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State transitions

The simplest form of within-host (WH) dynamics are transitions 
between states: 

▪ Traditionally modelled with ODEs

Sensible starting point:
▪ Simple
▪ ODE numerical tools

Limitations:
▪ Constant rates
▪ Exponential waiting times
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Extensions

Gamma (Erlang) distributions, by adding multiple compartments:

Phase-type distributions

Different infectivities in different compartments

Problems:
▪ Number of compartments grows fast
▪ In the limit of a constant duration, we need      compartments
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Our COVID-19 model

Overton*, Pellis* et al., to be submitted soon
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Time-since-infection (TSI) models      

Function          to describe infectivity in terms of time-since-infection 



Real-time growth rate

Dynamics:

 Linearise:

Look for exponential solutions:

Euler-Lotka equation

Given                           , it’s easy to see that 

Diekmann & Heesterbeer (2000); Diekmann, Heesterbeek & Britton (2012)
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Time-since-infection models      

Function          to describe infectivity in terms of time-since-infection 

We can also use a random version of it:
▪ General enough to encompass all previous cases    

Drawbacks:
▪ Harder to study (PDEs or integral equations/DDEs)
▪ Computationally intensive to integrate
▪ Require initial conditions on an interval (the support of         )
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Superinfection data

Laurie et al (2015), JID



Why using TSI?

More general

Closer to biology / experiments:
▪ Detailed time evolution of infection is deemed important
▪ Complex / long infectivity profiles (e.g. HIV)
▪ Available data

Suitable to encapsulate complex within-host (WH) dynamics



Why using TSI?

More general

Closer to biology / experiments:
▪ Detailed time evolution of infection is deemed important
▪ Complex / long infectivity profiles (e.g. HIV)
▪ Available data

Suitable to encapsulate complex within-host (WH) dynamics



Examples (dengue)

Model 1: Target cell limited

susceptible cells
infected cells
free virus

Model 2: Innate immune response

susceptible cells
infected cells
natural killer cells

Ben-Shachar & Koelle (2014), Interface



Examples (dengue)

Model 3: Innate + adaptive cellular immune response

susceptible cells
infected cells
natural killer cells
T cells

Ben-Shachar & Koelle (2014), Interface



Gilchrist & Sasaki (2002)

First example: Gilchrist & Sasaki (2002)
▪ Within-host dynamics: pathogen load

level immunity

▪ Between-host
    dynamics:

▪ Link: 

Gilchrist & Sasaki (2002), J Theor Biol



Example

Model: specific + aspecific immunity

pathogen load
level of specific immuntity
(constant) level of aspecific immunity

Pugliese & Gandolfi (2008), Math Biosc
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EXAMPLE 1: HIV WITHIN-HOST 
METAPOPULATION MODEL

[ Lythgoe, Blanquart, Pellis & Fraser (2016), PLoS Biology ]



Set-point viral load

Fraser, Lythgoe et al (2014), Science 



Motivation

SPVL varies by at least 4 orders of magnitude between patients:

What is causing this variation?

time since infection
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Factors determining SPVL

Speed at which virus replicates and infects new cells

Efficacy of CTL immune response

…

However, in “well-mixed” models, these factors only mildly affect SPVL, 
unless we are close to the extinction threshold

Days since infection
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But is HIV “well-mixed” 
within the host?

Probably not:

Viral replication focused within 
specific regions of the body, e.g. 
lymph nodes

We estimate there are between 
1,000 and 10,000 of these sites 
of replication in the human body

Viral populations genetically 
structured at a small spatial 
scale (though it might not 
persist over time)

Within-host HIV dynamics are best 
described using a metapopulation 
model 
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HIV metapopulation model

Site of HIV 
replication

Susceptible 
CD4+ T cells CTLs

storage



Full equations
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Within-patch equations



Analytical approximation

If immigration of infected cells is negligible (after the first seeding): 

Within-patch dynamics 

lead to a rate at which a patch infect other patches:

Dynamics

Patch reproduction number:

If                there is no infection



Within-patch dynamics

3 possible outcomes:

1. No or small burst of infection (            )

       Disease-free equilibrium (DFE)

2. Short but big enough burst (                   )

       Shifting-mosaic steady state (SMSS)

3. Reaching endemic equilibrium (             )

       Full equilibrium (FE)



‘Shifting mosaic’ steady state

Bormann & Likens, 1979

Catastrophe

Time

Although each patch is at a different phase, 
the total biomass of the landscape is fairly constant



Full equilibrium VS SMSS 

SMSS

FE



SMSS dynamics



Sensitivity to parameters
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Sensitivity to parameters
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replication Obliteration of infected cells by 

immune system (e.g. CD8+ T cells)









END OF EXAMPLE 1

[ Lythgoe, Blanquart, Pellis & Fraser (2016), PLoS Biology ]
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EXAMPLE 2: HIV WITHIN- & 
BETWEEN-HOST MODEL

[ Lythgoe, Pellis & Fraser (2013), Evolution ]



Set-point viral load

Fraser, Lythgoe et al (2014), Science 



Predicts infectiousness

Transmission potential           
= overall infectivity

Predicts duration of 
asymptomatic stage

Set-point viral load (SPVL)

Fraser et al (2007), PNAS



Evolution of SPVL

SPVL is highly heritable

Steadily increasing for 25 years

Now seems to have plateaued

The current mean value is very close to maximum transmission 
potential

Fraser et al (2007), PNAS
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HIV transmission potential

102 104 106

0

1.5

Long-sighted evolution

Optimal for 
virus 

transmission

Tr
an

sm
is

si
on

 p
ot

en
tia

l

Set-point viral load



HIV transmission potential
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HIV transmission potential
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Population structure

Deterministic model

All susceptibles identical

Homogeneous mixing

Vital dynamics:
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Population structure

Deterministic model

All susceptibles identical

Homogeneous mixing

Vital dynamics:

Total 
birth rate Per-capita

death rate



Infection spread

SI model

Infection caused by a single virion

Type-   case = infected with a virus of strain 

Infector strain                SPVL                infectiousness and duration

              rate at which type-   case transmit strain 
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Infection spread

SI model

Infection caused by a single virion

Type-   case = infected with a virus of strain 

Infector strain                SPVL                infectiousness and duration

              rate at which type-   case transmit strain 



Dynamics:

             incidence of type-   cases

             duration of life of type-   cases

Equilibrium:

= Next-Generation Matrix

Equations



Infectivity profiles

Ideally, we want a within-host model to construct the

Two choices:

Virus – immune system competition model:
▪ Possible
▪ Slow
▪ No hope to get a non-unimodal infectivity profile

Impose “artificially” a shape            for the infectivity profile of type 
and model changes in frequencies with the quasispecies equation
▪ Very flexible
▪ Fast
▪ But requires many assumptions



The quasispecies equation

Consider     strains and let
number of virions of strain 
vector of reproduction rates of strain   
mutation matrix
reproduction-mutation matrix

Then the system for the unbounded growth is

Consider the frequencies

Quasispecies equation:

                                                                         where 
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Linking within- and between-host

Infectivity profile
of type-   caseFrequency of strain

at time    after initial 
infection with strain 

between-host
transmissibility
of strain-  virus



Within- and between-host fitness

Strain index:
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Within- and between-host fitness

Strain index:
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Within- and between-host fitness

Strain index:

Within-host fitness:

Between-host fitness:

5-fold difference



Reproduction-mutation matrix

Flat:

Hill-climb:

Rugged: 



Infectivity 
profile

Flat

Hill-climb

Rugged



Infectivity profiles (4 strains)

Flat

Hill-climb

Rugged



Dynamics:

             incidence of type-   cases

             duration of life of type-   cases

Equilibrium:

= Next-Generation Matrix

Equations



Equilibria



Overview of assumptions

Structural assumptions:
▪ No external events
▪ No superinfection



Dynamics:

             incidence of type-   cases

             duration of life of type-   cases

Equilibrium:

= Next-Generation Matrix

Equations of Example 2

Lythgoe*, Pellis* & Fraser (2013), Evolution
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Structural assumptions:
▪ No external events
▪ No superinfection

Implications:
▪ Can use a time-since-infection framework
▪ Can use a next-generation matrix (NGM) approach
▪ Within- and between-host levels are linked
▪ But no “full” feedback loop (no evolving population immunity)



Overview of assumptions

Structural assumptions:
▪ No external events
▪ No superinfection

Implications:
▪ Can use a time-since-infection framework
▪ Can use a next-generation matrix (NGM) approach
▪ Within- and between-host levels are linked
▪ But no “full” feedback loop (no evolving population immunity)

Other assumptions that may be relaxed:
▪ Single-virion infection (easy)
▪ All-identical susceptibles (hard)



Dynamics:

             incidence of type-   cases

             duration of life of type-   cases

Equilibrium:

= Next-Generation Matrix

Equations of Example 2

Lythgoe*, Pellis* & Fraser (2013), Evolution



OPEN CHALLENGES



Nested models

Names: “nested”, “immuno-epidemiological”, “Within-between-host”

Can always be constructed, as long as WH dynamics allow the 
construction of a between-host (BH) transmission rate

They can be written as PDEs or DDEs/integral equations

Caveat:
▪ Most of the time they assume such the between-scale link (e.g., 

pathogen load and transmission rate)

❖ Agreed terminology? Definition of “nested” model?

❖ Any benefit of using PDEs rather than DDEs?

❖ Experimental studies of between-scale links?



Generation time for 
complex models?

Flat

Hill-climb

Rugged



Reinfection

Second infection after recovery, affected by past disease history

Difficult: both population infectivity and susceptibility determine new 
cases

Main reason: understanding the ecology of influenza:
▪ Julia Gog
▪ Viggo Andreasen
▪ Adam Kucharski

Problems:
▪ With many strains, curse of dimensionality
▪ Strong assumptions to reduce dimensions, e.g. past history does 

not reduce susceptiblity, or does not reduce infectivity
▪ All ODE-based
▪ Limited to acute infections



Superinfection

A second infection before the first is “complete”

Why do we need it?
▪ Chronic infections (e.g. HIV, HCV)
▪ HIV has high superinfection rates [Redd et al. (2014), JID and (2014), AIDS]

▪ Data is becoming available [Laurie et al. (2015), JID and (2017), JID]

Same problems as reinfection, but in addition:
▪ Timing is probably very important
▪ The TSI framework falls apart, i.e. WH evolution non-autonomous
▪ Unclear usefulness of NGM, or even of 
▪ All ODE-based
▪ Limited to acute infections
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Summary

The concept of generation time distribution is strongly linked with 
time-since-infection models

TSI harder than ODEs, but have some benefits:

Useful for multi-scale / within- and between-host models
▪ Probably more useful for chronic infections 

Useful when shape of infectivity profile is key. For COVID-19, e.g.
▪ Contact tracing
▪ Optimal timing of testing to keep infection out of closed settings

Challenges:
▪ The link between the two scales is almost always assumed
▪ Concept of generation-time for complex models, e.g. multi-strain
▪ TSI with reinfection / superinfection
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Limitations of ODEs

ODEs are extremely useful and easy to use

But have many limitations:
▪ Oversimplified emergence of resistance:

▪ Time-scale separation argument:

▪ Superinfection:
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