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1 Executive Summary

This report details the progress of a Virtual Study Group held between V-KEMS and a group of
researchers from across the UK between the 11 - 13 January 2021. Three challenges were
set in context by FirstGroup, RSSB and Network Rail. The ultimate aim of the session was to
develop approaches which could be used to assess the risk of Covid-19 transmission on the
UK rail network.

Carriage-level modelling: Section 3 outlines the discussion and progress made when consid-
ering Covid-19 transmission risk at the carriage-level scale.

1. High Level modelling.

• Lower dimensional models can integrate a range of di�erent aspects of the problem
such as di�erent infection mechanisms (airborne vs contact), di�erent behaviours
(breathing / talking / singing) in a simple framework.

• They have low computational demands making them suitable for implementation as
simple risk management tools, specialised to a rail carriage environment.

• Their key present disadvantage is that they do not account for spatial variations
which would enable some train carriage-specific features, however extensions can
be derived and readily implemented.

• Integration of coupling with specific air flows (be they approximated or high fidelity
CFD calculations) will significantly improve the accuracy of these types of models
and ensure that some of the assumptions are not too general.

2. Simplified flow modelling

• Full CFD modelling is computationally expensive. However, a simplified model based
on inviscid flow and simple sources can allow spatial aspects of the problem to be
modelled.

• This may provide a route for di�erent carriage configurations to be modelled and
allow rapid rough simulations which could be useful for "what if?" scenario testing.

• This simple flow modelling can be combined with the high level modelling discussed
above to relax the assumption of spatial uniformity.

3. Di�erent infection modes

• While a broad consensus has emerged that in indoor environments the greater risk
is airborne transmission it would be good to assess this specifically in the case of
carriages.
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• If fomite infection turned out to be a significant contributor to risk then the simpli-
fied flow modelling could be used to model droplet trajectories.

• This could be used to guide other interventions such as surface agents indicating
the presence of proxies for contamination.

Journey-level modelling: Section 4 explores how di�erent modelling approaches could be
used to understand, thus mitigate, possible transmission as passengers a) enter a train and b)
leave a train.

1. Getting on a train

• Modelling passenger flow onto a train in a continuous manner can be used to as-
sess various load strategies and crowding from a platform to a train door.

• Future work could envisage and model more realistic conditions for initial platform
crowd distribution.

• Additionally, it could be instructive to modify the equations of motion (with observed
data) to better capture the characteristics of the passenger population.

2. Getting o� a train

• The simple viral load queue model shown here is worth exploring more, as queue
systems are very common not only in transport, but in many setting.

Network-level modelling: In Section 5, a modelling methodology is introduced which could be
developed to optimise rail capacity when managing large scale, network-level operations,

• This report is a starting point for developing a set of models to advise train operators
and (in this case) HE providers to organise the return of students to campus. Similarly, it
could be used to plan movements for large events, half-term holidays etc.

• For the HE example, additional data that allows us to estimate the number of students
that would use a particular station is discussed. This can provide the basis of an optimi-
sation model to adjust the arrival of students to alleviate the stress on the rail network.

• Such a model could also be used on a regional level to plan commuter tra�c. It might
also be of interest to investigate where additional trains might be required to deal with
unusual demand.
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2 Background

Passenger use of the UK’s rail network fell as low as 4 % in late April 2020 (as compared with
an equivalent day in 2019), and it is currently operating at around 15 % (late January 2021).
The rail industry has been working hard to put plans into place to attract passengers back to
rail following the end of lockdown periods; in order to instil confidence in the public, it is vital
to develop methods that can quantify the risk of transmission on a train in numerous operat-
ing circumstances.

The Rail Safety and Standards Board reports that the risk of Covid-19 infection is less than
0.01 % on an average journey (this does not account for new strains of the virus and was cal-
culated in August 2020). This is equivalent to a chance of less than 0.01 %, based on an hour-
long train journey in a carriage with no social distancing or face coverings. The report also
shows that the risk more than halves if passengers wear a face covering.

The current perspective of rail as unsafe, especially for the vulnerable, also disproportion-
ately a�ects marginalised groups such as people with disabilities and can cause social isola-
tion, limited access to employment and life opportunities. It is crucial that we keep inclusion
in mind throughout Covid-19 recovery e�orts to ensure that the changes we may see into the
future enrich travel for all.

The industry looks to develop long-term resilience through innovation and collaboration which
benefits and safeguards the rail industry and sta� roles, meets passenger needs, reengages
with customers (and new markets) as well as boosting economic recovery through infrastruc-
ture development and innovation. A project known as TRACK (Transport Risk Assessment for
COVID Knowledge) is looking to create models that will quantify the level of risk faced by pas-
sengers and transport sta�. This work will involve detailed simulations of the way the virus
could potentially spread through airflow, from touching contaminated surfaces and being
close, to someone infected with the virus.

There are currently many di�erent operating scenarios which trains are used under, and it is
not feasible nor sensible to simulate them all. Mathematical science can provide tools for how
to explore such a large possibility space, and help focus the use for detailed simulations.

• Scale 1: Modelling of a carriage: controls e.g. airflow, seating design, passenger alloca-
tion to seats

• Scale 2: Modelling of a journey: static, dynamic, passenger movement, passengers get-
ting on and o�

• Scale 3: Scheduling across the country, passenger allocation to trains; High times of rail
usage (e.g. start of university term); Resilience of schedule based on outbreak
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3 Scale 1: Modelling of a Carriage

3.1 Challenge Description

In this section, we consider the transmission and possible actions available to reduce trans-
mission risk at a carriage level. Transmission in a carriage could occur from surface, droplet
and aerosol spread. Train operators can take mitigating actions in the form of seating design,
heating ventilation & air conditioning (HVAC) airflow control, cleaning strategies, decreasing
the use of lavatories and food outlets etc. An important part of the challenge here is to com-
plement rather than replicate the important research under way on the Transport Risk As-
sessment for COVID Knowledge (TRACK) programme.

We begin in section 3.2 by sketching out a high level model illustrating the possible transmis-
sion routes and use this to focus our investigation and thus choose and develop fruitful areas
to add complexity. The high level model is built around the following question: if a susceptible
and infected person are on a train what is the chance that the susceptible person becomes
infected and by what mechanism?.

In section 3.3 we carry out a survey of the available literature focussing on what is known
about the transmission of Covid-19, models of infection transmission and of aspects of human
behaviour that promote transmission, most notably via speech. The specialisation of these
models to a railway carriage is considered.

A key weakness of many of the transmission models discussed in the literature review is that
they assume a well mixed environment. While such modelling is valuable, it does not allow us
to investigate questions regarding, for instance, passenger allocation to seats. In section 3.4
we discuss how this assumption can be relaxed without resorting to numerically intensive full
computational fluid dynamics modelling. A quick consideration shows that the dominant mode
of particle transport which leads us to considering simple ways to estimate flow streamlines.
An approach based on simplified geometry and potential flow is outlined.

While the literature reveals a growing consensus that airborne transmission dominates con-
tact transmission this question is still not settled and it remains a possibility that this may be
an important transmission mechanism in railway carriages. In section 3.5 we discuss possi-
ble interventions that could reveal potentially contaminated surfaces with the aim of alerting
either passengers or cleanup crews.
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3.2 Sketch of a high level model.

In order to focus the literature review and subsequent modelling a high level model of Covid-
19 transmission on a train was sketched. Fig. 1 shows the key elements of the environment
and the possible transmission routes. The environment in the carriage at the highest level can
be separated into the airspace and surfaces. In turn the airspace is connected to the the sur-
faces and also the HVAC unit and the outside air. A susceptible passenger may be infected by
Covid-19 either by inhalation of air containing infected droplets/aerosols or via touching a
contaminated surface.

Fig. 2 shows airflows in the system. Air is inhaled and exhaled by susceptible and infected
passengers, and circulated by the HVAC unit. Air from outside is exchanged with air from the
carriage when doors are opened and is also exchanged with the HVAC unit.

Fig. 3 shows possible routes for contaminated aerosol transport. As aerosols persist in the
air these may circulate through the HVAC (where contamination could be reduced by ultravio-
let irradiation for instance).

Fig. 4 shows possible droplet infection routes. As droplets roughly follow ballistic trajectories
there is less likelihood they will be drawn into the HVAC unit, but the possibility of them con-
taminating surfaces may be important.

Human behaviour plays in important part in the transmission of Covid-19. This suggests that
it may be important to model the states of passengers during a journey, particularly whether
they are wearing a face covering or not and whether they are talking, phoning or quiet. This is
summarised in Fig. 15.

Outside world Surfaces

HVAC

S I

Air

Figure 1: High level model of infection routes in a carriage.
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Figure 2: Airflows in a carriage.
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Figure 3: Transmission routes (aerosol only). Q(12)
a depends on ultraviolet C (UVC) in HVAC. S(4)

a depends
on state; mask, phone etc.

3.3 Literature considerations

Before delving into the modelling specifics, a brief literature review of recent publications and
preprints (see subsection 4.5 on latest information regarding transmission channels (loosely
classified into three categories: ’large-drop’, ’airborne’ and ’contact/surface’) revealed the
following noteworthy findings (as extracted from Ref. (3) and not included references from
original article):

• There is growing evidence that indoor airborne transmission associated with relatively
small, micron-scale aerosol droplets plays a dominant role in the spread of Covid-19,
especially for so-called “super-spreading events", which invariably occur indoors.
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Figure 4: Transmission routes (droplets only). S(4)
d depends on state; mask, phone etc. S(5)

d depends on
cleaning, surface treatment etc.

Masked phoning Masked quiet

Unmasked quiet

Masked talking

Unmasked talkingUnmasked 
phoning

Figure 5: State model for an infected person

• Further evidence for the dominance of indoor airborne transmission has come from
a recent analysis of 7324 early cases outside the Hubei Province, in 320 cities across
mainland China. The authors found that all clusters of three or more cases occurred in-
doors, 80 % arising inside apartment homes and 34. % potentially involving public trans-
portation. Only a single transmission was recorded outdoors.

• The evaporation time at 50 % relative humidity (RH) ranges from τe = 1.2 ms for r0 = 0.5 µm
to 12 s at 50 µm. These inferences are consistent with experiments demonstrating that
stable respiratory aerosol distributions in the range req < 10 µm are reached within 0.8 s
of exhalation.

• Moreover, a recent experimental study of the dependence of droplet size on the infec-
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tiousness of SARS-CoV-2 virions concluded that droplets with r > 2 µm are less infec-
tious, an inference that would underscore the importance of airborne transmission.
Consistent with this finding, the viability of human influenza viruses in aerosols has been
shown to be maximized at low relative humidity.

This provides an impetus to place indoor airborne modelling at the center of our modelling
approach, while keeping other sources of contamination in mind (also connected to the other
tasks here) given continuous updates in information from many ongoing dedicated studies.
We note that relevant studies appear in the literature at a very high rate, with for example a
mixed experimental-computational investigation on disease transmission inside an urban bus
(18) being published during this Virtual Study Group (VSG) - with a clear message in terms of
the benefits of ventilation, window and door openings to facilitate air exchanges for the purifi-
cation of the enclosed environment.

3.3.1 The Wells-Riley model

The classical Wells-Riley model for indoor airborne transmission introduces the quantum of
infection as an infectious dose unit to base a quantitative model on - see Ref. (15). This relates
to the number of infectious airborne particles required to infect a person and has consid-
erable variability in terms of both disease and individual immunity. A key assumption of this
model is that the particles are assumed to be randomly distributed (’well-mixed’ scenario) in-
side our confined space. Riley et al. (14) considered the intake dose of airborne pathogens in
terms of the number of quanta to evaluate the probability of escaping the infection. Together
with the Poisson probability distribution describing the randomly distributed discrete infec-
tious particles in the air, the Wells–Riley equation was derived as follows:

PI =
C

S
= 1− exp

(
−Iqpt

Q

)
,

with the following relevant parameters:

• PI is the probability of infection,

• C is the number of infection cases,

• S is the number of susceptible individuals,

• I is the number of infectors,
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• p is the pulmonary ventilation rate of a person,

• q is the quanta generation rate,

• t is the exposure time interval,

• Q is the room ventilation rate with clean air.

Interestingly, q also represents one of the primary unknowns in this model and requires re-
visiting once other parameters are estimated and more epidemiological information is known.
The other parameters o�er an intuitive glimpse into infection likelihood increasing (number of
infectors, exposure time) and decreasing (room ventilation rate) factors.

This approach can be interpreted as a reduction of the well-known family of SIR (or SEIR)
models (see (12)). In such cases ordinary di�erential equation (ODE) systems describe the in-
terplay between susceptible (S), infected (I) and recovered (R) populations. Following the sup-
plementary material in (3), one can interpret the Wells-Riley model as e�ectively a reduction
of the SIR model based on the assumption of slow incubation over the timescale of the event.
This would be appropriate for small time windows such as a choir practice or a train journey,
but the assumption no longer holds over prolonged periods. It is however a useful interpreta-
tion within our scope and time-dependent infector extensions are readily included in this for-
mulation. In fact, in the following subsection we describe one of the most recent models which
includes several relevant generalisations.

3.3.2 The Bazant-Bush generalisation

Built on the theoretical basis as the Wells-Riley model, this approach focuses on the charac-
terisation of a concentration C(r, t) of pathogen transported by drops of radius r as a function
of time. This still happens within a well-mixed environment, without considering coupling or
geometrical features.

The interested reader is referred to the preprint and its supplementary material for the nu-
merous details, however some of the most important building blocks and assumptions are
listed below:

1. I(t) infectious individuals are assumed to exhale pathogen-laden droplets of radius r
at constant rate Qbnd(r)Vd(r)pm(r)cv(r), with Qb the breathing flow rate (exhaled vol-
ume per time), nd(r) the number density of drops of radius r (or drop size distribution),
Vd(r) = 4

3πr
3 the drop volume, 0 < pm(r) < 1 the mask penetration factor and cv(r) the
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microscopic pathogen concentration. All these variables should be extracted and con-
stantly updated with advancements in both technology and knowledge about viral muta-
tions.

2. vs(r) is the particle settling speed. If assuming a Stokes-type model, drops of radius r ≤
100 µm and density ρd settle in a quiescent environment (with density ρa and dynamic vis-
cosity µa) with vs(r) = 2

9 (ρd − ρa)gr2/µa, given by the balance between gravity and viscous
drag. Naturally, an environment with strong background flows, large scale movement or
ventilation would require an update of this simple formulation.

3. λv(r) is the rate at which virions become non-infectious (or deactivated), a property which
is both droplet content and environment-dependent. Non-Newtonian and/or chemical
properties are likely to enter here. This may also be a viable entry point for mitigation
strategies against contaminants.

4. The enclosed space is characterised by floor area A and height H , such that the control
volume is V = AH .

5. Q represents the ventilation outflow rate, which helps construct the air exchange rate
λa = Q/V .

6. If mechanical ventilation is present, Qr represents the recirculation flow rate. This is a
new model addition that may be helpful in including some of the ventilation-specific as-
pects of the carriage to a first approximation.

7. pf (r) is the probability of droplet filtration.

While comprehensive and information-rich, all of these parameters can be either extracted
from the specialised literature or, in the case of some probabilities, assumed to follow typical
behaviours based on either Covid-19 specific data (where known) or historical data on related
diseases.

Armed with this machinery, the main equation in the Bazant-Bush model is the concentration
equation

V

(
∂C

∂t
+ λv(r)C

)
= I(t)P (r)− (Q+ pf (r)Qr + vs(r)A)C.

There are at least two relevant limiting cases:

Page 13



Reducing the Risk of Covid-19 Transmission on Trains - Study Group Report

• if λv = vs = Qr = 0 (ignoring deactivation and filtration e�ects), the model is reduced
to the previously discussed Wells-Riley model, which provides a solid validation of the
methodology.

• if λv = P = Q = Qr = 0, the dynamics reduces to sedimentation models for well-mixed
environments, another useful link to a large body of knowledge.

With su�ciently simple initial conditions (e.g. one infected individual entering the room at time
t = 0), closed form solutions solutions to this equation can be found. Otherwise, with more
complex modelling ingredients, numerical solutions are needed, however readily obtained
given the simplicity of the partial di�erential equation (PDE) to be solved.

Once the concentration is calculated, the airborne transmission rate is defined as

βa(t) = Qb

∫ ∞
0

C(r, t)pm(r)ci(r)dr,

where we recall Qb to be the breathing flow rate and the usage of masks and size-dependent
droplet infectivity taken into account via pm and ci, respectively.

The transmission rate can then be linked to the reproduction number R, which may be ap-
propriately restricted to within the desired degree inside a carriage/journey in order to gen-
erate quantitatively-backed indoor-safety guidelines. These should be informed in a cross-
disciplinary manner, however useful general starting points are provided by the authors of
the study and subsequently specialised to Covid-19 transmission. An additional layer of de-
tail is required to convert these measures to rail-specific contexts. While constructed from
a high-level viewpoint and with significant reduced-order modelling in place, this framework
provides a transparent and easily customisable mathematical approach towards analysing
indoor transmission. A risk-management tool 1 (and associated spreadsheet 2 is provided to
test the predictive capabilities of this model.

Other models of airborne transmission based on the quanta approach include the Gammaitoni-
Nucci model (7) used for instance in Ref. (2).

3.3.3 Viable extensions for rail journeys

Possible generalisations for train geometries, ventilation systems and journey types:
1https://indoor-covid-safety.herokuapp.com/
2https://cheme.mit.edu/wp-content/uploads/2020/11/COVID-19_Indoor_Safety_Guideline_v5.xlsx
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• the ’well-mixed’ assumption is one of the weak spots of this framework. Particularly with
specific ventilation systems in di�erent carriages, ventilation outflow rates Q and re-
circulation flow rates Qr can be spatially localised, leading either to a box-type model
with di�erent regions or to a generalisation for a full concentration equation on C(r, ~x, t),
allowing for the incorporation of ~x-dependent terms for certain desired features. The
advantages are increased fidelity, while the drawbacks consist in removing some of the
simplicity of closed-form formulae that was previously available. Depending on resolu-
tion, it is not anticipated however that such terms will be computationally heavy, depend-
ing on the intended usage of the tool.

• some of the modelling assumptions benefit from added complexity in view of the richer
background flow. The settling and evaporation dynamics may well be a�ected by the de-
tails of the ventilation inside the carriage for example.

• inclusion of barriers (zero concentration volumes) for specific geometrical features,
from static seating, luggage racks etc., to moving entities such as passengers (which
again will require further coupling with a fluid model).

• time-dependent inlet/outlet conditions modelling carriage doors opening/closing for
various conditions and durations.

• specialisation of parameters towards specific temperature/humidity conditions as im-
plemented on various train models.

• while such a model (even with extensions) may be useful even in isolation, an improved
coupling with other transmission models (e.g. surface contamination) will provide a more
accurate depiction of the system-level risk factors.

There are numerous parameters involved and this will ultimately become ever more compli-
cated with other extensions (see below), however a customisable framework with dedicated
functionality for rail journeys based on the specialisation above may provide a viable mecha-
nism for safety assessments. Depending on the desired level of sophistication and dedicated
team size, it could be in principle developed on a timescale of weeks and act as a what if? plat-
form for a series of relevant measures both in the short-term for Covid-19 and in the long-
term for future pandemic events and other forms of risk mitigation.

3.3.4 Notes regarding human behaviour

Many of the factors included inside the models discussed above are often concentrated into
a single constant or function. It is thus easy to gloss over some nuance and a number of de-
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tailed results in recent studies that provide much needed information on some of the human-
centric aspects of actions undertaken during a train journey. Below we focus on speech pat-
terns and measurements, however recent studies e.g. on movement in confined spaces (10)
are also beginning to provide additional insight into some of the finer aspects of the complex
system:

• Not all speech causes the same viral transmission levels. We also note that the stop con-
sonants, or what are referred by linguists as plosives consonants, such as (P, B, K,...),
have been demonstrated recently to produce more droplets. In these cases, the vocal
tract is blocked temporarily either with the lips (P, B) or with the tongue tip (T, D) or body
(K, G), so that the pressure builds up slightly and then is released rapidly, producing the
characteristic burst of air of these sounds; in contrast, fricatives are produced by par-
tial occlusion impeding but not blocking airflow from the vocal tract (1). Note the large
contrast in the color scales as well in the figure below, covering an order of magnitude
in measured air velocity as a result of emitted sounds. Anecdotal evidence from the au-
thors (via a seminar in November 2020) also indicates that the usage of products such
as lip balms and generally moisturisers lead to a smoother air flow around the lips and
reduced ejection of droplets. Fig. 6

• The importance of the activity, from the nature of the sounds to the volume has been
comprehensively discussed by other authors as well, with the key conclusion that any
significant disruptions (singing, especially loudly or in a prolonged manner, or shouting)
are very influential in increasing infectivity in a closed environment. While speaking does
carry some risk, this is arguably of manageable in the context of the range of the studied
activities. (3). Fig. 7.

• This can be further contextualised in terms of other well-known spreading events in the
recent year, with striking e�ects. (3). Fig. 8

The above studies provide controlled evidence that minimisation of speech while in trains (via
the use of mobile phones or through interaction without other passengers and sta�) is desir-
able. Simple solutions may consist in:

1. providing virtual (app-like) environments for customers to interact with catering ser-
vices.

2. more generally, ensuring that text-/visual- rather than voice-related methods are imple-
mented for as many services as possible.
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(a) "We will beat the corona virus," which is a mix-
ture of vowels, fricatives and plosives.

(b) Sing a sing of six pence (SSPP) (25), mainly com-
posed of the fricative ‘S’ except the last word that
starts with ‘P’.

(c) The distance traveled by the extremity of the air
pu� as a function of time when saying ‘pence’ at the
end of SSPP for three di�erent runs.

(d) ‘Peter Piper picked a peck’ (PPPP) (25), which is
mainly composed of mainly plosives P.

Figure 6: Adapted from Ref. (1), see original paper for references. . Mean velocity field produced when
speaking three di�erent sentences. A colour code illustrates the average speeds but note that single
images of the magnitude of speeds are not representative of the true instantaneous velocities.

3. extending the above to in-train announcements (recorded and transmitted via apps/text
notifications) such that frequent and loud background noises do not encourage rail users
to raise their volumes to get their messages across the room even if speaking.

4. minimising movement inside confined spaces as much as possible.

5. ultimately prolonged exposure in all these frameworks leads to additional risks, a situa-
tion which will of course deteriorate with the usage of inadequate mitigation strategies,
from ventilation systems to inadequate face masks. If transient features such as getting
on and o� trains can be controlled, this may be an argument for breaking longer jour-
neys into more legs.

Such suggested measures will contribute to a less interactive experience, however carry
the advantage of minimising contacts and conditions for riskier behaviours. It should also
be noted that all of the above represent modelling-based idealistic scenarios and are under-
pinned by assumptions of compliance to some of the more basic actions, such as mask-wearing
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Figure 7: Adapted from Ref. (3), see original paper for references. . Model predictions for the steady-
state, droplet-radius-resolved aerosol volume fraction, φs(r), produced by a single infectious person in
a well-mixed room. The model accounts for the e�ects of ventilation, pathogen deactivation and droplet
settling for several di�erent types of respiration in the absence of face masks (pm = 1). The ambient con-
ditions are taken to be those of the Skagit Valley Chorale super-spreading incident (22, 24) (H = 4.5 m, A
= 180 m2, λa = 0.65 h−1, rc = 2.6 µm, λv = 0.3 h−1, RH = 50 %). The expiratory droplet size distributions
are computed from the data of Morawska et al at RH = 59.4 % (9) (see their Fig. 3) for aerosol concen-
tration per log-diameter, using nd(r) = (dC/d logD)/(r ln 10). The breathing flow rate is assumed to
be 0.5 m3/h for nose and mouth breathing, 0.75 m3/h for whispering and speaking, and 1.0 m3/h for
singing.

and distancing where applicable. Based on the literature surveyed, departures even over
small timescales from some of these norms have severe consequences that far outweigh
some of the optimisation aspects highlighted above. This is arguably extended to many of the
tasks both in the present groups and at other granular levels - ensuring social responsibility
and adherence to rules, from the simpler to the more complex is likely to generate the most
beneficial outcomes at the system level.
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Figure 8: Adapted from Ref. (3), see original paper for references. Estimates of the "infectiousness" of
exhaled air, Cq , defined as the peak concentration of COVID-19 infection quanta in the breath of an in-
fected person, for various respiratory activities. Values are deduced from the drop-size distributions
reported by Morawska et al (9) (blue bars) and Asadi et al (31) (orange bars). The only value reported
in the epidemiological literature Cq = 970 quanta / m3, was estimated (22) for the Skagit Valley Chorale
super-spreading event (24). This value is rescaled by the predicted infectious aerosol volume fractions,
φ1(r) =

∫ rC
0

φs(r)dr, obtained by integrating the steady-state size distributions reported in Fig. 1 for dif-
ferent expiratory activities (9). Aerosol volume fractions calculated for various respiratory activities
from Fig. 5 of Asadi et al (31) are rescaled so that the value of Cq = 72 quanta / m3 for "intermediate
speaking" matches that inferred from Morawska et al (9) for "voiced counting". Estimates of Cq for the
outbreaks during the quarantine period of the Diamond Princess (23) and the Ningbo bus journey (25),
as well as the initial outbreak in Wuhan City (2, 73) are also shown (see supporting information for de-
tails)

3.4 Simplified Modelling of Airflow

As shown by the literature review very sophisticated modelling frameworks exist for mod-
elling the spread of airborne infections in well mixed systems. However, the well mixed as-
sumption will allow the consideration of important questions with a spatial element such as
optimal seating patterns. We therefore investigate ways of relaxing the well mixed assump-
tion and introducing airflow into our models. Section 3.4.1 considers the relative importance
of convective vs di�usive motions and concludes that convective motions dominate. To model
convective motions we need to estimate the air velocity field. Accurate but computationally
intensive estimates of this can be obtained via CFD. Here however, in Section 3.4.2 we con-
sider a simplified approach based on potential flow allowing airflows to be approximated at a
much lower computational cost. Finally in Section 3.4.3 we briefly consider a laterally aver-
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aged model in which we integrate out variations perpendicular to the axis of carriage.

3.4.1 Convective and di�usive contributions to motion.

Once the flow field has been found particle motion can be found by post-processing. Approxi-
mating the droplets as passive scalar means we focus on the droplets nuclei of less than 20 µ
m, neglecting e�ect of gravity (Froude number) and the time lag reaction with the flow means
we assume the Stokes number Stk « 1, so we look at droplets nuclei of less than 10 µm. This
is an excellent assumption for TB that is fully airborne and dominated by 5 µm particles. For
Covid-19 it captures only part of the transmission. In this case we can use the convection-
di�usion equation:

∂c

∂t
+
∂(cvi)

∂xi
=
∂(D∂c/∂xi)

∂xi
+ S − Si,

where S is the source and Si is a sink. Assuming steady particle motion, single di�usivity D,
we get:

∂(cvi)

∂xi
= D

∂2c

∂x2
i

+ S − Si

If we neglect convection e�ects, and approximate SiasSi ∼ α(xi)c for ventilation, we get:

D
∂2c

∂x2
i

+ S − αc = 0

If we do not know where the vents of the ventilation are we can take α as a constant, depend-
ing on known air changes per hour.

Stokes-Einstein di�usion coe�cient D:

D =
kBTf

3π/mufdp

where the Boltzmann constant is kB = 1.308649 10−23 (J/K). The air dynamic viscosity is taken
as µf = 18 × 10−6 (N s / m) for air temperature of Tf = 290 (K) yields for a droplet nucleolus of
diameter d− p = 10 × 10−6 (m), the di�usion D = 2.36 × 10−12 (m2/s).
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However, looking at the Schmidt number Sc = µf/(ρD) = ×10−6/(1.2252.36×10−12) = 6.22×106,
means that if we neglect di�usion for the flow field and account only for convection, we should
also focus on convection for the fine droplet nuclei.

The particle’s relaxation time is τp = (ρpd
2
p)/(18µf ) . Taking the particle’s density as of water (it

is actually mostly salt and other minerals) ρp = 1000 (kg/m3) gives τp = 0.0056 (s) for dp = 10 µ
m. This justifies the assumption of neglecting the time lag between the particle’s velocity and
the flow velocity, which can also be expressed by taking Stk « 1.

The focus of the convection e�ects for fine droplet nuclei is illustrated in Fig. 9 for continuous
emission of 5 µ m particles as part of long speech. The particles are captured in the thermal
plume emitted by the person.

3.4.2 Potential Flow

In support of higher fidelity computational fluid dynamics (CFD) being undertaken in other
TRACK work packages, low fidelity fluid models have been identified as a means by which the
airflow within the train carriage can be quickly characterised. With 15,000 train carriages
in operation in the UK with significant variations between each design, a highly generalisable
fluid model that can be quickly modified is desirable.

Figure 9: unsteady Reynolds-averaged Navier-Stokes (URANS) Eulerian-Lagrangian simulation of fine
particles emission during continuous speech. Evaporation is not accounted as fine droplet nuclei are
assumed (5 µm). Image credit: Shuo Mi, 2020
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Potential flow theory considers incompressible, inviscid, irrotational flow. It is widely used
within the aerospace and aviation industry as a means by which aerodynamic performance
can be evaluated quickly. The advantages of this are that it allows the rapid evaluation of dif-
ferent geometries with virtually no downtime for computation. The theory uses several funda-
mental flows that can be used to build complexity - sources (entry), sinks (exit), uniform flow
(global magnitude and direction), and vortices (angular motion). Using the classical method
of images it is possible to represent a flow field as a superposition of fundamental elements
and incorporate walls into the domain to represent boundaries through which the flow cannot
travel. The analysis of a train carriage will be primarily focused on the representation of inlets
and outlets as sources and sinks respectively.

In this VSG a potential flow model has been created for an example analysis of a train car-
riage. A two-dimensional representation of a train carriage is shown in Fig. 10, with inlets /
outlets, an open door and a person breathing. It can be seen from the streamlines that the
flow entering the domain is quickly pulled towards the exit, shown by the connecting lines
between the inlet and outlet. In this case, the e�ect of the door is negligible so only a small
portion of the flow leaves the domain by this means. Fig. 11 shows the same domain with the
’strengths’ of the sinks representing the door being much stronger. In this case it can be seen
that the flow is pulled further down from the inlet. This example highlights that the e�ects of
di�erent rates of air extraction, air loss due to temperature gradients across the door can be
quickly evaluated in the order of minutes.

The 2D potential flow example has been extended to three dimensions for two cases shown

Figure 10: A two-dimensional representation of a train carriage
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Figure 11: A two-dimensional representation of a train carriage with stronger sinks than Fig. 10

in Figs. 12 - 14, a train carriage with twin HVAC and a door at each end of the carriage, and
a central HVAC with three doors on the carriage. In each case the inlet runs the length of the
carriage on the roof and the yellow spots show the outlet vents. The curved lines show the
streamlines originating at several points in the domain. Whilst these images are for demon-
stration purposes only, they highlight the regions where the inlets are dominated by the out-
let, given by positive gradient on streamlines connecting to the outlet. These insights can then
feed the direction of higher fidelity models or provide a simple flowfield that can feed into the
methods outlined above or in Task 1.

Figure 12: Streamlines and velocity contours for end HVACs with 2 doors
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Figure 13: Streamlines and velocity contours for end HVACs with 2 doors

Figure 14: Streamlines and velocity contours for central HVACs with 3 doors

3.4.3 Quasi one dimensional modelling

We model the carriage as a duct having a variable cross-section A in space and time (allowing
movement of people), and porous walls (e.g. windows). Quasi one-dimensional fluid dynamics
equations were written for the flow continuity, momentum and concentration of pathogens C.
Sources/sinks are added to represent the e�ects of vents, windows, pathogens generation
and removal. Those pathogens sources/sinks can be approximately related to the air volume
sources and also linearly to the pathogens concentration using semi-empirical constants.

∂A

∂t
+
∂ (Au)

∂x
= qv

∂ (ρAu)

∂t
+
∂
[
A
(
ρu2 + p

)]
∂x

= p
∂A

∂x
+ fvisc

∂ (CA)

∂t
+
∂ (CAu)

∂x
= qC
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3.5 Surface contamination

While the academic consensus is that aerosol and droplet transmission mechanisms of Covid-
19 dominate this is still an open question and it may well be an important transmission mecha-
nism in some environments. Thus in this section we present some ideas for representation of
surface contamination.

One possibility is to incorporate active and indicative agents in the sprays and fogging agents
used to clean the carriage. These may act:

1. to aid the disinfection process by using soap-based nanocarriers3 that release "soap"
and "the measuring / reagent substrate";

2. to reveal the presence of residues left on seating and handles by human contact namely:

(a) pH - sweat (pH ∼ 6.3) and the mucous from the throat and nose (pH 5.5.-6.5) of COVID-
carriers. Incidentally, bacterial-infected mucous or catarrh has a much higher pH
7.2-8.3 and much higher, less readily ejected viscosity;

(b) body fluids also contain salt, protein, formic acid, metabolites, etc.

• pH indicator dyes - litmus, universal indicator, phenol red, etc are non-toxic but
could highlight via staining areas contacted by body fluids and human contact thus
aiding better and safer cleaning

• Mucous (a glycoprotein (13) sensitive “peptide” dyes (ninhydrin, copper (I/II) solu-
tions, Folin reagent, etc), again key o� amine / phenolic / carboxylate functional
groups in molecules associated with the common components (mainly protein and
peptide) associated with human body fluids but NOT carriage textiles and hard fur-
nishings.

3. Highlighting contamination could serve to:

• Improve the sophistication of CFD models but considering aerosilisation of fomites
and the transmissibility of deposited viral contamination (larger drops in coughs
and sneezes or smears from hands) by virtue of the vehicle it is deposited within;

• Simply aid better compartmental clean-down by highlighting where most attention
should be put into the cleaning regime.

3Nanocarrier / micelle components are commercial soaps such as SDS. Simple reagents are inorganic mineral
salts (copper salts), dyes and pigments - all are cheap, abundant and non-toxic.
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3.6 Conclusions and next steps

1. There is scope for low dimensional, low fidelity models to complement the high dimen-
sional, high fidelity models under development as part of the TRACK project.

2. Combining these models with simple flow models will allow spatial and temporal varia-
tions to be included without a dramatic increase in (computational) complexity.

3. As these simpler models are much faster to run, they can be particularly useful for "What
If?" scenario testing e.g. for estimating the e�ects of various interventions.

4. The implementation could take the form of a simple dashboard or spreadsheet on the
vendor side (for risk management) and/or mobile phone app on the user side (for stream-
lining communication and reducing transmission channels).

Work to progress some of these aspects is currently in discussion to be developed further at
the University of Huddersfield.
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4 Scale 2: Modelling of a Journey

4.1 Challenge Description

In this section we consider the wider topics of disease transmission with respect to a passen-
gers journey both in the train and at stations. A passengers journey, experience and therefore
Covid-19 susceptibility will depend on many factors independent of carriage layout (as consid-
ered in Section 3.

Thinking of an individuals journey, one travels to s station→ travel through a station→ enters
the train from a platform→ sits on the train→ leaves the train onto a platform→ leaves the
station→ Travel from the station. The two parts in bold involve a lot of crowding and are po-
tentially the most dangerous as measured by total viral loading. This section is divided into
two parts; the first looks at the entering the train question, and the other at the leaving the
train question.

4.2 Getting on a train

We consider a typical train and platform set up in Fig. 15 using sensible dimensions, and as-
suming a single entrance at the centre of the platform and spreading out according to a Gaus-
sian distribution. Our train was assumed to be two carriages and four doors.

Train 

Platform

Door 1 Door 2 Door 3 Door 4

Entrance

4 
m

1.6 m 20 m

Figure 15: Platform setup - a toy model. Passengers assumed to enter the platform at the centre, then
distributed according to a Gaussian distribution.

We then model the passengers motion towards the doors in a continuous framework. Pas-
sengers waiting on a railway platform for a train are initially scattered. We model their motion
towards the train carriage as in a Fluid Dynamics framework. More precisely, we simulate
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density of passengers movement with the convection-di�usion PDE

∂tu+∇ · (~vu) = ∇ · (σ∇u), u ∈ C1(Ω)

where u is the crowd density, ~v is the speed, and σ is the di�usivity parameter. The initial do-
main Ω is represented by the platform in Fig. 16

Figure 16: Initial domain

The narrowings at the top boundary represent the carriage doors. Their number, width and
location are tunable parameters in order to account for di�erent scenarios. Assumptions:

1. The passengers access to the platform from the midpoint of the bottom boundary and
scatters as an exponential function:

u0 = e−(β1(x−0.5)2+β2(y−0.8)2),

where β1 and β2 characterise the level of initial spread.

2. The variable σ controls the di�usivity of the passengers. This can account for passen-
gers that get o� the train or are disoriented if do not have any reservation.

Figure 17: Velocity field for passengers.
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3. The velocity ~v(x, y) is constant in time but dependent in space. We suppose that the pas-
sengers moves radially to avoid clustering in a specific door, Fig. 17.

More sophisticated models can have ~v dependent on local conditions, e.g. crowd density
u, and/or explicitly on time – people in a hurry if the train is about to go.

4.2.1 Discretization of the PDE in space

The variational formulation to be solved is:

∫
Ω

[
w
∂u

∂t
+ w∇ · (~vu) +∇w · σ∇u

]
dx−

∫
Γ

w
∂(σu)

∂n
dx = 0, ∀w ∈ H1(Ω)

Alternatively we can also integrate the convective term by parts as well:

∫
Ω

[
w
∂u

∂t
−∇w · (~vu) +∇w · σ∇u

]
dx+

∫
Γ

[
w~n · ~vu− w∂(σu)

∂n

]
dx = 0, ∀w ∈ H1(Ω)

The boundary integrand is the test function times outward passenger flux. We also assume
homogeneous zero-flux boundary conditions over all the boundaries,

The equation is discretized in space on the domain Ω = [0.0, 50.0] × [0.0, 4.0] using the finite
element method (FEM). We discretize the domain with a conforming unstructured mesh Th and
consider the finite element (FE) space

V = {uh ∈ H1(Ω) : uh|K ∈ C1(K) ∀K ∈ Th}

4.2.2 Discretization of the PDE in time

We discretize the previous equation in time using a semi-implicit Euler scheme. At each time
step tn = 0, · · · , T , we aim to find the solution un+1

h satisfying

∫
Ω

[
whu

n+1
h + ∆tσ∇wh · ∇un+1

h

]
dx =

∫
Ω

[whu
n
h −∆twh(~v · ∇unh)] dx, ∀wh ∈ V,
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4.2.3 Results

We compute the density of the passengers inside each door at each time step and see how
this is a�ected by the parameter β1, which controls the scattering of the passengers on the
platform. We can see that the more uniform the passengers on the platform, the more uniform
the density of passengers waiting at each door.

Figure 18: Initial condition (β1 = 1)

Figure 19: Final condition (β1 = 1)

Figure 20: Density of passengers (β1 = 1)
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Figure 21: Initial condition (β1 = 20)

Figure 22: Final condition (β1 = 20)

Figure 23: Density of passengers (β1 = 20)

4.2.4 Future work

Passenger distribution

• Passengers can arrive through a platform gate unimpeded at a rate of 40 per minute 4.

• Passenger’s distribution is not necessarily Gaussian nor Uniform. Passenger location on
the platform is influenced by

4Source: Network Rail Station Capacity Planning Guidance.
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– Location of platform entrances

– Any shelters or canopies

– Location of CIS (customer information screen) displays

– Knowledge of busiest carriages

– Seat reservations in some cases

• In the future, results can be simulated for a variety of platform setups.

Equations of motion

• Walking speed to be informed by data and depend on local crowding and departure time.

• Likewise random motion passenger motion.

• Di�erent populations to be accounted for: reservations in di�erent carriages; people
awaiting later trains; exiting passengers

• Better modelling of entry into train doors

• Coupling with infected-passenger densities to get susceptible-passenger exposure/risk.

4.3 Getting o� a train

The top-level problem description is that a train is stationary at a platform, passengers exit
and board, announcements are made in train and on platform. This includes the ’London Bridge
situation’, a penultimate station on a commuter line, where many passengers exit as well as
board. Assumptions:

1. passengers only exit (commuter train has reached destination), announcements made
on train. Less risky than ’London Bridge’.

2. simplification: passengers exit through a single door (left and right queue merging), an-
nouncements made on train.

3. as before, but only a single queue. Reflects mainline carriage layout.

Here the aim is to model the behaviour to see the distance and waiting time together with how
long each passenger has to wait until they get to the exit. We assume that the queue has N
passengers at location Xn(t), n = 0 . . . N − 1., Fig. 24.
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Infected

Exit𝑋!(𝑡)

𝑋!"#(𝑡)

Figure 24: Diagram of queue at train door.

The passengers are ordered so that Xn+1 < Xn and the queue is assumed to move to the right
so that Xn exits before Xn+1. Each passenger will be assumed to have a level of infection γn
where γn = 0 if

1. the passenger is not infectious or

2. the passenger has left the carriage and plays no more role in the queue.

When Xn = L (the length of the carriage) then the nth passenger will be assumed to have left
the carriage. This will take a time ∆n.

4.3.1 Velocity based model

The model adopted here is a velocity based model, we have a function f which describes the
behaviour and distance between passengers.

Ẋn+1 = fn+1(Xn −Xn+1)

f(r) = 0 r < d1, f(r) = V, r > d2, linear in between.

Fig. 25 shows the behaviour of this function.

• Here d1 is a social distance (maybe depend on n)

• Take d2 = 2d1 (again depends on n).

• V is a saturation velocity which depends on announcements and dwell time.
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f

x

v
d2

d1

Figure 25: Function used in model which describes the behaviour and distance between passengers.

• Initially we will have everyone standing socially distant (r > d1).

• Then the door opens and X0 starts to move at velocity V .

Based on this model, we simulate 10 passengers, Fig.26. When the train gets to the destina-
tion, there is an announcement, passengers stand up. The first passenger is the blue passen-
ger, there is no wait time for the first passenger (no queue in front of them). Passenger 2 (the
curve under passenger one) has a short wait behind passenger one, and so on.

Typically a passenger;

• has a waiting time before they can move

• takes a further travel time to leave the train

Both of these lead to potential viral exposure. The simulated time for both of these events can
be seen in Table. 1.

4.3.2 Viral load

Here we consider the viral load, as the passengers exit they are exposed to a viral load from
both
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Figure 26: Simulated distance covered (in metres) by 10 passengers in the train before exit

Passenger Waiting time (s) Travel time (s)
1 0.45 6.04
2 0.90 10.3
3 3.45 14.2
4 6.67 18.3
5 9.24 22.4
6 12.3 26.0
7 15.3 30.1
8 17.8 34.6
9 20.8 39.0
10 23.9 42.5

Table 1: Simulated waiting and travel times for 10 passengers in a queue to leave a train.

• The the stationary passengers they walk past (Section. 3)

• The other passengers in the queue.

Viral load from stationary passengers

To estimate the viral load from the stationary passengers we assume that a proportion α of

Page 36



Reducing the Risk of Covid-19 Transmission on Trains - Study Group Report

the passengers in the carriage are infectious. The number of passengers encountered is then
α(L−Xn(0)). The viral load encountered will then be

Yn = β∆n(L−Xn(0)), (Y )

where β is a constant.

Viral load from passengers in queue

To model the viral load from other passengers in the queue we assume an inverse square law
for the spread:

dWn

dt
= θ

∑
j 6=n

γn
|Xn −Xj |2

, (W )

where θ is a constant. Note that γn drops to zero when the nth passenger leaves the train.

The total viral load is then

V =
∑
n

Vn ≡
∑
n

(Yn +Wn(∆n)) . (V )

How to implement

• Assume that we have code which can find Xn(t)

• Queue with X0 at the front and Xn+1 < Xn.

• Assume an initial stochastic distribution for γn. For example we might have a situation
where only one (randomly chosen) passenger is infectious.

• Calculate Wn(t) by solving the ODE (W ) simultaneously with finding Xn(t).

• Calculate γn(t) setting γn(t) = 0 if Xn > L.

• Compute ∆n

• Calculate Yn directly from (Y )

• Find V from the sum (V ).
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4.4 Modelling risky behaviour in a queue

We know from previous research that the level of risk taken is important. We need to find def-
initions of risk-seeking, risk-neutral, and risk-averse in the Covid-19 context

• Risk seeking: no distance keeping, some random movements (Brownian motion), ignoring
announcements related to distance keeping and direction of movement

• Risk neutral: keeps recommended distance, no random movements, follows recommended
direction of movement

• Risk averse: keeps excessive distance, moves slower, follows recommended direction of
movement

Simplification: we will model risk purely by distance kept in the queue. Minimal distance = high
risk behaviour. Recommended distance = risk neutral. Fixed but large distance = risk averse.

4.5 Conclusions and next steps

Modelling passenger flow onto a train in a continuous manner can be used to model various
load strategies. Future work could lift the Gaussian loading restriction to simulate more re-
alistic conditions. Additionally, it could be instructive to modify the equations of motion (with
observed data) to better capture the characteristics of the passenger population.

Similarly, the simple viral load modelling of a queue system is worth exploring more, as queue
systems are very common not only in transport hubs, but in many setting. Both of these topics
will be subject to further investigation at the University of Bath.
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5 Scale 3: Modelling of a Network

5.1 Challenge Description

This section considers what national (network)-level impact there is from Covid-19 and in
particular, how can the network cope when responding to national level events, for example,
the movement of students from home to universities and vice versa. In particular, this sec-
tion focuses on constructing a model, and identifying data requirements, for implementing this
methodology in practice. Fig. 27 shows the proposed methodology which proposes schedule,
passenger commute, and network data can be used to construct a network graph for evaluat-
ing various traveling and mitigation scenarios.

Train schedule timetable 
from a given day

Station names and 
location, travelling route 

information

Network graph plots with 
map locations

Coupled with local 
authority code

Combined with census 
data on daily community 

on trains

The spatial interaction 
model: predicted flow 

between any two stations 
(nodes)

A directed 
subgraph with 

nodes (train 
stations) and 

edges (existing 
train routes). 

Edges contain the 
passenger flow.Crude commuting flow 

between any two stations 
(nodes)

Figure 27: Challenge approach diagram

This first task is to develop a mathematical model to assess the quality of a given plan / sched-
ule taking into account the following aspects; (i) passenger demand, (ii) trains and number of
coaches of each type available, and (iii) deviation from plan - only if capacity is considered. The
approach taken in this VSG is to:
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• start with a small model, e.g. London to Manchester:

• student flow: estimate numbers; use parameters to control when to travel

• include coach types - what type of characteristics can we simplify.

Let G = (N,A) be an undirected graph with node set N and arc set A. T is the number of time
periods. Each vertex in N represents a station met by any train, and the edge between each
pair of vertices means trains run from one station to another without stopping in the middle. A
crude diagram of such a network can be seen in Fig. 28. We classify two types of edges in this
model network:

• minimal edges - a set of continuous connections between stations not passing through a
third one; e.g. trains are stopping at each stations connected by these edges

• transitive edges - connections between two stations but trains are not stopping at these
stations.

Birmingham

Cambridge

London

1000

100

1000
500

Figure 28: Example of network representation, the nodes and edges shown in this graph are not based
real data.

5.2 Optimisation model

Here we propose an optimisation approach for a given scenario s, taking into account capac-
ity C and flow f . f tsij is the expected flow at time t on arc (i, j) on scenario s ∈ S. (s is related to
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the inflow interval). Ci,j is the capacity for each train.

Let H be the number of di�erent types of carriages and let Ch, h ∈ {1, . . . ,H} be the capacity
of coach type h. Each train can be represented as a vector (n1, . . . , nH), where nh is the num-
ber of coaches of each type in the train. Note that Cij =

∑H
h=1 nh ∗Ch. We seek a solution which

satisfies the below;

min max
i,j,t,s

{f tsij − Cij}.

5.3 Data

Here we discuss some of the data required to parameterise our model. Table. 2 shows the
train timetable on 22/12/2020 from London Northwestern Railway and West Midlands Rail-
way. This gives a small section of the network to model, shown in Fig. 29. The timetable con-
nects regions around London and to the Midlands around Birmingham and then extends north
to Liverpool.

Table 2: Train timetable on 22/12/2020 from London Northwestern Railway and West Midlands Rail-
way. There are 1342 train operation on this section within the day.

id production sequence location code event type event time advertised event time
schedule id

1.74E+08 7507823 1 STRBDGT A 22/12/2020 19:58 22/12/2020 19:58
1.74E+08 7507294 32 CREWE A 22/12/2020 23:38 22/12/2020 23:40
1.74E+08 7507294 29 ALSAGER D 22/12/2020 23:28 22/12/2020 23:28
1.74E+08 7507294 28 ALSAGER A 22/12/2020 23:28 22/12/2020 23:28
1.74E+08 7507294 27 KIDSGRV D 22/12/2020 23:24 22/12/2020 23:24
1.74E+08 7507294 26 KIDSGRV A 22/12/2020 23:23 22/12/2020 23:24
1.74E+08 7507294 25 STOKEOT D 22/12/2020 23:16 22/12/2020 23:16
1.74E+08 7507294 24 STOKEOT A 22/12/2020 23:15 22/12/2020 23:15
1.74E+08 7507294 22 STONE D 22/12/2020 23:08 22/12/2020 23:08
1.74E+08 7507294 21 STONE A 22/12/2020 23:07 22/12/2020 23:07
1.74E+08 7507294 18 STAFFRD D 22/12/2020 22:59 22/12/2020 22:59
1.74E+08 7507294 17 STAFFRD A 22/12/2020 22:58 22/12/2020 22:58
1.74E+08 7507294 15 PNKRDG D 22/12/2020 22:51 22/12/2020 22:51
1.74E+08 7507294 14 PNKRDG A 22/12/2020 22:51 22/12/2020 22:51
1.74E+08 7507294 11 WVRMPTN D 22/12/2020 22:43 22/12/2020 22:43
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Each schedule id in timetable represents a unique train schedule from one beginning sta-
tion, passing certain stopping stations and reaches a final destination station. So same route
trains have di�erent id’s with di�erent scheduled time. Train station are labeled with codes
like STRBDGT which can vary based on the operation companies. Stations listed in the timetable
means there are trains stopping at them and there are no passing-by stations. Event Type col-
umn contains labels A for arrival and D for departure. In Fig. 29, we plot all the train stations
from timetable Table. 2 as red dots.

Figure 29: Sample rail network based on the train timetable in England. All nodes are train stations and
presented as red dots in the graph. Edges are not drawn here because the complexity and visibility.
Edges in our graph model means direct linked train stations, and trains stop at the nodes.

To reduce the complexity, two two sub-graphs are taken from this branch: (1) London to Birm-
ingham and (2) Birmingham to Crewe. For example, take train 7507294 in Table. 2, it leaves
from Birmingham New Street Rail (BHAMNWS) Station and arrives at Crewe (CRWEW) - note
that the schedule in Table. 3 is in reverse order. Using these two routes, we model the daily
travel demand between London and midlands regions in this paper.

Table. 3 shows the branch Birmingham (coded as BHAMNWS) at 22:22:00 and reaches Crewe
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(coded as CREWE) at 23:40:00 - note that the schedule in Table. 3 is in reverse order.

Table 3: Sample schedule for train 7507294. Note schedule in reverse order.

id production sequence location code event type

schedule id

1 173799567 7507294 32 CREWE A

2 173799564 7507294 29 ALSAGER D

3 173799563 7507294 28 ALSAGER A

4 173799562 7507294 27 KIDSGRV D

5 173799561 7507294 26 KIDSGRV A

6 173799560 7507294 25 STOKEOT D

7 173799559 7507294 24 STOKEOT A

8 173799557 7507294 22 STONE D

9 173799556 7507294 21 STONE A

10 173799553 7507294 18 STAFFRD D

11 173799552 7507294 17 STAFFRD A

12 173799550 7507294 15 PNKRDG D

13 173799549 7507294 14 PNKRDG A

14 173799546 7507294 11 WVRMPTN D

15 173799545 7507294 10 WVRMPTN A

16 173799544 7507294 9 COSELEY D

17 173799543 7507294 8 COSELEY A

18 173799541 7507294 6 SNDWDUD D

19 173799540 7507294 5 SNDWDUD A

20 173799539 7507294 4 GALTILL D

21 173799538 7507294 3 GALTILL A

22 173799535 7507294 0 BHAMNWS D

Table. 4 shows the branch to London, train 7509540 leaves from London Euston (EUSTON) at
19:15:00 to Birmingham new Street (BHAMNWS) at 19:15:00- note that the schedule in Ta-
ble. 4 is in reverse order.

Table 4: Sample schedule for train 7509540. Note schedule in reverse order.

id production sequence location code event type

schedule id
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821 173852328 7509540 44 BHAMNWS A

822 173852325 7509540 41 MRSTNGR D

823 173852324 7509540 40 MRSTNGR A

824 173852323 7509540 39 BHAMINT D

825 173852322 7509540 38 BHAMINT A

826 173852321 7509540 37 HMPTNIA D

827 173852320 7509540 36 HMPTNIA A

828 173852319 7509540 35 BKSWELL D

829 173852318 7509540 34 BKSWELL A

830 173852317 7509540 33 TILEH D

831 173852316 7509540 32 TILEH A

832 173852315 7509540 31 CANLEY D

833 173852314 7509540 30 CANLEY A

834 173852313 7509540 29 COVNTRY D

835 173852312 7509540 28 COVNTRY A

836 173852310 7509540 26 RUGBY D

837 173852309 7509540 25 RUGBY A

838 173852306 7509540 22 LNGBKBY D

839 173852305 7509540 21 LNGBKBY A

840 173852304 7509540 20 NMPTN D

841 173852303 7509540 19 NMPTN A

842 173852301 7509540 17 WLVR D

843 173852300 7509540 16 WLVR A

844 173852299 7509540 15 MKNSCEN D

845 173852298 7509540 14 MKNSCEN A

846 173852297 7509540 13 BLTCHLY D

847 173852296 7509540 12 BLTCHLY A

848 173852295 7509540 11 LTNBZRD D

849 173852294 7509540 10 LTNBZRD A

850 173852284 7509540 0 EUSTON D

In our model, we first map the location codes to stations’ names and geographical locations.
This way we construct our graphs based on the geographical information of nodes. In order
to model passenger flow, we used census commuting data from 2011. In order to use census
data, our model maps geological locations to local authority numbers. This way we can ex-
tract the census data from daily commuting (by train) in England among di�erent cities. Based

Page 45



Reducing the Risk of Covid-19 Transmission on Trains - Study Group Report

on this commuting number among cities, we use a spatial interaction model to estimate pas-
senger flow. Details are in the next subsection.

5.4 Derivation of incoming flows

Here we show how spatial interaction models can be used to estimate flows on the passen-
ger network and provide tools for exploring "what-if" scenarios. Spatial interaction models
are based on Newtonian principles of gravity and include parameters which vary the attrac-
tiveness of node, and impedance to flow. These could be used to proxy represent the attrac-
tiveness of flow from one node to another (for example to represent how students move in re-
sponse Government advice). The aim here is to estimate the expected number of people that
will be using the given network. In the present work we use a doubly constrained flow model
(spatial interaction model). This is defined as:

Tij = AiOiBjDjd
−β
ij

where
Oi =

∑
j

Tij

Dj =
∑
i

Tij

and
Ai =

1∑
j BjDjd

−β
ij

Bj =
1∑

iAiOid
−β
ij

In the above specification, Tij represent the expected flows from an origin i to a destination j,
d is a measure of separation (taken as distance here for simplicity). This model can be reparametrised
to be estimated as an Poisson generalised linear model with log link function:

λij = exp(µ+ αi − β ln dij)

in which αi represents the DjBj part of the model equation.

The model outputs predicted flows accounting for a separation metric and the fact that the
population flows from and to a destination have to match. This particular specification can be
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expanded to include any form of impedance function as well as any potential covariates that
would help explain the observed variation in the flows.

The model was estimated using data from 2011 census travel to work study (8), and in that
sense the predicted flows represent the situation pre-Covid-19, with RMSE = 60.46. The data
are on local authority level so we assigned the predicted flows to each station belonging to the
corresponding LA. However, the observed flows can be approximated using other source of
data such as telecomms or ticketing data from automatic fare collection systems. Ideally we
would want to fit a disaggregated model taking into account di�erent population strata, such
as students, but there is a lack of available data for this task.

5.5 Results

5.5.1 Subnetwork 1: Birmingham to Crewe

Here we show estimated flow between stations on the following network - Birmingham to Crewe:

[
CREWE ALSAGER KIDSGRV STOKEOT STONE STAFFRD PNKRDG WVRMPTN COSELEY SNOWDUD GALTILL BHAMNWS

]

Commuter flow based on census data in 2011:

F =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

94 94 94 0 0 0 0 0 0 0 0 0

94 94 94 0 0 0 0 0 0 0 0 0

354 354 354 15 15 0 0 0 0 0 0 0

354 354 354 15 15 0 0 0 0 0 0 0

555 555 555 45 45 441 441 0 0 0 0 0

555 555 555 45 45 441 441 0 0 0 0 0

555 555 555 45 45 441 441 0 0 0 0 0

555 555 555 45 45 441 441 0 0 0 0 0

24 24 24 0 0 36 36 175 175 175 175 0


In this matrix F , the rows (from top to bottom) are listed as from Crew to Birmingham and
columns (left to right) are from Crew to Birmingham. This is in consistent with the reversed
timetable order. So each entry Fi,j represents the number of passengers getting on the train
at station i and leaves at station j. For example, F12,1 represents that there are 24 passengers

Page 47



Reducing the Risk of Covid-19 Transmission on Trains - Study Group Report

who get on the train at BHAMNWS and leaves at CREWE and F12,10 means 175 get on the train
from BHAMNWS and leaves at SNOWDUD. Because it is reversed order, this F is a strict lower
triangle matrix.

In the following matrix, we used the spatial interaction models to estimate a smooth passen-
ger flow. Because the census only collects the number of people leaving from a city (assumed
to be home) and reaches another city (assumed to be the working site) in 2011, we need the
spatial model to give an estimate of the averaged flow. Spatial model can also be accommo-
dated to changes in local economy, this way we have a relatively realistic number.

Commuter flow estimated by the spatial model (model data input is from the 2011 census):

F =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

172 172 172 0 0 0 0 0 0 0 0 0

172 172 172 0 0 0 0 0 0 0 0 0

264 264 264 7 7 0 0 0 0 0 0 0

264 264 264 7 7 0 0 0 0 0 0 0

330 330 330 10 10 161 161 0 0 0 0 0

330 330 330 10 10 161 161 0 0 0 0 0

330 330 330 10 10 161 161 0 0 0 0 0

330 330 330 10 10 161 161 0 0 0 0 0

96 96 96 0 0 56 56 445 445 445 445 0


This matrix has the same structure as the previous one: each entry Fi,j represents the num-
ber of passengers get on the train at station i and leaves at station j. The numbers are cal-
culated using the spatial model. So the census data is adjusted and smoothed based on local
development during the past 9 years.

The above two matrices shows the daily flow of passengers on the Birmingham-Crewe net-
work. Assume we have one "train" for this flow, then the total number of commuters on this
"train" linking two stations i and j, where i and j are in the network nodes:

1. original commuting census data based Lo:

[
844 3306 5768 8230 106922 9984 9276 9348 9420 6280 3140

]
2. passenger flow estimated data Le:
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[
2180 3067 3954 4841 5728 5834 5940 6402 6840 4576 2288

]
Here the network is in forward order:

[
BHAMNWS GALTILL SNOWDUD COSELEY WVRMPTN PNKRDG STAFFRD STONE STOKEOT KIDSGRV ALSAGER CREWE

]

These two arrays represent the total number of passengers are on the "train" from station i
to the next i+1, i in the forward network as above. For example, first number 844 Lo[1] means
the amount of people on the train between BHAMNWS and GALTILL. These are the numbers on
edges linking those nodes. Put into our graph model gives Figure 30:

Figure 30: Graph from BHAMNWS to CREWE- daily passenger flow is estimated using our spatial model.

Therefore the maximum capacity requirement on this graph is around 6864, using the esti-
mated date.

5.5.2 Subnetwork 2: London to Birmingham

Use our model, we can esitmate the flow from London Euston station to Birmingham station.
The network is as follows - in reversed order:

[’BHAMNWS’ ’MRSTNGR’ ’BHAMINT’ ’HMPTNIA’ ’BKSWELL’ ’TILEH’ ’CANLEY’ ’COVNTRY’ ’RUGBY’
’LNGBKBY’ ’NMPTN’ ’WLVR’ ’MKNSCEN’ ’BLTCHLY’ ’LTNBZRD’ ’EUSTON’]
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The flow matrix estimated by the spatial model:



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

172 172 172 0 0 0 0 0 0 0 0 0 0 0 0 0

172 172 172 0 0 0 0 0 0 0 0 0 0 0 0 0

264 264 264 7 7 0 0 0 0 0 0 0 0 0 0 0

264 264 264 7 7 0 0 0 0 0 0 0 0 0 0 0

330 330 330 10 10 161 161 0 0 0 0 0 0 0 0 0

330 330 330 10 10 161 161 0 0 0 0 0 0 0 0 0

330 330 330 10 10 161 161 0 0 0 0 0 0 0 0 0

330 330 330 10 10 161 161 0 0 0 0 0 0 0 0 0

96 96 96 0 0 56 56 445 445 445 445 0 0 0 0 0

96 96 96 0 0 56 56 445 445 445 445 0 0 0 0 0

75 75 75 1 1 55 55 208 208 208 208 70 70 0 0 0

75 75 75 1 1 55 55 208 208 208 208 70 70 0 0 0

0 0 0 0 0 20 20 22 22 22 22 20 20 996 996 0


Similar to Subgraph 1, this estimated flow matrix smoothed the flow based on those param-
eters stated before. The result is not as realistic because local economy and many other fac-
tors have not been included in the model during this VSG. But the data is still sensible for car-
rying out research. The link array in forward order:

 2160 2473 2786 4806 6826 6830 6834 6838 6842 6762 6682

7142 7602 5068 2534


The maximum capacity needed for this route is around 7600. Combining the nodes and edges
together gives the Graph 31:

By the end of the VSG, the team produced a piece of software by reading in a train timetable
and census commuting data to produce subgraphs and estimated customer flow. This cus-
tomer flow is calculated on the non-COVID time. However in order to understand how the na-
tionwide network operates, we need to link related subgraphs together to do further simula-
tion. For example, people or students who need to travel from London to Edinburgh will need
to pass through several of those small subgraphs because there is no direct link between
some major cities.
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Figure 31: Graph from EUSTON to BHAMNWS- daily passenger flow is estimated using our spatial model.

For our estimation model, we can update it by considering local economy development over
the past 9 years to give a higher accuracy estimation. We can combine the travel restriction
rules on the train to give the COVID period travel flow. Combining those information and stu-
dents or targeted passenger group travel routes, it is possible to build further optimisation
model to understand e�ects of di�erent travel strategies.

5.6 Future work

The ideas in this section are the starting point for developing a set of models to advise train
operators and higher education (HE) providers to organise the return of students to campus.
Similarly, it could be used to plan movements for large events (half-term holidays for example).

For the HE application, we would need additional data that allows us to estimate the number
of students that would use a particular station (see below for possible sources). This can pro-
vide us the basis to set up an optimisation model to adjust the arrival of students to alleviate
the stress on the rail network.

Such a model could also be used, on a regional level, to plan commuter tra�c. It might also
be of interest to investigate where additional trains might be required to deal with unusual
demand.
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Data

• Changes to Flow with Covid-19: While we have been working with 2011 commuting fig-
ures, rather than current figures during the pandemic, we could improve this either by
using up-to-date data (perhaps estimated from ticket sales or other counts / data), or
we could adapt pre-Covid-19 figures using mobility-decrease numbers, e.g. those shown
in Fig. 32.

Figure 32: Changes in use of transport modes (percentage of an equivalent day or week) From (5)

• FlowCensus data: Available mainly for work and study (6)

– Non-safeguarded at OA in England and Wales, local authority in Scotland

– Safeguarded at OA/WPZ in Scotland from WICID

– Available sliced by age, type of work, method of travel, hours worked, social grade,
availability of car or van etc.

– Most travel to school is within area, remainder low volume compared to travel for
work

We used an extract at 2011-local authority level, subsetting only the movements by rail.

• Student OD data: From Higher Education Statistics Authority (HESA) data (7).

• Modelling student demand: Better modelling of student demand that would allow calcu-
lation of required spread over time or extra capacity needed is possible, but requires
several additional pieces of information:
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– data (with appropriate permissions) from HESA on the domicile locations of stu-
dents and their HE provider - ideally for this year’s students, and at a reasonably
fine geographic scale.

* These data exist (can be obtained via a data request from HESA) but are not cur-
rently available for this VSG.

– indications of how many students are likely to return by HE provider, and how many
have previously returned as part of the initial back-to-campus groups (medics, vets,
etc). There have been some surveys that may help: for example (9) in which 53% of
students said they would be either ’Likely’ or ’Extremely Likely’ to return to term-
time accommodation even if all teaching was entirely online.

* Limited data available - perhaps HE providers have some additional data?

– indications of how many travelling students would be likely to travel by rail if guid-
ance suggested travel by private vehicle if possible.

* Data availability unknown - perhaps rail providers know how many students
returned to their domicile by rail?

– indications of the likelihood that students would obey di�ering types of guidance on
return: in particular would they be willing to return on a particular day or service if
they were asked to?

* Limited data available - could model over di�erent assumptions, or use esti-
mated compliance with other interventions. Could vary significantly by HE provider.

5.7 Conclusions and next steps

We show here a modelling methodology which could be used to optimise capacity of rail op-
erators when dealing with the Covid-19 pandemic. In particular, we focus on how we might
advise operators on how best to safely manage the return-to-campus challenge many HE
providers will need to solve. We highlight here that data availability is key, and some thoughts
on the data requirements are presented. For future work, additional data and access to route-
producing APIs / code is key. The essential things we need to know to proceed are:

• how many students would want to travel between particular origins and destinations?

• what routes would they use?

• does this exceed capacity under di�erent spreading schemes?

Work to continue this modelling is underway at the University of Bath.

Page 53



Reducing the Risk of Covid-19 Transmission on Trains - Study Group Report

References

[1] Railway names data and locations. GitHub accessed Jan 2021 https://gist.github.com/

crablab/93a50eeb338646614287eddc3c2776b1

[2] Where do HE students study? HESA data accessed Jan 2021 https://www.hesa.ac.uk/

data-and-analysis/students/where-study

[3] Jovanović, P., N. Pavlovic, Ivan Belosevic and Sanjin Milinkovic. “A Graph Application for
Design and Capacity Analysis of Railway Junctions.” (2019).

[4] Illustration of train allocation complexity https://www.youtube.com/watch?v=gTLVbCN0QA8&

feature=youtu.be

[5] Transport use during the coronavirus (COVID-19) pandemic. GOV.UK O�cial Statistics
https://www.gov.uk/government/statistics/transport-use-during-the-coronavirus-

covid-19-pandemic

[6] Census Support: Flow Data https://wicid.ukdataservice.ac.uk/

[7] Where do HE students come from? HESA data accessed Jan 2021 https://www.hesa.ac.

uk/data-and-analysis/students/where-from

[8] ONS Dataset: 2011 Census: Detailed characteristics on travel to
work and car or van availability for local authorities in England and
Wales https://www.ons.gov.uk/peoplepopulationandcommunity/

populationandmigration/populationestimates/datasets/

2011censusdetailedcharacteristicsontraveltoworkandcarorvanavailabilityforlocalauthoritiesinenglandandwales

[9] Coronavirus and university students, 12 October to 18 October
2020, England GOV.UK O�cial Statistics https://www.ons.gov.uk/

peoplepopulationandcommunity/healthandsocialcare/healthcaresystem/adhocs/

12449coronavirusanduniversitystudents12octoberto18october2020england

Page 54

https://gist.github.com/crablab/93a50eeb338646614287eddc3c2776b1
https://gist.github.com/crablab/93a50eeb338646614287eddc3c2776b1
https://www.hesa.ac.uk/data-and-analysis/students/where-study
https://www.hesa.ac.uk/data-and-analysis/students/where-study
https://www.youtube.com/watch?v=gTLVbCN0QA8&feature=youtu.be
https://www.youtube.com/watch?v=gTLVbCN0QA8&feature=youtu.be
https://www.gov.uk/government/statistics/transport-use-during-the-coronavirus-covid-19-pandemic
https://www.gov.uk/government/statistics/transport-use-during-the-coronavirus-covid-19-pandemic
https://wicid.ukdataservice.ac.uk/
https://www.hesa.ac.uk/data-and-analysis/students/where-from
https://www.hesa.ac.uk/data-and-analysis/students/where-from
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/2011censusdetailedcharacteristicsontraveltoworkandcarorvanavailabilityforlocalauthoritiesinenglandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/2011censusdetailedcharacteristicsontraveltoworkandcarorvanavailabilityforlocalauthoritiesinenglandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/2011censusdetailedcharacteristicsontraveltoworkandcarorvanavailabilityforlocalauthoritiesinenglandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthcaresystem/adhocs/12449coronavirusanduniversitystudents12octoberto18october2020england
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthcaresystem/adhocs/12449coronavirusanduniversitystudents12octoberto18october2020england
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthcaresystem/adhocs/12449coronavirusanduniversitystudents12octoberto18october2020england


Reducing the Risk of Covid-19 Transmission on Trains - Study Group Report

6 Conclusions

Carriage-level

• There is scope for low dimensional, low fidelity models to complement the high dimen-
sional, high fidelity models under development as part of the TRACK project.

• Combining these models with simple flow models will allow spatial and temporal varia-
tions to be included without a dramatic increase in (computational) complexity.

• As these simpler models are much faster to run, they can be particularly useful for "What
If?" scenario testing e.g. for estimating the e�ects of various interventions.

• The implementation could take the form of a simple dashboard or spreadsheet on the
vendor side (for risk management) and / or mobile phone app on the user side (for stream-
lining communication and reducing transmission channels).

Journey-level

• The loading platform model could be extended to accommodate more realistic loading
conditions and passenger movement to provide insight into where crowding could occur.

• The model for queuing within a carriage could be examined further and Incorporated
with other modelling work in this report to give a quantification of viral exposure during
a train journey.

Network-level

• Data driven approaches could be very informative for modelling the impact of non-pharmaceutical
interventions and large scale policy decisions which a�ect peoples travelling option.

• Integrating data from various sources, and designing network models is an attractive
way to provide insight into this challenge.
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7 List of Acronyms

CFD computational fluid dynamics

FE finite element

FEM finite element method

HE higher education

HESA Higher Education Statistics Authority

HVAC heating ventilation & air conditioning

ODE ordinary di�erential equation

PDE partial di�erential equation

RH relative humidity

VSG Virtual Study Group

TRACK Transport Risk Assessment for COVID Knowledge

URANS unsteady Reynolds-averaged Navier-Stokes

UVC ultraviolet C
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