTER

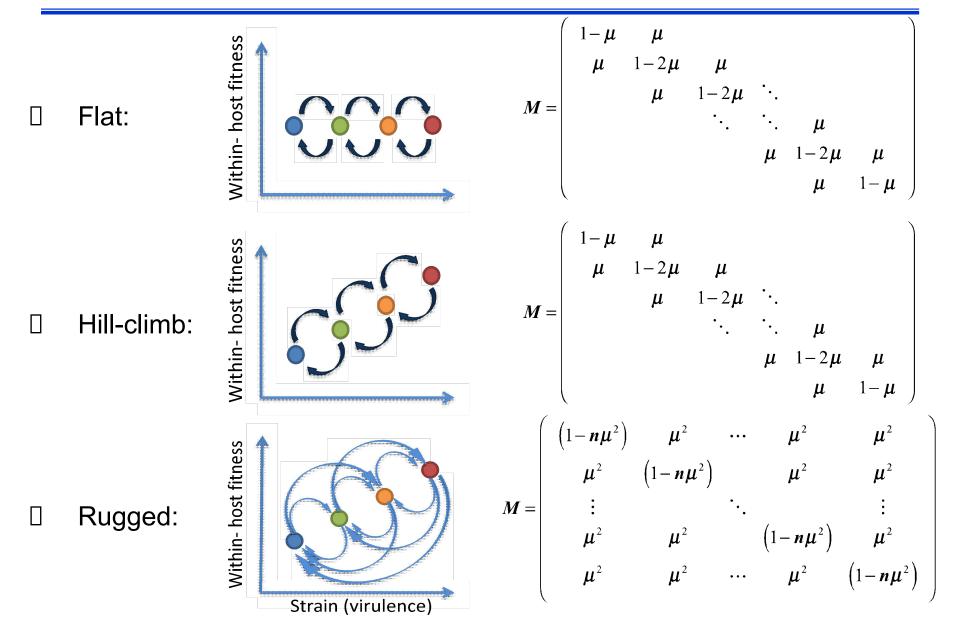
Strain index:

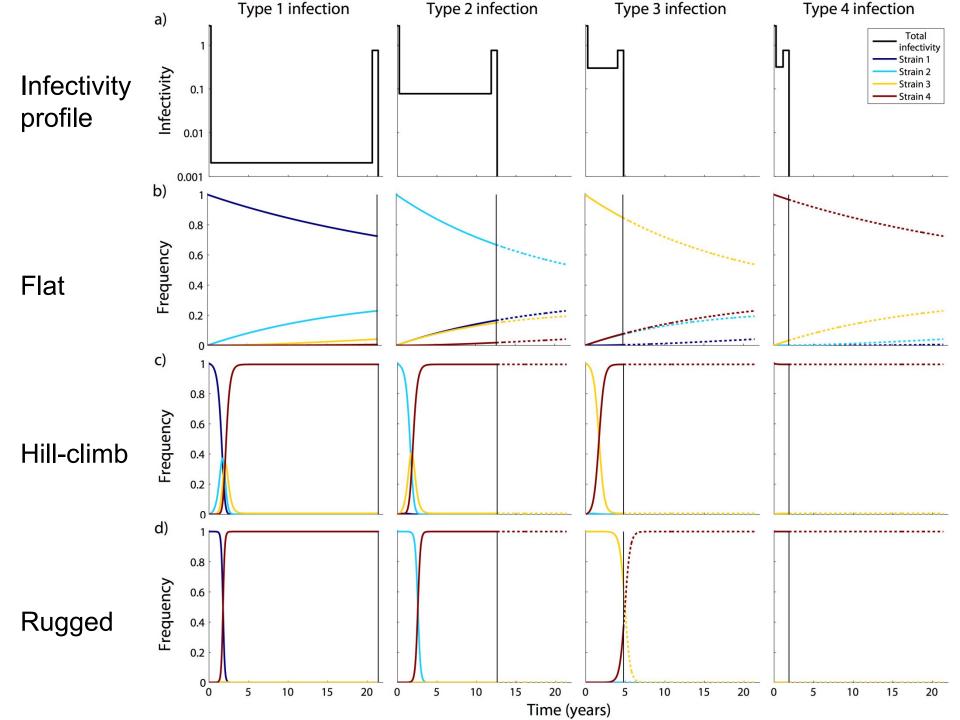


Reproduction-mutation matrix The University of Manchester

MANCH

ESTER



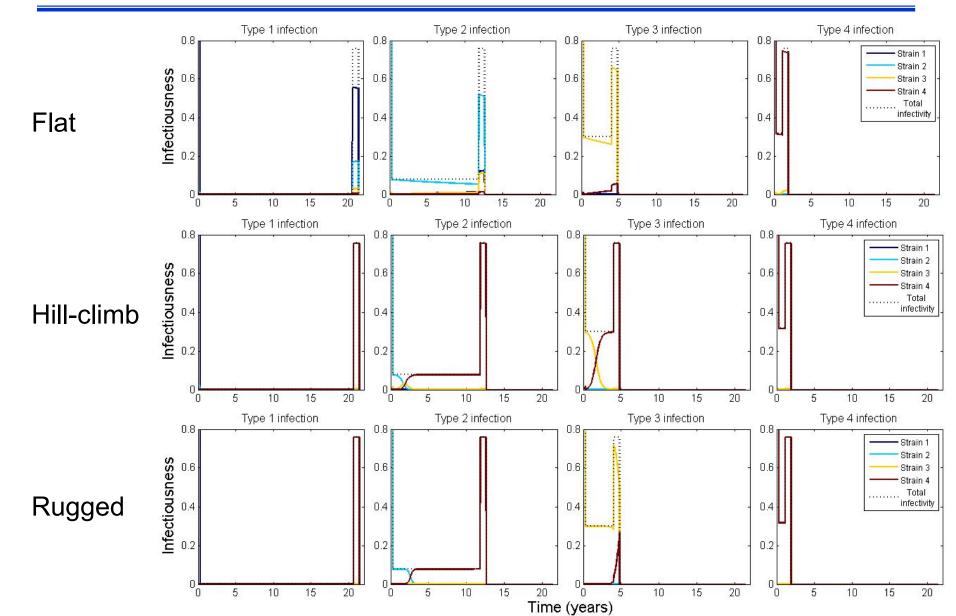


Infectivity profiles (4 strains)

The University of Manchester

MANCHESTER

1824



Equations

$$H_{i}(t) = \frac{S(t)}{N(t)} \sum_{j=1}^{n} \int_{0}^{T_{j}} \beta_{ij}(\tau) H_{j}(t-\tau) e^{-\mu\tau} d\tau$$

$$S(t) = N(t) - \sum_{i=1}^{n} \int_{0}^{t_{i}} H_{i}(t-\tau) \mathrm{e}^{-\mu\tau} \,\mathrm{d}\tau$$

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = B - \mu N(t) - \sum_{i=1}^{n} H_i(t - T_i) \mathrm{e}^{-\mu T_i}$$

$$H_{i}(t) = \text{incidence of type-} i \text{ cases} \qquad N^{*} \qquad R_{0}$$
$$T_{i} = \text{duration of life of type-} i \text{ cases} \qquad \underline{H}^{*} = v(K)$$
$$K = \left(k_{ij}\right) = \left(\int_{0}^{\infty} \beta_{ij}(\tau) e^{-\mu\tau} d\tau\right) = \text{Next-Generation Matrix}$$

MANCHESTER 1824 The University of Manchester

Equilibrium:

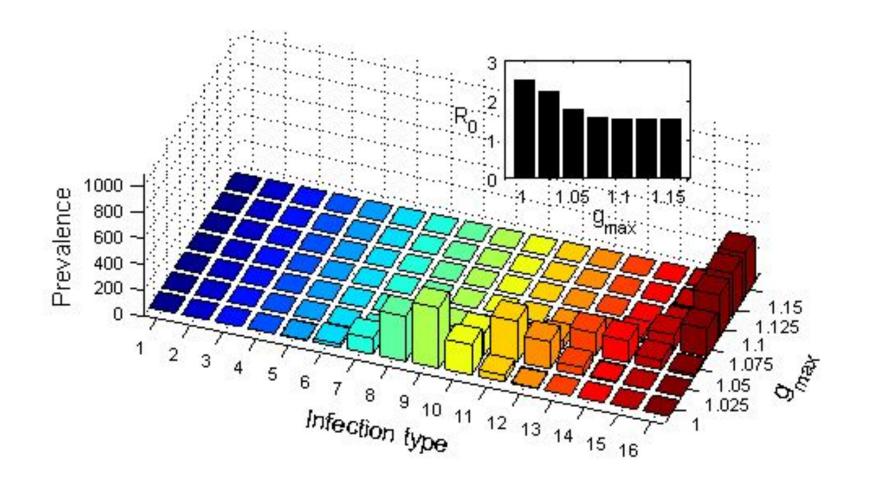
$$\underline{\boldsymbol{H}}^* = (\boldsymbol{H}_i^*)$$
$$\boldsymbol{R}_0 = \boldsymbol{\rho}(\boldsymbol{K})$$
$$\Downarrow$$

$$\underline{\underline{H}}^{*} = \frac{\underline{S}^{*}}{N^{*}} \underline{K} \underline{\underline{H}}^{*}$$
$$\frac{\underline{S}^{*}}{N^{*}} = \frac{1}{\underline{R}}$$

$$\underline{H}^* = v(K)$$

Equilibria

The University of Manchester



Overview of assumptions

- □ Structural assumptions:
 - No external events
 - No superinfection

Equations of Example 2

Dynamics:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = B - \mu N(t) - \sum_{i=1}^{n} H_i(t - T_i) \mathrm{e}^{-\mu T_i}$$

$$H_{i}(t) = \text{incidence of type-} i \text{ cases} \qquad N^{*} \qquad R_{0}$$

$$T_{i} = \text{duration of life of type-} i \text{ cases} \qquad \underline{H}^{*} = v(K)$$

$$K = \left(k_{ij}\right) = \left(\int_{0}^{\infty} \beta_{ij}(\tau) e^{-\mu\tau} d\tau\right) = \text{Next-Generation Matrix}$$

$$Lythgoe^{*}, \text{Pellis}^{*} \& \text{ Fraser (2013), Evolution}$$

Equilibrium:

Overview of assumptions

- □ Structural assumptions:
 - No external events
 - No superinfection
- □ Implications:
 - Can use a time-since-infection framework
 - Can use a next-generation matrix (NGM) approach
 - Within- and between-host levels are linked
 - But no "full" feedback loop (no evolving population immunity)

Overview of assumptions

- □ Structural assumptions:
 - No external events
 - No superinfection
- □ Implications:
 - Can use a time-since-infection framework
 - Can use a next-generation matrix (NGM) approach
 - Within- and between-host levels are linked
 - But no "full" feedback loop (no evolving population immunity)
- Other assumptions that may be relaxed:
 - Single-virion infection (easy)
 - All-identical susceptibles (hard)

Equations of Example 2

Dynamics:

$$H_i(t) = \frac{S(t)}{N(t)} \sum_{j=1}^n \int_0^{T_j} \beta_{ij}(\tau) H_j(t-\tau) \mathrm{e}^{-\mu\tau} \,\mathrm{d}\tau$$

$$S(t) = N(t) - \sum_{i=1}^{n} \int_{0}^{t} H_{i}(t-\tau) \mathrm{e}^{-\mu\tau} \,\mathrm{d}\tau$$

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = B - \mu N(t) - \sum_{i=1}^{n} H_i(t - T_i) \mathrm{e}^{-\mu T_i}$$

$$H_{i}(t) = \text{incidence of type-} i \text{ cases} \qquad N^{*} \qquad R_{0}$$

$$T_{i} = \text{duration of life of type-} i \text{ cases} \qquad \underline{H}^{*} = v(K)$$

$$K = \left(k_{ij}\right) = \left(\int_{0}^{\infty} \beta_{ij}(\tau) e^{-\mu\tau} d\tau\right) = \text{Next-Generation Matrix}$$

$$Lythgoe^{*}, \text{Pellis* \& Fraser (2013), Evolution}$$

Equilibrium:

$$\underline{\boldsymbol{H}}^* = (\boldsymbol{H}_i^*)$$
$$\boldsymbol{R}_0 = \boldsymbol{\rho}(\boldsymbol{K})$$
$$\Downarrow$$

$$\underline{H}^* = \frac{S^*}{N^*} K \underline{H}^*$$

$$\frac{\boldsymbol{S}^*}{\boldsymbol{N}^*} = \frac{1}{\boldsymbol{R}_0}$$

.

The University of Manchester

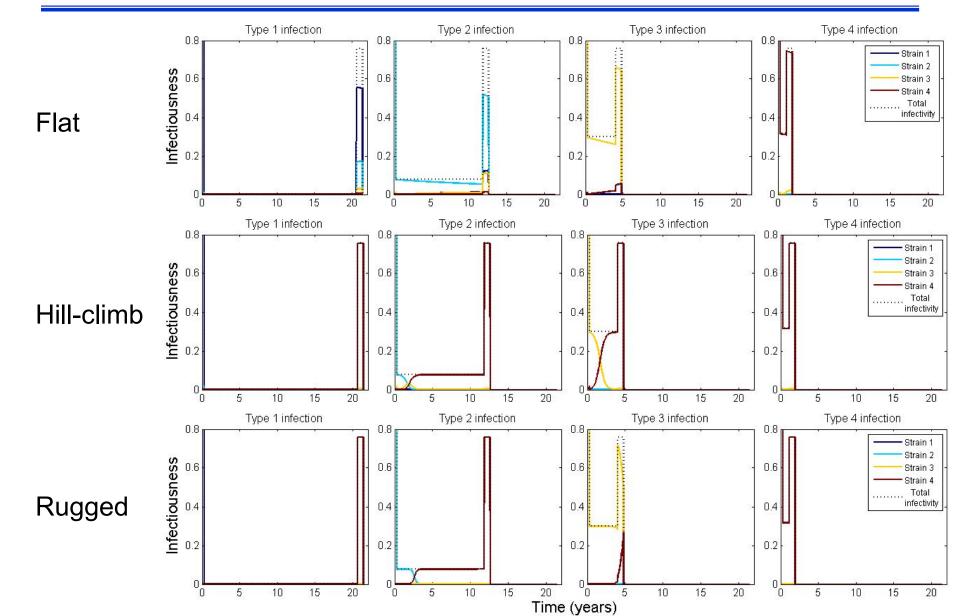
OPEN CHALLENGES

- □ Names: "nested", "immuno-epidemiological", "Within-between-host"
- Can always be constructed, as long as WH dynamics allow the construction of a between-host (BH) transmission rate $\beta(\tau)$
- They can be written as PDEs or DDEs/integral equations
- □ <u>Caveat</u>:
 - Most of the time they <u>assume</u> such the between-scale link (e.g., pathogen load and transmission rate)

- Agreed terminology? Definition of "nested" model?
- Any benefit of using PDEs rather than DDEs?
- Experimental studies of between-scale links?

Generation time for complex models?

The University of Manchester



- □ Second infection after recovery, affected by past disease history
- Difficult: both population infectivity <u>and</u> susceptibility determine new cases
- □ Main reason: understanding the ecology of influenza:
 - Julia Gog
 - Viggo Andreasen
 - Adam Kucharski
- Problems:
 - With many strains, curse of dimensionality
 - Strong assumptions to reduce dimensions, e.g. past history does not reduce susceptiblity, or does not reduce infectivity
 - All ODE-based
 - Limited to acute infections

Superinfection

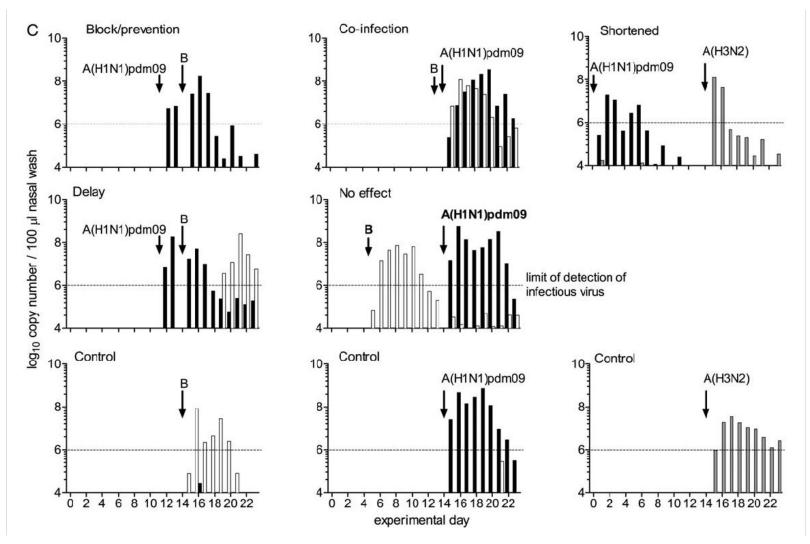
- □ A second infection before the first is "complete"
- □ Why do we need it?
 - Chronic infections (e.g. HIV, HCV)
 - HIV has high superinfection rates [Redd et al. (2014), JID and (2014), AIDS]
 - Data is becoming available [Laurie et al. (2015), JID and (2017), JID]
- □ Same problems as reinfection, but in addition:
 - Timing is probably very important
 - The TSI framework falls apart, i.e. WH evolution non-autonomous
 - Unclear usefulness of NGM, or even of R_0
 - All ODE-based
 - Limited to acute infections

Superinfection data

The University of Manchester

MANCHESTER

1824



Laurie et al (2015), JID

Superinfection

- □ A second infection before the first is "complete"
- □ Why do we need it?
 - Chronic infections (e.g. HIV, HCV)
 - HIV has high superinfection rates [Redd et al. (2014), JID and (2014), AIDS]
 - Data is becoming available [Laurie et al. (2015), JID and (2017), JID]
- □ Same problems as reinfection, but in addition:
 - Timing is probably very important
 - The TSI framework falls apart, i.e. WH evolution non-autonomous
 - Unclear usefulness of NGM, or even of R_0
 - All ODE-based
 - Limited to acute infections

The concept of generation time distribution is strongly linked with time-since-infection models

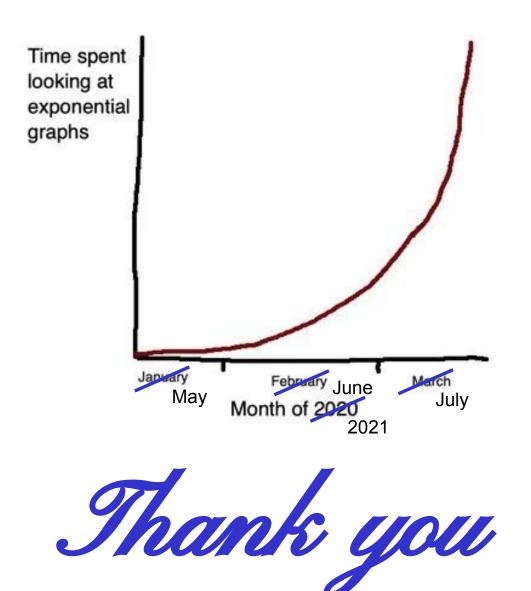
TSI harder than ODEs, but have some benefits:

- Useful for multi-scale / within- and between-host models
 - Probably more useful for <u>chronic infections</u>
- Useful when shape of infectivity profile is key. For COVID-19, e.g.
 - Contact tracing
 - Optimal timing of testing to keep infection out of closed settings
- □ Challenges:
 - The link between the two scales is almost always <u>assumed</u>
 - Concept of generation-time for complex models, e.g. multi-strain
 - TSI with reinfection / superinfection

Acknowledgements

KatrinaLythgoe Christophe Fraser Francois Blanquart Andrea Pugliese

Acknowledgements



Limitations of ODEs

- ODEs are extremely useful and easy to use
- But have many limitations:
 - Oversimplified emergence of resistance:

Time-scale separation argument:

• Superinfection:

