

Controlling the pandemic during the SARS-CoV-2 vaccination rollout

Ganna Rozhnova

UMC Utrecht, The Netherlands & BiolSI, Portugal

Evolutionary Implications of the COVID-19 Vaccination Programme 19 April 2021

Collaborators

- João Viana (Lisbon)
- Christiaan van Dorp (Los Alamos)
- Ana Nunes (Lisbon)
- Manuel Gomes (Lisbon)
- Michiel van Boven (Utrecht)
- Mirjam Kretzschmar (Utrecht)
- Marc Veldhoen (Lisbon)

Making the way out: model-based evaluation of exit strategies from the COVID-19 lockdown in Portugal

Preprint

In review in Nature Communications

Viana J, van Dorp C, Nunes A, Gomes M, van Boven M, Kretzschmar M, Veldhoen M, Rozhnova G (2021). Controlling the pandemic during the SARS-CoV-2 vaccination rollout: a modeling study <u>https://doi.org/10.21203/rs.3.rs-358417/v1</u>

Controlling the pandemic during the SARS-CoV-2 vaccination rollout: a modeling study

João Viana, D Christiaan H. van Dorp, Ana Nunes, Manuel C. Gomes, Michiel van Boven, Mirjam E. Kretzschmar, Marc Veldhoen, Ganna Rozhnova **doi:** https://doi.org/10.1101/2021.03.24.21254188

Abrir portas onde se erguem muros Director: Manuel Carvalho Quarta-feira, 7 de Abril de 2021 • Ano XXII • n.º 11.303 • Edição Lisboa • Assinaturas 808 200 095 • 1,30€

Ritmo de vacinação e reabertura total das escolas podem levar a quarta vaga

Média de contactos diários na população pode atingir níveis semelhantes aos do Outono passado

Ortmo previsto de vacinação contra autores de um estudo que avalia o de vacinação em curso, afirmum que espaços interiores de barese restau-acovid-19 máis é unificiente para con- impacto do algeriammento das medi- se es alivito das restrições incluitema - rantes, é provide que a melida - sequementemic, corora nova sagude trutar a pandemia em Portugal. So das de controlos, para de carmonha - restereiro tara da se escolar esta dos contextos distritações los singuines, 2.a 4

Teletrabalho Apoios do Estado Sindicatos exigem despesas oposição a

Governo desafia Estrela dos republicanos na lei, patrões mudar lei sobre sob suspeita querem acordos independentes de tráfico sexual

EUA

Confederações sindicais e patronais esto dividias quanto à forma como ado ser taduz ruma poio mais difísi a de oucerențar a emprejudicará multas pessoos "Economia, 27"

Background

- Portugal experienced three waves of COVID-19
- Vaccination started at the end of December 2020
- Struggle to choose the right mix of measures to keep COVID-19 under control but to allow for social and economic activity

Objectives

- What is the impact of vaccination on the transmission dynamics of SARS-CoV-2 in Portugal?
- When and which control measures can be relaxed as the vaccination is rollout in 2021?
- How are predictions affected if vaccine efficacy was reduced due to antigenic escape variants?

Moore et al. *Lancet Infectious Diseases*. 18 March 2021. doi: <u>10.1016/S1473-3099(21)00143-2</u>

Scientific Advisory Group for Emergencies. Report. 18 February 2021.

Transmission model

Age-specific parameters β - susceptibility λ, λ^V - forces of infection ν - hospitalization rate r - vaccination rate Constant parameters $1/\alpha$ - latent period $1/\gamma$ - infectious period VE_S - vaccine efficacy in reducing susceptibility VE_I - vaccine efficacy in reducing infectivity (not shown) VE_H - vaccine efficacy in preventing hospitalization/death

- 10 age classes/hospitalization classes/vaccination classes
- 3 susceptibility classes (Jing et al. *Lancet Inf Dis* 2020; Goldstein et al. *JID* 2020)
- 5 seroprevalence classes

Data & Fitting

The model is fitted to two data sets

- **Data 1**: age-stratified hospital admissions (n = 28,482)
- Period: 325 days after the first case (2 March 2020 15 January 2021)
- Start of the epidemic: 26 February 2020
- Data 2: Age-stratified serological data (n = 2,301)
- Date: 28 May 2020
- Bayesian framework using Stan with R interface
- 32 parameters are estimated

Rozhnova et al. *Nature Communications* 12, 1614 (2021) Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic.

Contact patterns

First lockdown transition

We use a linear combination of matrices before and after lockdown

$$c_{kl} = [1 - f(t)]b_{kl} + \zeta_1 f(t)a_{kl} \qquad f(t) = \frac{1}{1 + e^{-K_1(t - t_1)}}$$

Rozhnova et al. *Nature Communications* 12, 1614 (2021) Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic.

Time-varying contact patterns

- First lockdown/1st Emergency State
- Relaxation of measures
- Further relaxation of measures (school opening)
- 2nd Emergency State
- Relaxation due to Christmas/New Year holidays

Model fit: Hospital admissions

• 1st wave, low epidemic activity, 2nd & 3rd waves

Model fit: Seroprevalence

Time-varying contact patterns & R_e(t)

- R_e(t) is calculated using the estimated level of seroprevalence
- R_e(t) < 1 & control measures in place
 partial control
- R_e(t) < 1 & pre-pandemic contacts
 full control

Vaccination program

Table 1. The Polluguese vaccination plan	Table	1.	The	Portuguese	vaccination	plan
--	-------	----	-----	------------	-------------	------

Category	Age (years)	Vaccination period	Persons
Phase 1			$937,\!361$
Healthcare workers (HCW)	20 - 65	27 Dec 2020 - 28 Feb 2021	199,708
Long-term care facilities (LTCF)		01 Jan 2021 – 28 Feb 2021	$148,\!119$
Residents	65 +		$86,\!982$
Staff	20 - 65		$61,\!138$
Risk Group 1	50 +	01 Feb 2021 $-$ 30 Apr 2021	$513,\!634$
Cardiac insufficiency			$207,\!571$
Coronary heart disease			$169,\!265$
Renal insufficiency			8,201
Chronic obstructive pulmonary disease (COPD)			$128,\!597$
First response professionals (FRP) (firemen, police, military etc.)	20 - 65	01 Feb 2021 - 30 Apr 2021	$75,\!900$
Phase 2			$3,\!333,\!191$
Persons with or without morbidities unvaccinated before [*]	65 +	01 May 2021 $-$ 31 Jul 2021	$1,\!873,\!349$
Risk Group 2	50 - 65	01 May 2021 $-$ 31 Jul 2021	$1,\!459,\!842$
Diabetes			$222,\!864$
Neoplasm			$114,\!246$
Hepatic insufficiency			$93,\!004$
Chronic kidney disease			$4,\!222$
Obesity			$392,\!959$
High blood pressure			$632,\!547$
Phase 3			$6,\!529,\!448$
Remaining persons (excluding children)**	20 - 65	01 Aug 2021 - 31 Dec 2021	$\overline{6,529,448}$
Total*			10,800,000

*The Portuguese vaccination plan assumes that all persons in the population will be vaccinated with a two-dose vaccine schedule. In the model, the maximum vaccination coverage in any age group is 90%. **According to the current guidelines, persons under 18 years old are not eligible for vaccination. In the model, we assumed that the age group of 0 to 20 years old is not vaccinated.

Vaccination analyses

- Maximum vaccination coverage of 90% (Makhoul et al. *Vaccines* 2021)
- Persons under 20 years of age are not vaccinated
- Vaccine efficacies for Pfizer vaccine (96% of total doses)
- Infection-blocking properties
- Vaccination is a single event conferring protection equivalent to 2 vaccine doses
- Optimistic and pessimistic sets of vaccine efficacies (94% vs 55% efficacy in reducing susceptibility; Thompson et al. *CDC* 2021; Moustsen-Helms et al. *medRxiv* 2021; Chodick et al. *medRxiv* 2021)
- There is (no) behavior compensation in vaccinated persons

Vaccination rollout schedule

- Morbidities in the vaccination plan are defined by ICPC-2 codes
- Data on the age distribution of morbidities from the Ministry of Health

Vaccination coverage

- 80+ -> end of June 2021
- [60,80) -> 3rd week of July 2020
- [50,60) -> end of August 2021
- [20,50) -> mid-November 2021

Relaxation scenarios

- Scenario 1 Lifting all measures
- Scenario 2 Partial lifting of measures as in autumn 2020
- Scenario 3 Partial lifting of measures as in summer 2020
- Scenario 4 Step-wise relaxation of measures

Scenarios 1, 2, 3

Scenario 4: Step-wise relaxation

Scenario 4: Different timing

Scenario 4: Pessimistic assumptions

Decreased vaccine efficacy due to antigenic escape variants Zhou et al Cell 2021

Decreased vaccine efficacy due to antigenic escape variants

+

Pre-pandemic contact rates in the vaccinated population

Main limitations & work in progress

- Hospitalization data ends on 15 January 2021 (start of the third wave)
- No reinfection after natural infection/vaccination (Saad-Roy et al Science 2021; Levine et al Science 2021)
- No seasonality (Kissler et al Science 2021)
- No estimation of selective advantage of B.1.1.7

Conclusion

- Quick relaxation might lead to new waves in 2021
- Substantial measures prove necessary throughout 2021
- More favorable scenarios are relaxation of measures as in summer 2020 or a gradual relaxation until the end of 2021
- Another option would be increasing vaccination rates but this scenario does not seem to be feasible for Portugal

Thank you!

