Complex analysis in aeroacoustics

C. J. Chapman

Keele University

Presentation given at the Isaac Newton Institute, Cambridge University
'Industrial Applications of Complex Analysis'

30 October 2019

What is aeroacoustics?

- Aeroacoustics is the study of sound generated aerodynamically.
- Leading example is sound generated by aircraft, especially the 'jet engine', i.e. high bypass-ratio turbofan.
- Other examples are noise from traffic (e.g. motorway noise), trains, wind turbines, ...
- Hugely important in civil life: controversies over where (and whether) to site new airports always involve noise.

Research in aeroacoustics

- Major research effort from
- companies: Rolls-Royce, Boeing, ...
- universities: Cambridge, Southampton, Boston, Florida, ...
- government: NASA, EU, EPSRC, DLR, ONERA, ...
- Contribution from mathematicians:
- Rayleigh
- Lighthill, Curle, Hawkings
- Howe, Crighton, Leppington, Dowling
- Peake, Parry, CJC
- Ayton, Brambley, Assier, Kisil, Baddoo, Priddin, Colbrook
- Thirteen from the Mathematics tripos at Cambridge.

A sister subject: hydroacoustics

- Hydroacoustics is the study of underwater sound.
- Includes ship and submarine noise, and sonar.
- Scientific principles are similar to aeroacoustics, but the Mach number is lower, and cavitation is important.
- Represented here today by Thales UK (D. Nigro).
- Fundamental for defence.
- Some researchers do both aero- and hydroacoustics.

A prototype aeroacoustic problem

One problem (out of many!) is that of a gust or turbulence striking the leading edge of an aeroengine fan blade or a wing.

High-frequency sound is produced at the leading edges.

Lighthill's acoustic analogy (1952)

- Density perturbation in a sound wave satisfies

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-c_{0}^{2} \nabla^{2}\right) \rho^{\prime}=\frac{\partial^{2} T_{i j}}{\partial x_{i} \partial x_{j}}
$$

- The source (ignoring friction) is the acoustic stress tensor

$$
T_{i j}=\rho u_{i} u_{j}+\left(p^{\prime}-c_{0}^{2} \rho^{\prime}\right) \delta_{i j} .
$$

- Radiated sound field is

$$
p^{\prime}=\frac{1}{4 \pi} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \int_{-\infty}^{\infty} \frac{T_{i j}\left(\mathbf{y}, t-|\mathbf{x}-\mathbf{y}| / c_{0}\right)}{|\mathbf{x}-\mathbf{y}|} \mathrm{d}^{3} \mathbf{y}
$$

Howe's vortex sound equation (1975)

- The Bernoulli variable B satisfies the vortex sound equation (for low Mach number)

$$
\left(\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) B=\nabla \cdot(\boldsymbol{\omega} \wedge \mathbf{u})
$$

- The source is written in terms of the vorticity ω.
- The Bernoulli variable ('total enthalpy') is

$$
B=\int \frac{\mathrm{d} p}{\rho}+\frac{1}{2}|\mathbf{u}|^{2}
$$

- The pressure in the radiated sound field is $p=\rho_{0} B$.

Universality of complex analysis

- Most powerful representation is the (frequency, wavenumber) domain.
- Used by engineers, mathematicians, regulators (everyone!), because what matters is the spectrum.
- Given a function $f(x, y, z, t)$, write

$$
f(x, y, z, t)=\iiint \int F(\omega, k, l, m) \mathrm{e}^{-\mathrm{i}(\omega t-k x-l y-m z)} \mathrm{d} \omega \mathrm{~d} k \mathrm{~d} l \mathrm{~d} m
$$

- Convention: capital letters for Fourier transform, i.e. the spectrum.

Universality of complex analysis

- A generic aeroacoustic equation is

$$
\frac{1}{c_{0}^{2}}\left(\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}\right)^{2} \varphi-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \varphi=f(x, y, z, t)
$$

- The source $f(x, y, z, t)$ has spectrum $F(\omega, k, l, m)$.
- Similarly, the field $\varphi(x, y, z, t)$ has spectrum $\Phi(\omega, k, l, m)$.
- Hence

$$
D(\omega, k, l, m) \Phi(\omega, k, l, m)=F(\omega, k, l, m)
$$

where $D(\omega, k, l, m)$ is the dispersion function.

- Therefore the solution of the aeroacoustic equation is

$$
\Phi(\omega, k, l, m)=\frac{F(\omega, k, l, m)}{D(\omega, k, l, m)}
$$

Universality of complex analysis

- In the (space, time) domain, the solution of the aeroacoustic equation is

$$
\varphi(x, y, z, t)=\iiint \int \frac{F(\omega, k, l, m)}{D(\omega, k, l, m)} \mathrm{e}^{-\mathrm{i}(\omega t-k x-l y-m z)} \mathrm{d} \omega \mathrm{~d} k \mathrm{~d} l \mathrm{~d} m
$$

- But what can be done with this 'inversion integral'? The initial range of integration is over real (ω, k, l, m).
- The field is 'coded' in the complex plane by local behaviour near special points, especially saddle points, branch points, poles, and their coalescences.
- Such points are accessible only by contour deformations taking full account of the global behaviour of F and D, especially their Riemann surfaces.

An example: scattering of vorticity into sound

Prototype problem is a gust or turbulence striking the leading edge of an aeroengine fan blade or a wing.

High-frequency sound is produced at the leading edges.

Leading edge geometry

Three coordinate systems based on leading edge:

- Cartesian: (x, y, z); wavenumbers (k, l, m)
- Cylindrical: (r, ϕ, x)
- Spherical: (R, θ, ϕ)

Localised gust: some basic questions

- What is the full three-dimensional directivity pattern of the radiated sound field?
- What happens on the leading edge, remote from the localised source, in quantitative detail?
- Is there a trapped wave propagating along the edge?
- What happens to the energy propagating along an edge when it comes to a corner (conical scattering)?
- Many detailed results can be obtained by complex analysis. These are not complete for corner scattering.

Single-frequency sesquipole

Let the upwash be

$$
v_{0} \mathrm{e}^{-\mathrm{i} \omega_{0}(t-x / U)} \delta(z / a)
$$

Then the acoustic pressure is

$$
p=\frac{\mathrm{e}^{-\pi \mathrm{i} / 4}}{2 \pi^{3 / 2}} \rho_{0} c_{0} \bar{v}_{0} M^{3 / 2} \frac{\cos \frac{1}{2} \bar{\phi}}{\sin ^{1 / 2} \bar{\theta}} \bar{a}\left(\frac{\omega_{0}}{c_{0} \bar{R}}\right)^{1 / 2} \mathrm{e}^{-\mathrm{i} \omega_{0}\left(t+M \bar{x} / c_{0}\right)} E_{1},
$$

where

$$
E_{1}=E_{1}\left(\omega_{0} \bar{R} / c_{0}, \bar{\theta}, M\right)=\frac{\mathrm{i}}{\pi} \int_{C} \frac{\mathrm{e}^{\mathrm{i}\left(\omega_{0} \bar{R} / c_{0}\right) \cos (\bar{\theta}-\chi)} \sin \chi}{(1+M \sin \chi)^{1 / 2}} r^{\prime} \chi
$$

Here E_{1} is an 'edgelet' function.

Far field

The far-field approximation to E_{1}, uniform in the polar angle $\bar{\theta}$, is

$$
E_{1} \simeq\left(\frac{2}{\pi}\right)^{1 / 2} \frac{\sin \bar{\theta}}{(1+M \sin \bar{\theta})^{1 / 2}}\left\{1+\frac{\mathrm{i} M}{2 \sin \bar{\theta}} \frac{c_{0}}{\omega_{0} \bar{R}}\right\}\left(\frac{c_{0}}{\omega_{0} \bar{R}}\right)^{1 / 2} \mathrm{e}^{\mathrm{i}\left(\omega_{0} \bar{R} / c_{0}-3 \pi / 4\right)}
$$

Thus the dominant term is of order $\bar{R}^{-1 / 2}$, except along the leading edge, $\bar{\theta}=0$ or π, where it is smaller, of order $\bar{R}^{-3 / 2}$.

Topology of $(1+M \sin \chi)^{1 / 2} \quad$ (CJC 2003)

Contours on Riemann surface (CJC 2003)

Detailed asymptotics (2013) (Ayton \& Peake)

Wiener-Hopf method and advanced complex analysis

(a)

Parabolic wave equation (2019) (Hewitt et al.)

(a) $\left|A_{31}\right|$

(b) $\operatorname{Re}\left[A_{31} \mathrm{e}^{\mathrm{i} k x}\right]$

Fig. 9. Plots of $\left|A_{31}(X, Y)\right|$ and $\operatorname{Re}\left[A_{31} \mathrm{e}^{\mathrm{i} k x}\right]$ for $(l, m)=(2,1)$, with $\lambda=l /(l+2 m)=1 / 2$ and $k=20$. The curve near which the solution is localised is superimposed in black.

(a) (x, y)-plane

(b) Point 1

(c) Point 2

(d) Point 3

(e) Point 4

(f) Point 5

(g) Point 6

(h) Point 7

(i) Point 8

(i) Point 9

(k) Point 10 / 32

Parabolic wave equation (2019) (Hewitt et al.)

Fig. 13. Plots of $\left|A_{31}(X, Y)\right|$ and $\operatorname{Re}\left[A_{31} \mathrm{e}^{\mathrm{i} k x}\right]$ for $(l, m)=(1,2)$, with $\lambda=l /(I+2 m)=1 / 5$ and $k=20$. The curve near which the solution is localised is superimposed in black.

(a) (x, y)-plane

(e) Point 4
(d) Point 3

(b) Point 1

(c) Point 2

(f) Point 5

(g) Point 6

(h) Point 7

Serrated trailing edge (2019) (Huang)

Figure 1. Sketch of the model problem. Here, x, y, z are the coordinates, O the origin, $\chi(z)$ the profile of serrations, $2 h_{s}$ the root-to-tip distance and θ the incident angle.

Serrated trailing edge (2019) (Huang)

Silent flight of owls (2020) (Jaworski \& Peake)

Silent flight of owls (2020) (Jaworski \& Peake)

Figure 5
Aerodynamic noise suppression from leading-edge serrations and its dependence on geometry. (a) Serration geometries without stationary points are necessary to maximize leading-edge noise reduction. The sharpness of the serration with height b and wavelength λ is parameterized by b. (Inset) The pointed leading-edge comb of a long-eared owl. (b) Experimental measurements of sound pressure level (SPL) in the acoustic far field for a flat plate at zero angle of attack as a function of nondimensional frequency, with acoustic wave number k and height b. "Self-noise" refers to a serrated case $(b=1.5 \pi)$ without upstream grid turbulence, and "baseline" refers to a straight leading edge case $(b=0)$ with grid turbulence. Grid turbulence intensity is 2.5%, with an integral length scale of approximately 6 mm . These serration geometries produce up to $8-\mathrm{dB}$ noise reduction and the removal of leading-edge noise in the self-noisedominant regime. Figure adapted with permission from Lyu et al. (2018).

Porous extension to trailing edge (2018) (Kisil \& Ayton)

Figure 1. Diagram of the model problem: a semi-infinite rigid plate lies in $y=0, x<0$, and a finite porous plate lies in $y=0,0<x<L$. An unsteady perturbation, ϕ_{i}, convects with the mean flow in the positive x direction.
(i) a partial factorisation with exponential factors in the desired half-planes;
(ii) additive splitting of some terms;
(iii) application of Liouville's theorem;
(iv) iterative procedure to determine the remaining unknowns.

Porous extension to trailing edge (2018) (Kisil \& Ayton)

FIGURE 10. $\Delta P\left(k_{0}\right)$ for semi-infinite partially porous plates with varying porosity parameter, μ.

The quarter plane (2018) (Assier \& Shanin)

Fig. 1 (left) Geometry of the problem. (centre) 'Bottom lid' of $\Omega_{R, \varepsilon}$. The quarter-plane is in grey. (right) Illustration of the Q_{i} quadrants

The quarter plane (2018) (Assier \& Shanin)

Fig. 6 Illustration of the contour deformation needed to prove analyticity on $\mathbb{H}^{-} \times \mathbb{R}^{-}$

Supersonic leading edge (2019) (Powles \& CJC)

Fig. 1. Gust convected at speed U in the x-direction past a stationary flat-plate aerofoil. The aerofoil occupies the half-plane $y=0, x \geq 0$, and the leading edge lies along the z-axis.

Supersonic leading edge (2019) (Powles \& CJC)

Fig. 4. Scaled pressure contours on transverse vertical sections for an anti-symmetric gust convected at Mach number $M=\sqrt{2}$. (a) accurate plot on $k \bar{x}=8$ from Eq. (11); (b) accurate plot on $k \bar{x}=16$; (c) Keller approximation to (a), using Eq. (21) with coefficients (26); (d) Keller approximation to (b). Contour values in (a), (c) are -0.5 to 0.5 , and in (b), (d) are -0.25 to 0.25 , marked low (L) to high (H). The dashed semi-circles are sections of the Mach cone $\bar{R}_{h}=0$, and the dashed half-ovals are sections of the surface (28) for $\sigma=0.5$, outside of which the Keller approximation applies. In (c), (d) the Keller approximation has a singular limit $\pm \infty$ along the vertical axis $z=0$.

References

Assier, R. C. \& Shanin, A. V. (2018) Diffraction by a quarter-plane. Analytical continuation of spectral functions. Q. JI Mech. Appl. Math. 72, 51-86.

Ayton, L. J. \& Peake, N. (2013) On high-frequency noise scattering by aerofoils in flow. J. Fluid Mech. 734, 144-182.

Chapman, C. J. (2003) High-speed leading-edge noise. Proc. R. Soc. Lond. A 459, 2131-2151.

Chapman, C.J. (2015) Aircraft noise. Princeton Companion to Applied Mathematics (Princeton University Press), pp. 197-201.

Chapman, C. J. \& Powles, C. J. (2019) Basic singular fields in the theory of impulsive supersonic leading-edge noise. Wave Motion 89, 79-92.

References (continued)

Hewett, D. P., Ockendon, J. R. \& Smyshlyaev. V. P. (2019)
Contour integral solutions of the parabolic wave equation. Wave Motion 84, 90-109.

Huang, X. (2017) Theoretical model of acoustic scattering from a flat plate with serrations. J. Fluid Mech. 819, 228-257.

Jaworski, J. W. \& Peake, N. (2020) Aeroacoustics of silent owl flight. Annual Review of Fluid Mechanics 52, 395-420.

Kisil, A. \& Ayton, L. J. (2018) Aerodynamic noise from rigid trailing edges with finite porous extensions. J. Fluid Mech. 836, 117-144.

Powles, C. J. \& Chapman, C. J. (2019) Canonical sound fields in the frequency-domain theory of supersonic leading-edge noise.
Wave Motion 86, 125-136.

