# Controlling the pandemic during the SARS-CoV-2 vaccination rollout 

## Ganna Rozhnova

UMC Utrecht, The Netherlands \& BioISI, Portugal

Evolutionary Implications of the COVID-19 Vaccination Programme 19 April 2021

## Collaborators

- João Viana (Lisbon)
- Christiaan van Dorp (Los Alamos)
- Ana Nunes (Lisbon)
- Manuel Gomes (Lisbon)
- Michiel van Boven (Utrecht)
- Mirjam Kretzschmar (Utrecht)
- Marc Veldhoen (Lisbon)


Making the way out: model-based evaluation of exit strategies from the COVID-19 lockdown in Portugal


Fundação para a Ciência e a Tecnologia ministério da ciência, tecnologia e ensino superior

## Preprint

## Research Square

In review in Nature Communications

Viana J, van Dorp C, Nunes A, Gomes M, van Boven M, Kretzschmar M, Veldhoen M, Rozhnova G (2021). Controlling the pandemic during the SARS-CoV-2 vaccination rollout: a modeling study https://doi.org/10.21203/rs.3.rs-358417/v1

GitHub

## https://github.com/lynxgav/COVID19-vaccination

## medRXiv (c)

THE PREPRINT SERVER FOR HEALTH SCIENCES
Controlling the pandemic during the SARS-CoV-2
vaccination rollout: a modeling study
João Viana, (D) Christiaan H. van Dorp, (D) Ana Nunes, Manuel C. Gomes, Michiel van Boven,
(D) Mirjam E. Kretzschmar, (D) Marc Veldhoen, (D) Ganna Rozhnova
doi: https://doi.org/IO.IIOI/202I.03.24.2I254I88


Ritmo de vacinação e reabertura total das escolas podem levar a quarta vaga Média de contactos diários na população pode atingir níveis semelhantes aos do Outono passado

 Teletrabalho $\quad$ Apoios do Estado Sindicatos Governo desafia Estrela dos exigem despesas oposição a republicanos | querem acordos | $\begin{array}{ll}\text { mudar lei sobre } \\ \text { independentes }\end{array}$ | $\begin{array}{l}\text { sob suspeita } \\ \text { de tráfico sexual }\end{array}$ |
| :--- | :--- | :--- | independentes sob suspeita

de tráfico sexual




idealista
O portal imobiliário líder em Portugal


## Background

- Portugal experienced three waves of COVID-19
- Vaccination started at the end of December 2020
- Struggle to choose the right mix of measures to keep COVID-19 under control but to allow for social and economic activity


## Objectives

- What is the impact of vaccination on the transmission dynamics of SARS-CoV-2 in Portugal?
- When and which control measures can be relaxed as the vaccination is rollout in 2021?
- How are predictions affected if vaccine efficacy was reduced due to antigenic escape variants?

Moore et al. Lancet Infectious Diseases. 18 March 2021.
doi: 10.1016/S1473-3099(21)00143-2

Scientific Advisory Group for Emergencies. Report. 18 February 2021.

## Transmission model



- 10 age classes/hospitalization classes/vaccination classes
- 3 susceptibility classes (Jing et al. Lancet Inf Dis 2020; Goldstein et al. JID 2020)
- 5 seroprevalence classes


## Data \& Fitting

The model is fitted to two data sets

- Data 1: age-stratified hospital admissions ( $\mathrm{n}=28,482$ )
- Period: 325 days after the first case (2 March 2020-15 January 2021)
- Start of the epidemic: 26 February 2020
- Data 2: Age-stratified serological data $(\mathrm{n}=2,301)$
- Date: 28 May 2020
- Bayesian framework using Stan with R interface
- 32 parameters are estimated

Rozhnova et al. Nature Communications 12, 1614 (2021) Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic.

## Contact patterns




## First lockdown transition

We use a linear combination of matrices before and after lockdown

$$
c_{k l}=[1-f(t)] b_{k l}+\zeta_{1} f(t) a_{k l} \quad f(t)=\frac{1}{1+e^{-K_{1}\left(t-t_{1}\right)}}
$$



Speed $\mathrm{K}_{1}$ and timing $\mathrm{t}_{1}$ of the transition in the contact patterns are estimated

Rozhnova et al. Nature Communications 12, 1614 (2021) Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic.

## Time-varying contact patterns



- First lockdown/1 $1^{\text {st }}$ Emergency State
- Relaxation of measures
- Further relaxation of measures (school opening)
- $2^{\text {nd }}$ Emergency State
- Relaxation due to Christmas/New Year holidays


## Model fit: Hospital admissions



## Model fit: Seroprevalence




## Time-varying contact patterns \& $\mathrm{R}_{\mathrm{e}}(\mathrm{t})$





- $\quad R_{e}(t)$ is calculated using the estimated level of seroprevalence
- $R_{e}(t)<1 \&$ control measures in place partial control
- $\mathrm{R}_{\mathrm{e}}(\mathrm{t})<1$ \& pre-pandemic contacts full control


## Vaccination program

Table 1. The Portuguese vaccination plan.

| Category | Age (years) | Vaccination period | Persons |
| :---: | :---: | :---: | :---: |
| Phase 1 |  |  | 937,361 |
| Healthcare workers (HCW) | 20-65 | 27 Dec 2020-28 Feb 2021 | 199,708 |
| Long-term care facilities (LTCF) |  | 01 Jan 2021 - 28 Feb 2021 | 148,119 |
| Residents | 65+ |  | 86,982 |
| Staff | 20-65 |  | 61,138 |
| Risk Group 1 | $50+$ | 01 Feb 2021-30 Apr 2021 | 513,634 |
| Cardiac insufficiency |  |  | 207,571 |
| Coronary heart disease |  |  | 169,265 |
| Renal insufficiency |  |  | 8,201 |
| Chronic obstructive pulmonary disease (COPD) |  |  | 128,597 |
| First response professionals (FRP) (firemen, police, military etc.) | $20-65$ | 01 Feb 2021 - 30 Apr 2021 | 75,900 |
| Phase 2 |  |  | 3,333,191 |
| Persons with or without morbidities unvaccinated before* | 65+ | 01 May 2021 - 31 Jul 2021 | 1,873,349 |
| Risk Group 2 | $50-65$ | 01 May 2021 - 31 Jul 2021 | 1,459,842 |
| Diabetes |  |  | 222,864 |
| Neoplasm |  |  | 114,246 |
| Hepatic insufficiency |  |  | 93,004 |
| Chronic kidney disease |  |  | 4,222 |
| Obesity |  |  | 392,959 |
| High blood pressure |  |  | 632,547 |
| Phase 3 |  |  | 6,529,448 |
| Remaining persons (excluding children)** | $20-65$ | 01 Aug $2021-31$ Dec 2021 | 6,529,448 |
| Total ${ }^{\text {* }}$ |  |  | 10,800,000 |

*The Portuguese vaccination plan assumes that all persons in the population will be vaccinated with a two-dose vaccine schedule. In the model, the maximum vaccination coverage in any age group is $90 \% .^{* *}$ According to the current guidelines, persons under 18 years old are not eligible for vaccination. In the model, we assumed that the age group of 0 to 20 years old is not vaccinated.

## Vaccination analyses

- Maximum vaccination coverage of $90 \%$ (Makhoul et al. Vaccines 2021)
- Persons under 20 years of age are not vaccinated
- Vaccine efficacies for Pfizer vaccine (96\% of total doses)
- Infection-blocking properties
- Vaccination is a single event conferring protection equivalent to 2 vaccine doses
- Optimistic and pessimistic sets of vaccine efficacies (94\% vs $55 \%$ efficacy in reducing susceptibility; Thompson et al. CDC 2021; Moustsen-Helms et al. medRxiv 2021; Chodick et al. medRxiv 2021)
- There is (no) behavior compensation in vaccinated persons


## Vaccination rollout schedule



- Morbidities in the vaccination plan are defined by ICPC-2 codes
- Data on the age distribution of morbidities from the Ministry of Health


## Vaccination coverage




- 80+ -> end of June 2021
- $[60,80)$-> $3^{\text {rd }}$ week of July 2020
- $[50,60)$-> end of August 2021
- $[20,50)$-> mid-November 2021


## Relaxation scenarios

- Scenario 1 Lifting all measures
- Scenario 2 Partial lifting of measures as in autumn 2020
- Scenario 3 Partial lifting of measures as in summer 2020
- Scenario 4 Step-wise relaxation of measures


## Scenarios 1, 2, 3









## Scenario 4: Step-wise relaxation



## Scenario 4: Different timing



## Scenario 4: Pessimistic assumptions



Decreased vaccine efficacy due to antigenic escape variants Zhou et al Cell 2021


Decreased vaccine efficacy due to antigenic escape variants
$+$

Pre-pandemic contact rates in the vaccinated population

## Main limitations \& work in progress

- Hospitalization data ends on 15 January 2021 (start of the third wave)
- No reinfection after natural infection/vaccination (Saad-Roy et al Science 2021; Levine et al Science 2021)
- No seasonality (Kissler et al Science 2021)
- No estimation of selective advantage of B.1.1.7



## Conclusion

- Quick relaxation might lead to new waves in 2021
- Substantial measures prove necessary throughout 2021
- More favorable scenarios are relaxation of measures as in summer 2020 or a gradual relaxation until the end of 2021
- Another option would be increasing vaccination rates but this scenario does not seem to be feasible for Portugal

Thank you!

