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How does complex analysis arise in IP?
We see complex analysis arise in two main ways:
1. Inverse Problems that are or can be reduced to two

dimensional problems. Here we solve inverse problems for
PDEs and integral equations using methods from complex
analysis where the complex variable represents a spatial
variable in the plane. This includes various kinds of
tomographic methods involving weighted line integrals, and is
used in medial imaging and non-destructive testing. In
electromagnetic problems governed by some form of Maxwell’s
equation complex analysis is typically used for a plane
approximation to a two dimensional problem.

2. Frequency domain methods in which the complex variable is
the Fourier-Laplace transform variable. The Hilbert transform
is ubiquitous in signal processing (everyone has one
implemented in their home!) due to the analytic
representation of a signal. In inverse spectral problems
analyticity with respect to a spectral parameter plays an
important role.



Industrial Electromagnetic Inverse Problems

Many inverse problems involve imaging the inside from
measuring on the outside. Here are some industrial applied
inverse problems in electromagnetics

I Ground penetrating radar, used for civil engineering eg
finding burried pipes and cables. Similar also to microwave
imaging (security, medicine) and radar.

I Electrical resistivity/polarizability tomography. Used to
locate underground pollution plumes, salt water ingress,
buried structures, minerals. Also used for industrial process
monitoring (pipes, mixing vessels etc).

I Metal detecting and inductive imaging. Used to locate
weapons on people, find land mines and unexploded ordnance,
food safety, scrap metal sorting, locating reinforcing bars in
concrete, non-destructive testing, archaeology, etc.



Polarization tensors I

We give a simple example first for quasi-static problems. We want
to locate and identify an object from a perturbed field. Bounded
domain Ω ⊂ R2, 0 ∈ Ω with conductivity or permittivity σ0 > 0
and we consider

∇ · σ∇u = 0, in R2

with
u(x)− H(x) = O(|x |−1) |x | as →∞

where H is harmonic and σ = σ0χΩ + χΩc . We aim to find Ω from
measurements of u outside Ω. The jump in Dirichlet and Neumann
data at ∂Ω is assumed to be zero.
We use an asymptotic expansion

u(x) = H(x) +
∞∑

|α|,|β|=1

(−1)|α|
α!β! ∂αΓ(x)Mαβ(Ω, σ0)∂βH(0)



Polarization tensors II

Here Γ is the Newtonian potential, and the coefficients Mα,β are
called the Generalized Polarization Tensor GPT, and crucially
depend on the shape of the object and the conductivity but the
location information in the other terms.
To calculate the GPT of the object we need Neumann-Poincaré
(NP) operator

K ∗∂Ω[φ](x) = P.V. 12π

∫
∂Ω

(x − x ′).νx
|x − x ′|2 φ(x ′)dx ′

then
Mαβ(Ω, σ0) =

∫
∂Ω

yα(λ− K ∗∂Ω)−1
[
νy · yβ

]
dy

where λ = (σ0 + 1)/(2(σ0 − 1))
For details see Ammari & Kang [1]



More about PTs

I For the lowest order term can be considered as a symmetric
matrix, the Pólya–Szegö tensor. Known explicitly for
ellipses[1], but not even triangles! Eigenvalues used to
distinguish between objects

I Possibly weakly electric fish ‘know about it’. [7].
I The GPT expansion is also known for other electromagnetic

problems including metal detecting [9, 8, 10]. Acoustics [1].
Full Maxwell’s [14] hence radar. GPTs are can be thought of
as an asymptotic expansion for radar cross section.

But what are recent uses of complex analysis? ....



Recent developments using (old) complex analysis
Choi et al [4] made progress on explicit calculation of the GPT.
They start with an asymptotic expansion of the conformal map
from the exterior of a disk to the exterior of Ω. They write this
mapping Ψ as an asymptotic series

Ψ(w) = w + a0 + a1
w + a2

w2 + · · ·

and note the an can be solved from operator equation using the
NP operator. They go on to define the Faber polynomials {Fm(z)}
associated with Ψ which are complex polynomials and form a basis
for complex analytic functions in Ω. If z = Ψ(w) then

log(z − z̃) = log(w)−
∞∑

m=1

1
mFm(z̃)w−m

with a suitable branch cut. They go on to define GPT in terms of
these Faber polynomials. The trick is that the components of
these Faber polarization tensors can be computed in terms of the
an. They also use the method to create neutral inclusions, which
are in a sense cloaked to a low order.



A spectral example I

In the magnetic induction case we hope to use the frequency
dependence of the polarization tensor to better distinguish between
objects. We studied the spectral properties in [10].

Figure show real and imaginary part of magnetic polarization
tensor (MPT) as a function of frequency.



A spectral example II

We wanted to understand the eigenvalues of the real and
imaginary parts of the MPT and if the “sigmoid and hump” we
observed could be explained.
We found that M(w) where imaginary w is frequency is
meromorphic with poles λi on the positive real axis, the
eigenvalues of a certain curl-curl operator involving the domain,
and admits a Mittag-Leffler type expansion that goes some way
to explaining the behaviour.
It also provides a connection between the inverse problem of
finding the shape using metal detector data at a range of
frequencies and inverse spectral theory for operators.



Attenuated Radon transform I
The inversion and uniqueness theory of the attenuated Radon
transform in the plane uses complex analysis. This is at the heart
of emission computed tomography methods such as SPECT
used in medical imaging, and the techniques are increasingly
relevant as new methods are developed for tomographic imaging of
industrial as well as medical problems. We will give a flavour.
The divergent beam transform

Da(x , θ) =
∞∫
0

a(x + sθ) ds, x ∈ R2, θ ∈ S1

The attenuated x-ray (or attenuated Radon) transform [2, 12]

Paf (x , θ) =
∫
R
exp(−Da(x + sθ, θ))f (x + sθ) ds

In applications f is the density of emitters while a is the
attenuation. For a known we seek f from Paf .



Attenuated Radon transform II

We can reformulate the integral operator as a partial differential
operator thought of as a transport equation for a “flux” ψ

θ∂xψ(x , θ) + a(x)ψ(x , θ) = f (x)

where θ∂x = θ1∂1 + θ2∂2 and we consider ψ+(x , θ) as the solution
with the initial condition

lim
s→−∞

ψ+(x + sθ, θ) = 0

so that
Paf (x , θ) = lim

s→∞
ψ+(x + sθ, θ)

Novikov [12] proved the following uniqueness and explicit inversion
result.



Novikov’s theorem

See Theorem 2.1 of Novikov [12].
http://dx.doi.org/10.1007/BF02384507.

http://dx.doi.org/10.1007/BF02384507


Note Novikov’s use of the Hilbert transform, as well as the
standard plane Radon transform, and the appearance of the ∂/∂z
operator, see also Fokas and Novikov [5]. See [3, 2] for treatment
of the attenuated Radon transform as a Cauchy problem for
A-analytic functions....



A-analytic functions (Bukhgeim)

See Bukhgeim and Bukhgeim[3] p220
http://dx.doi.org/0.1515/156939406777340883

http://dx.doi.org/0.1515/156939406777340883


Further uses

These ideas from the scalar attenuated Radon transform have been
extended to the tomography of vector fields which arises in Doppler
velocimetry and in neutron strain tomography, see [6], [11].
For the attenuated ray transform in a geometric context on a
Reimannian manifold see for example Salo and Uhlmann [13].
In radio propagation through a non-uniform medium (eg
ionosphere, ground) linearization results in weighted ray
transforms, hence applications to radar. Also polarized neutron
tomography of magnetic fields.



Conclusions

There are plenty of areas of inverse problems used in industry
where a knowledge of complex analysis is needed, but it is not
clear that it is really generating new problems in complex analysis.

Thanks for listening.
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