A 4-Dimensionalist Top Level Ontology (TLO): Mereotopology and Space-Time

4-Dimensionalism in Large Scale Data Sharing and Integration Newton Gateway to Mathematics

Chris Partridge – BORO Solutions

Team effort: the BORO Team

http://www.borosolutions.net/who-we-are

Where in the Seven Circles of Information Management

Information Quality Management

Process Model based Information Requirements

Integration Architecture

Industry Data Models – Reference Data

Foundation Data Model

Top Level Ontology

Core Constructional Ontology

Preliminaries - overall approach

How, broadly speaking, do we develop the ontology?

Target structure

A modular, component-based architecture – motivated by the usual reasons:

- complexity management
- understandability
- encapsulation
- simpler substitution/replacement
- recombinability
- expandability
- resilience

Modular: loosely coupled, highly cohesive modules

coupling

 about the relations between the modules

cohesion

 about the relations between the elements within the module

loose coupling, high cohesion aims for a structure where relations cluster inside the modules

'Agile' development: an iterative, adaptive approach

At each stage, the 'product' needs to be:

- something useful and usable
- a step towards the target structure

Situating 4D in ontological space

A requirement for space-time is central

Reminder: 4D ontologies' choices

4D ontologies are maximally unifying

category	type	choice	4D Ontologies	Motivation:the perceived benefits of
horizontal aspect	spacetime locations	unifying or separating unifying or separating	unifying unifying	parsimony and cost of separation
	properties endurants	unifying or separating unifying or separating	unifying unifying	• the easy fit with plenitude
	immaterial	unifying or separating	unifying	

https://digitaltwinhub.co.uk/a-survey-of-top-level-ontologies/#a_survey_of_TLOs_contents UNIVERSITY OF CAMBRIDGE

Two (of many) levels of unifying

10

Broad modularisation context

Data perspective: four coarse grained layers

Basis: Core Constructional Ontology

Provides the 'base' for the whole ontology:

- object completeness builds all the objects
- categorical completeness establishes all the (ontological) categories of objects
- extensional identity criteria establishes an extensional criteria of identity for the objects

First iteration: scope

What should the scope of the first 'MVP' be?

Industry Data Model survey provides a context

Geometry - CAD - examples from BuildingSMART

https://standards.buildingsmart.org/IFC/RELEASE/IFC2x/FINAL/HTML/ifcproductextension/lexical/ifcspace.html

Geometry - CAD – examples from STEP (ISO 10303 Part 42)

Geometry - Geography – examples from TC211/INSPIRE

Two (three) clear candidates emerge

spatial objects	one, two or three (spatial) dimensional objects either eternal or recurring (at each snapshot) technically rigid, in the sense of no (or practically no) deformation over time			
spatial locations	 where the spatial objects are located typically expressed as a (2/3D) coordinate system note: these have the same characteristics as spatial objects (eternal/recurring and rigid) 			
(names	things, including the objects and locations have names)			

Current situation:

- space appears to be Euclidean
- no clear way of dealing with time (mostly, not even mentioned)
- no deep formalization

Some examples

examples

places	spatial objects	geography geometry
roads	spatial objects	geography geometry
solids	spatial objects	CAD geometry
surfaces	spatial objects	CAD geometry
points	spatial objects	CAD geometry
Eastings and Northings	spatial locations	geography geometry
coordinates (2D and 3D)	spatial locations	CAD geometry

Proposed scope: 'space-time'

Proposed scope:

- a formalized spatio-temporal account of spatial objects and locations
 - hence named 'space-time'

Spatio-temporal challenge:

- 1. provide a clear way of dealing with space-time, space and time
- 2. provide a deep formalization of this

Spatial challenge:

- 1. provide, an account of spatial objects and locations in space-time
 - there is a nexus of things needed for this, including:
 - rigid objects and being relatively at rest

The space-time 'module' in context

Top-down and bottom-up approach

Approach – two workstreams

- 1. Top-down workstream:
 - (where top is the more general or abstract)
 - builds the formal ontological skeleton
 - discuss in following sections
- 2. Bottom-up workstream:
 - (where bottom is the more concrete)
 - data driven
 - mine an ontology from current industry standard schemas and data
 - Evidence-based Ontological Requirements Elicitation
 - also called: bCLEARer

Two mutually supporting workstreams

The two workstreams validate and inform each other

- top-down workstream guides the bottom-up workstream
- bottom-up workstream validates the top-down workstream;
 - its completeness and fit
 - early de-risking

Bottom up workstream - breakdown - visualisation

-	ISO 10303 Part 42	buildingSMART IFC	INSPIRE – OS Open Names	geoSPARQL	
Spatial Objects					
Coordinates					rkstre
Names					
L	CAD G	eometry	geographic informa	ation	

NB: As noted earlier, coordinates are a form of spatial location

Bottom-up bCLEARer process: visualisation

A repeated sequence of processes: increasing semantic maturity

Bottom-up workstream – stages

	b(e)		
collect	Collect	collect the datasets in scope in order to establish the broad scope of the process – establishing a bCLEARer master dataset	_
load	Load	define the detailed scope by selecting from the Collect dataset the data in scope Translate the dataset into the cell-based format – the table paradigm	
assimilate	Evolve	reveal the underlying semantics of the Load Dataset – 'entification' – in an 'entified' dataset Mine the ontology from the 'entified' dataset – the Evolve ontology dataset	Ç
	Assimilate	merge the Evolve ontology dataset into the full ontology model	JT-OT-
reuse	Reuse	publish dataset in a format suitable for the reuse context	scope

Centre for Digital Built Britain

Space-time – top-down workstream

Formalising space-time: some historical precedents

Opportunity to build upon previous work:

Year	Author	Title
1919	A. N. Whitehead	An enquiry concerning the principles of natural knowledge
1928	R. Carnap	The Logical Structure of the World
1936	B. Russell	On order in time
1939	J. H. Woodger	The Technique of Theory Construction
1981	P. Needham	Temporal Intervals and Temporal Order
1982	C. Lejewski	Ontology: What's Next?

A recurring theme: worldlines: the first example

Illustration: Minkowski, Hermann (1909), "Raum und Zeit", Physikalische Zeitschrift, 10: 75–88

In Minkowski's formalization:

- the worldline is the path that a particle traces in 4-dimensional spacetime
- worldlines are primitive
- so 'points' are derived as the intersections of the worldlines

Worldlines: a logical (ontological) primitive

Selected examples

Year	Author	Title
1909	H. Minkowski	Raum und Zeit
1958	R. Carnap	Introduction to symbolic logic and its applications
1972	P. Suppes	Some open problem in the philosophy of space and time
2008	T. Benda	A formal construction of the spacetime manifold

"49. ASs OF SPACE-TIME: TOPOLOGY: 2. THE Wlin-SYSTEM

The present second form is called the Wlin-system. Its single primitive sign is 'Wlin'." Rudolf Carnap (1958) Introduction to symbolic logic and its applications.

Worldlines: a more physical primitive (selected examples)

Year	Author(s)	Title
1972	R. Penrose	Techniques of differential topology in relativity
1973	S.W. Hawking G. F. R. Ellis	The large scale structure of space-time
1976	S.W. Hawking A. R. King P. J. McCarthy	A new topology for curved space-time which incorporates the causal, differential, and conformal structures
1977	D. Malament	The class of continuous timelike curves determines the topology of spacetime

Why worldlines?

Proposed 'space-time' scope:

• a formalized spatio-temporal account of spatial objects and locations

Worldlines handle the full span of the challenges

- we've noted that they have been used to characterise space-time
- we now show they do this in a way that also naturally characterizes rigid (that is, spatial) objects and their locations (and so also coordinate systems)

See:

DiSalle, Robert, "Space and Time: Inertial Frames", The Stanford Encyclopedia of Philosophy (Winter 2020 Edition), Edward N. Zalta (ed.),

Partridge, C.: An Information Model for Geospatial and Temporal Reference. 2011

Worldlines: the same 'spatial' place

Being in the same 'spatial' place is remaining on the same 'coordinate' reference worldline

Worldlines: different reference worldframes

There are different reference worldframes and so different 'same' places These reference frames are sets of 'mutually at rest' worldlines: worldframes

Worldframes: the same 'spatial' object

Being the same 'spatial' object (no spatial change – or deformation) involves one's parts staying on worldlines that are mutually at rest – equidistant – so in the same reference worldframe

Worldlines: how many different reference worldframes

Each set of 'mutually at rest' worldlines marks out a (reference) worldframe

If the two curves circulating around p₁ (and correspondingly p₂) are correctly aligned, then they are also mutually at rest and so mark out a (reference) worldframe

Requirements for multiple coordinate systems

Tracing out higher-dimensional objects

Objects of higher dimension can trace out shapes in space-time

Decomposing the space-time 'module' using worldlines

From the perspective of the space-time 'module', there is an opportunity for horizontal slicing – modularization:

- a decomposition into two sub-components based upon the 7 circles:
 - from core to worldlines
 - from worldlines to spatial objects and locations

Space-time: Foundation Data Model

from worldlines to spatial objects and locations

42

Space-time: foundation data model

from worldlines to spatial objects and locations

Visualising the coordinate systems (in 3D + time)

NB: coordinate systems AKA spatial locations

intersecting surfaces uniquely identify a point

Three common coordinate (point-labelling) systems

- Each decompose into three reusable components:
 - sets of co-oriented coordinate surfaces
- What distinguishes the systems is the types of the surface

Coordinate System	Surface Types
Cartesian	3 × planes
Spherical	sphere, cone and half-plane
Cylindrical	cylinder, half-plane and plane

Visualising the types of sets of co-oriented surfaces

Note: the surfaces have an orientation only

no notion of axes or origin

Coordinate systems – built on worldframes

	coordinate systems				
cylindrical coordinate systems	spherical coordinate systems	Cartesian coordinate systems	fixing how points are labelled		
	fixing what it means				
	WONDIINES				

One example: cartesian coordinate systems

Cartesian coordinate systems: fix the dimensions

Cartesian coordinate systems: fix origin worldline

Cartesian coordinate system – components

See:

UNIVERSITY OF

CAMBRIDGE

- Partridge, C.: An Information Model for Geospatial and Temporal Reference. 2011
- Partridge, C.: Geospatial and Temporal Reference A Case Study Illustrating (Radical) Refactoring. ONTOBRAS-2013 6th Ontology Research Seminar in Brazil, 2013

cabb Centre for Digital Built Britain

5

Common building process

Devised a common process, with variations, for building up the coordinate systems

Order	Stage	Description
1	Surface Orientation	selecting the set of co-oriented surfaces
2	Solid Ordering	building a mereological ordering for the surfaces – the process varies by surface
3	Ratio Scaling	in these three systems, shifting down one or two dimensions to distance and angle ratios
4	Unitising	selecting the unitised distance or angle ratios – based upon the selection of unit
5	Labelling	labelling the unit ratios

See: Partridge, C., A. Mitchell, M. Loneragan, et al. (2019). "Coordinate Systems: Level Ascending Ontological Options". In: 2019 - MODELS-C. url:https://www.academia.edu/40354620.

Space-time: top-level-ontology

from core to worldlines

Space-time: top-level-ontology

from core to worldlines

Modularising TLO Space-Time

Building worldlines out of smaller modules

Questions

