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What is aeroacoustics?

» Aeroacoustics is the study of sound generated
aerodynamically.

» Leading example is sound generated by aircraft, especially the
‘jet engine’, i.e. high bypass-ratio turbofan.

» Other examples are noise from traffic (e.g. motorway noise),
trains, wind turbines, ...

» Hugely important in civil life: controversies over where (and
whether) to site new airports always involve noise.
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Research in aeroacoustics

» Major research effort from

» companies: Rolls-Royce, Boeing, ...
» universities: Cambridge, Southampton, Boston, Florida, ...

» government: NASA, EU, EPSRC, DLR, ONERA, ...

» Contribution from mathematicians:

» Rayleigh

» Lighthill, Curle, Hawkings

» Howe, Crighton, Leppington, Dowling

» Peake, Parry, CJC

» Ayton, Brambley, Assier, Kisil, Baddoo, Priddin, Colbrook

» Thirteen from the Mathematics tripos at Cambridge. .



A sister subject: hydroacoustics

Hydroacoustics is the study of underwater sound.

v

v

Includes ship and submarine noise, and sonar.

v

Scientific principles are similar to aeroacoustics, but the Mach
number is lower, and cavitation is important.

v

Represented here today by Thales UK (D. Nigro).

v

Fundamental for defence.

» Some researchers do both aero- and hydroacoustics.
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A prototype aeroacoustic problem

One problem (out of many!) is that of a gust or turbulence
striking the leading edge of an aeroengine fan blade or a wing.
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High-frequency sound is produced at the leading edges.
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Lighthill's acoustic analogy (1952) (CJC 2015)

» Density perturbation in a sound wave satisfies

0? 272 / 82Tij
< s > r= dx;0x;’

» The source (ignoring friction) is the acoustic stress tensor

Ty = puiug + (' — c5p')di;-

» Radiated sound field is

,_ 1 o /°° Tij(y,t — [x — yl|/co)
4m 0xi0%; | o |x —y]

p d?y.
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Howe's vortex sound equation (1975) (CJC 2015)

» The Bernoulli variable B satisfies the vortex sound equation
(for low Mach number)

1 02

» The source is written in terms of the vorticity w.
» The Bernoulli variable (‘total enthalpy’) is

dp 1
B= [ Ly P
p 2

> The pressure in the radiated sound field is p = poB.
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Universality of complex analysis

» Most powerful representation is the (frequency, wavenumber)
domain.

» Used by engineers, mathematicians, regulators (everyone!),
because what matters is the spectrum.

» Given a function f(x,y, z,t), write

(z,y,2,t) = //// w, k, 1, m)e  @=ke=ly=m2) 4., 4k di dm.

» Convention: capital letters for Fourier transform, i.e. the
spectrum.
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Universality of complex analysis

» A generic aeroacoustic equation is
1 0 0 2 o? H2 92
Sl U v g2tz taa )P t).
C% (32? + 81’) v (81;2 + 6y2 + 822>¢ f(x)yaza )

The source f(z,y, z,t) has spectrum F(w, k,l,m).

v

v

Similarly, the field ¢(z,y, z,t) has spectrum ®(w, k, I, m).

» Hence
D(w,k,l,m) ®(w,k,l,m) = F(w,k,l,m),

where D(w, k,l,m) is the dispersion function.

» Therefore the solution of the aeroacoustic equation is
F(w,k,l,m)
D(w, k,l =——"=.
(@, k,1m) D(w,k,l,m)
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Universality of complex analysis

» In the (space, time) domain, the solution of the aeroacoustic
equation is

w,k,l,m
) by —i(wt—kz—ly—mz)
o(z,y, 2, t) = ////Dwk:,l,m dw dk dl dm.

» But what can be done with this ‘inversion integral’? The
initial range of integration is over real (w, k,l,m).

» The field is ‘coded’ in the complex plane by local behaviour
near special points, especially saddle points, branch points,
poles, and their coalescences.

» Such points are accessible only by contour deformations
taking full account of the global behaviour of F' and D,

especially their Riemann surfaces.
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An example: scattering of vorticity into sound

Prototype problem is a gust or turbulence striking the leading edge
of an aeroengine fan blade or a wing.
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High-frequency sound is produced at the leading edges.

11/32



Leading edge geometry

Three coordinate systems based on leading edge:
» Cartesian: (z,y, z); wavenumbers (k, [, m)
» Cylindrical: (r, ¢, x)

» Spherical: (R, 0, ¢)
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Localised gust: some basic questions

» What is the full three-dimensional directivity pattern of the
radiated sound field?

» What happens on the leading edge, remote from the localised
source, in quantitative detail?

> Is there a trapped wave propagating along the edge?

» What happens to the energy propagating along an edge when
it comes to a corner (conical scattering)?

» Many detailed results can be obtained by complex analysis.
These are not complete for corner scattering.
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Single-frequency sesquipole

Let the upwash be

voe " wot=2/U)§ (5 /a).

Then the acoustic pressure is

e~ Ti/4 cos 1o wo \? | 7
- — M3/2 2 “al =% e—lwo(t—l—Mz/co)E
p 271'3/2 pOCOUO Sln1/2 9 a CoR 1

Y

where

: / ei(woR/eo) cos(0—x) gin |
C

El = El(wOR/Co, g, M) = ; (1 I Msinx)l/Q rX.

Here E7 is an ‘edgelet’ function.
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Far field

The far-field approximation to E;, uniform in the polar angle 8, is

o (2)\1/2 ind iM ¢ o V"% i(woR/co—3m/4
By (%) (1+MSlsr;né)1/2 {1 + 2lsinéﬁoé} (KOR) elloft/co=3m/4),

Thus the dominant term is of order R~1/2, except along the

leading edge, 6 = 0 or 7, where it is smaller, of order R3/2,
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Topology of (1 + M sin x)'/? (CJC 2003)
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Contours on Riemann surface (CJC 2003)
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Detailed asymptotics (2013) (Ayton & Peake)

Wiener-Hopf method and advanced complex analysis
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Parabolic wave equation (2019) (Hewitt et al.)

(a) |Asi| (b) Re [Agre™*”]

Fig. 9. Plots of |A3(X, Y)| and Re [A31e'] for (I, m) = (2, 1), with A = I/(I+2m) = 1/2 and k = 20. The curve near which the solution is localised is
superimposed in black.
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Parabolic wave equation (2019) (Hewitt et al.)
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Fig. 13. Plots of |A3;(X, Y)| and Re [A3;e’®] for (I, m) = (1,2), with A = I/(I+ 2m) = 1/5 and k = 20. The curve near which the solution is localised is

superimposed in black.
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Serrated trailing edge (2019) (Huang)
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FIGURE 1. Sketch of the model problem. Here, x, y, z are the coordinates, O the origin,
X (z) the profile of serrations, 2k, the root-to-tip distance and 6 the incident angle.
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Serrated trailing edge (2019) (Huang)
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Silent flight of owls (2020) (Jaworski & Peake)
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Figure 5

Aerodynamic noise suppression from leading-edge serrations and its dependence on geometry. (#) Serration geometries without
stationary points are necessary to maximize leading-edge noise reduction. The sharpness of the serration with height 4 and wavelength
4 is parameterized by b. (Inset) The pointed leading-edge comb of a long-eared owl. (4) Experimental measurements of sound pressure
level (SPL) in the acoustic far field for a flat plate at zero angle of attack as a function of nondimensional frequency, with acoustic wave
number £ and height 5. “Self-noise” refers to a serrated case (b = 1.57) without upstream grid turbulence, and “baseline” refers to a
straight leading edge case (v = 0) with grid turbulence. Grid turbulence intensity is 2.5%, with an integral length scale of approximately
6 mm. These serration geometries produce up to 8-dB noise reduction and the removal of leading-edge noise in the self-noise-
dominant regime. Figure adapted with permission from Lyu et al. (2018).
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Porous extension to trailing edge (2018) (Kisil & Ayton)
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FIGURE I. Diagram of the model problem: a semi-infinite rigid plate lies in y=0, x <0,
and a finite porous plate lies in y=0, 0 <x < L. An unsteady perturbation, ¢;, convects
with the mean flow in the positive x direction.
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a partial factorisation with exponential factors in the desired half-planes;
additive splitting of some terms;

application of Liouville’s theorem;

iterative procedure to determine the remaining unknowns.
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Porous extension to trailing edge (2018) (Kisil & Ayton)
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FIGURE 10. AP(ky) for semi-infinite partially porous plates with varying porosity
parameter, /.
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The quarter plane (2018) (Assier & Shanin)

Fig. 1 (left) Geometry of the problem. (centre) ‘Bottom lid’ of Qg .. The quarter-plane is in grey. (right)
Illustration of the Q; quadrants
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The quarter plane (2018) (Assier & Shanin)

Fig. 6 Illustration of the contour deformation needed to prove analyticity on H— x IR
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Supersonic leading edge (2019) (Powles & CJ

Convected gust

AVAV,

—
Mean flow U Flat plate

Z

Fig. 1. Gust convected at speed U in the x-direction past a stationary flat-plate aerofoil. The aerofoil occupies the half-plane y = 0, x > 0, and the leading
edge lies along the z-axis.
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Supersonic leading edge (2019) (Powles & C

Fig.4. Scaled pressure contours on transverse vertical sections for an anti-symmetric gust convected at Mach number M = +/2. (a) accurate plot on kx = 8
from Eq. (11); (b) accurate plot on kx = 16; (c) Keller approximation to (a), using Eq. (21) with coefficients (26); (d) Keller approximation to (b). Contour
values in (a), (c) are —0.5 to 0.5, and in (b), (d) are —0.25 to 0.25, marked low (L) to high (H). The dashed semi-circles are sections of the Mach cone R, = 0,
and the dashed half-ovals are sections of the surface (28) for o = 0.5, outside of which the Keller approximation applies. In (c), (d) the Keller approximation
has a singular limit 00 alone the vertical axis z = 0.
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