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Alzheimer's Disease Progression 



Challenges of AI for Mental Health: 

Patient heterogeneity 
 
Sparse data 
 
Costly, high invasive 
measures of 
neurocognitive health 
 
 



Transparent and interoperable engines for:  
 

  early precision diagnosis 
 

  precise patient stratification 
 

  personalised interventions 
  
from low-cost and non-invasive data 

Need for innovative healthcare solutions  
 



Task: patient stratification 

pMCI	sMCI	HC	
HC: healthy controls 
sMCI: stable MCI 
pMCI: progressive MCI 

Data:	Alzheimer's	Disease	Neuroimaging	initiative:	ADNI	

Risk of Mis-classification 
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Predictive Prognostic Machines on multimodal data 



S1	S2	S3	S4	S5	S6	S	585					…	

Response	Variable	
ADNI-Mem	

Predictor	Variable	
400,000	Measures	
(Grey	Matter	Voxels)	
per	subject	
GM	(Grey	Matter)	

Biological Model: prediction of memory 
from Grey Matter 



ADNI	Mem	 Grey	Matter	

Partial Least Squares Regression (PLSr) 
Grey Matter Features predictive of ADNI-Mem 
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PLS-derived	Grey	matter	Scores	Grey	Matter	(test	data)	

PLS-derived Grey Matter Score 



Within sample validation: sMCI vs. pMCI 

Mean	test	performance:	[r2(472)	=	0.1756,	P	<	0.0001])	

PLS-derived Grey Matter Score predicts cognitive decline: 
variance in ADNI-Mem scores 
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Out of sample validation 



PLS-derived Grey Mater Score predicts Tau 

Braak	Stage	 Threshold	 Tau	Positive	v	Tau	Negative	 GM	Score	v	Tau		

p	 t	 Cohen	d	 Pos/Neg	 r2	

tau	Braak	12	 1.95	 <.0001	 10.7	 2.13	 27/419	 0.37	

tau	Braak	34	 1.89	 <.0001	 8.4	 1.52	 33/413	 0.17	

tau	Braak	56	 1.93	 <.0001	 5.9	 1.32	 21/425	 0.08	



Machine Learning Framework 

Generalised Metric Learning Vector Quantisation: GMLVQ 



Biological model: sMCI vs. pMCI 

Data Type	 Accuracy	 1-MAE	 sensitivity	 specificity	

Biological	 81.9	 81.7	 81.1	 82.3	



Biological vs. Cognitive model 

Data Type	 Accuracy	 1-MAE	 sensitivity	 specificity	

Biological	 81.9	 81.7	 81.1	 82.3	

Cognitive	 81.4	 82.4	 84.9	 79.8	



PLS-derived Grey Matter Score relates to 
pathology vs. symptomatology 

 
Healthy controls  vs. sMCI; pMCI 



 
Healthy controls  vs. sMCI; pMCI 



MCI	

3	Years	Later	Baseline	
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Binary vs. continuous predictions: 
risk of mis-classification 



GLMVQ Scalar Projection: determine 
distance from stable MCI prototype 



Projection score predicts rate of memory change 

Cognitive model	 Biological model	

r= -0.41 [-0.5 -0.32] 
 

r= -0.55 [-0.62 -0.47] 
 



n=171, r=-0.41 , CI[-.53 -0.26]  p<.0.0001  

Projection Score predicts  
rate of Grey matter volume change  



Projection score predicts rate of Tau change  

Braak 34 n=30, r=0.46 p=0.01 



x 126	MCI		3	Years	
Clinical	Follow-up	

Cognitive model	 Biological model	

Scalar projection: out of sample validation 

r(116)	=	-0.4,		P	<	0.0001	 r(116)	=	-0.65,	P	<	0.0001		



Interoperability across cohorts

n=18, r=-0.55, p=0.02 n=163, r=-0.47, p<.0.0001  

Scalar projection from model trained on ADNI predicts  
cognitive decline in a different cohort (NIMROD) 



n=54, r=-0.44, p=0.001 

Scalar projection from model trained on ADNI predicts  
Beta-amyloid change in preclinical sample (BAC) 

Predicting disease in asymptomatic individuals

Distance to stable prototype 



Transparent and interoperable engines for 
early diagnosis and prediction in dementia 

•  Linear metric learning classifies MCI patients into stable 
vs. progressive based on low-cost less invasive data (i.e. 
cognitive data) 

•  Transparent multivariate modelling returns interpretable 
biomarker-based features that inform precise prediction of 
cognitive decline 

•  Scalar projection model defines prognostic trajectories 
from baseline data, reduces risk of misclassification, and 
generalises predictions across cohorts and asymptomatic 
individuals. 
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