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Analysing cortical
organisation and its
relation to cognition

Through Machine Learning....
Emma C. Robinson

King’s College London
https://metrics-lab.github.io/vacancies/

emma.robinson@kel.ac.uk. ¥ @emrobSci () ecros
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The Cerebral Cortex

* Outer layer
 Highly convoluted

 Contains functionally
specialised units

e Connected in a network

o
Lateral
surface




The Cerebral Cortex

Outer layer

Highly convoluted

Contains functionally
specialised units

Connected in a network
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The Cerebral Cortex Wogecs

» Most evolved relative to non human primates

« Implicated in neurological and psychiatric disease

Chimpanzee Baboon

DeFelipe, Javier. "The evolution of the brain, the human nature of cortical circuits, and intellectual
creativity." Frontiers in neuroanatomy 5 (2011): 29.



The Cerebral Cortex

 Highly variable in
shape

« And functional
organisation

« Particularly within
the frontal lobe
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The problem with comparing g etrics
brain images through registration

 Assumes brains can be matched using smooth
(diffeomorphic) transformations




Cortical constrained analysis

Best analysed as a surface

» Better captures geodesic distances along cortical sheet
« Improves registration
» Improves smoothing




Cortical constrained analysis

Best analysed as a surface

» Better captures geodesic distances along cortical sheet
« Improves registration
» Improves smoothing

Volumetric smoothing mixes signals Surface-constrained smoothing averages
only GM signals 8
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Cortical constrained analysis S

e Adults
Available pipelines/data sets: @ FreeSurfer - chidren>2yrs
*  Monkeys
C}E[glr}\;ectome 2 i
biobank’ ¢

* Young healthy
adults (20-30 yrs)

Developing Human

Processing Stream Overview

f/ \’ % : *‘ A « Neonates (29-
y b e * ‘= o in 45 weeks GA)
i LR o s - -

b o : * Fetuses (to
1. T1 Weighted 2. Skull Stripping 3. Volumetric Labeling 4. Intensity

Input Normalization come)

*Links at end of *
talk

N

5. White Matter 6. Surface Atlas 7. Surface Extraction 8. Gyral Labeling F reesu rfe r SI Id €:
Segmentation Registration shorturl _at/aC|45

9



Cortical constrained analysis

MSM surface registration:

« Multimodal - aligns folding and function
 Using discrete optimisation
« Improves areal correspondence
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FIXED REFERENCE GRID
Robinson, Emma C., et al Neuroimage 100 (2014): 414-426. 10
Robinson, Emma C., et al. Neurolmage 167 (2018): 453-465.
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Cortical constrained analysis

 Leads to better mapping of cortical organisation

« Which ultimately offers to increase interpretability of
predictive models

« But ultimately still topologically constrained

The HCP’s multi-modal cortical parcellation (HCP_MMP1.0)

11
Glasser, Matthew F., et al. "A multi-modal parcellation of human cerebral cortex." Nature (2016).



Can machine learning help?

e Cortical surfaces can be
challenging to extract

« Require good resolution
of cortex

« Not generally available
for developing or clinical
data sets

 Existing pipelines are
lengthy to run

Makropoulos, Antonios, Robinson
EC, et al. "The developing human
connectome project: a minimal
processing pipeline for neonatal
cortical surface

reconstruction." Neuroimage 173
(2018): 88-112.

-
/ A. Pre-Processing

Developing Human Connectome Project —
dHCP - pipeline

Inflated Very Inflated Sphere

-

Sulcal Depth




Can machine learning help?

Available now
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* Registration (spatial
correspondence matching)

Segmentation

Cortical parcellation

More challenging!

NS
T1/T2w ratio
I

Cortical Extraction

Predictive modelling

\G
O

PV by o §
Mid-thickness Pial Inflated Very Inflated Sphere

Sulcal Depth Myelin Map

Makropoulos, Antonios, Robinson EC, et al. "The developing human connectome project: a minimal 13
processing pipeline for neonatal cortical surface reconstruction." Neuroimage 173 (2018): 88-112.



Convolutional Neural Networks

Encoding Decoding
Neurons —_— Behavior
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Yanérs \RattieehKDanand
JRwbs J. DiCarlo. “Using
goetglisief-deepean
learfeveneslels to

~O>EgErmpLAcH RIGATY
SpengeyoChiam, 2014.
Opacaters 1 tnasrcxrsnant ayer neuroscience 19.3

=l >A> B> 0 (2016): 356-365.

* Designed to mimic the human visual system
 Learns spatial filters or increasing complexity
» From edge filters to object detectors

« Removes requirement for prior modelling or spatial

normalisation of the signal
14
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CNN segmentation networks

E.g. U-net for pixel /voxel-wise classification/regression
Can be used for semantic segmentation

Predicted
labels

Input data and

ground truth labels o [i'i]___ [i’i]
= ResiZl.JaI Skip Ct?nnection ‘ ~ )
jmee, | [e] —[>e]

Transposed Convolution
p [=&a]

Ronneberger, Olaf,. "U-net: Convolutional networks for biomedical image segmentation." MICCAI, 2015.1°



CNN segmentation networks

Automated real-time fetal head segmentation

« Bayesian deep learning with Monte-Carlo Dropout (MC
Dropout) during inference to predict N samples

* Generates pink error bounds

Probabilistic Model

N Ellipses

Aggregation

% i i

Variance )
-
Score @ ‘
EPSRC Centre for Doctoral Training

Smart Medical
Imaging

Inference

Budd, Samuel, et al. "Confident Head Circumference Measurement from Ultrasound with Real-

17
Time Feedback for Sonographers." MICCAI2019.



CNN segmentation networks ﬂ?f ‘&»v

Automated real-time fetal head segmentation

« Bayesian deep learning with Monte-Carlo Dropout (MC
Dropout) during inference to predict N samples

* Generates pink error bounds

EPSRC Centre for Doctoral Training
—

Smart Medical
Imaging

Budd, Samuel, et al. "Confident Head Circumference Measurement from Ultrasound with Real-
Time Feedback for Sonographers." MICCAI2019.



CNN segmentation networks

Tissue segmentation

» Trained on output of
traditional methods

* These are dependent on
image pre-processing steps
which can fail

« But deep network trained
on their outputs is robust

€ BoMedlA

Rajchl, Martin, et al. "Neuronet: Fast and
robust reproduction of multiple brain image
segmentation pipelines." arXiv preprint
arXiv:1806.04224 (2018).

ResNet
Encoder

Multiple
FCN decoder

2 MeTrICS
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Machine learning for volumetric
registration

Moving 3D Image (y)

def ti
defw (x,y) eformation l

velocity field (¢,)
Uz field
z|x;y T .
e spatial
Fixed 3D Image (x) < > Z [> r transform
2:z|x;y

/ l seven squaring

and scaling layers

> loss (L) <€

 Estimate non-rigid registration parameters using CNNs

e.g.
* VoxelMorph (Dalca, Adrian V., et al. arXiv preprint
arXiv:1903.03545 (2019).)

* Deep Learning Image Registration (DLIR) framework (de Vos, Bob D., et
al. Medical image analysis 52 (2019): 128-143.)

Not yet available for cortical surfaces .



Machine learning for cortical
parcellation

« Expert manual annotations of 180 functionally specialised
regions (per hemisphere) on (MSM-aligned) group average data

* 97 entirely new
areas

« 83 areas previously
reported by
histological studies

Glasser, Matthew F., Tim Coalson, Emma

C. Robinson et al. "A multi-modal

parcellation of human cerebral cortex." 21
Nature (2016).
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Machine learning for cortical
parcellation

« Expert manual annotations of 180 functionally specialised
regions (per hemisphere) on (MSM-aligned) group average data

. The HCP’s multi-modal cortical parcellation (HCP_MMP1.0)
* 97 entirely new

areas

« 83 areas previously
reported by
histological studies

l:l Auditory . Sensory/motor

Glasser, Matthew F., Tim Coalson, Emma . Task positive D Task negative
C. Robinson et al. "A multi-modal
parcellation of human cerebral cortex." 22
Nature (2016).




Machine learning for cortical
parcellation

« The HCP MMPv1: Group map propagated to
individuals via training of a MLP

* Binary classifications

* used to train classifier ONLY where subject data closely agrees
with group

Voxel-wise Correlation
Map Generation

Ni nodes Np nodes Ng nodes 7 voxel-wise
(2500 PCs) (22 Extracted Features) (7 RSNs) estimates

Hacker, Carl D., et al. "Resting state network estimation in individual subjects." Neuroimage 82 (2013): 646-633.
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Machine learning for cortical
parcellation

The HCP MMPv1: Output from Classifier for 4
example datasets

g

Group Average

Glasser, Matthew F., Tim Coalson, Emma
C. Robinson et al. "A multi-modal

parcellation of human cerebral cortex."
Nature (2016).



Machine learning for cortical
parcellation

The HCP MMPv1: Implemented as a U-net
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Machine Learning for
Connectivity Network Analysis

Brain connectivity
can be inferred from
fMRI/dMRI

Specifically, f{MRI
(partial) correlations

Or dMRI tract
connectivity

l h Iil !
L 2

» Between different
regions

A
1
nh

R
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For review see: Smith et al. Trends in Cognitive Science, 2013



Machine Learning for
Connectivity Network Analysis

 Historically analysed
with graph theory

* Global and local
network topology

 Path length
* Clustering
* Modularity

Figure from Karwowski, Waldemar, Frontiers in Neuroscience 13 (2019): 585.

A
Clustering coefficient Modularity
Cc
Regular Small-World Random
- —
/'<\ ‘l\ f>
| '\/‘7 7’_"/
= A =
AP 7 o .// ”\\\' (();/;\7\
\‘——i \./' \./
P=0 - -~ p=1

Increasing randomness

28



Machine Learning for
Connectivity Network Analysis

 Historically analysed
with graph theory

e But ML methods can

« Make personalised
predictions

 Highlight connections
important to
predictions

Raohimsors,. Hwhia¢OeEC. 'élddn’ﬂﬂy/hngqabpaj}atimp@iffgmﬁmmhmmhb&efhraénisﬁylhhdrﬁhnéﬂ&wmﬂmlsaal}gred
noantsnedaastrang tp pssaciateNevith gnawély angl (@etepnpbatdi ) Cerebral cortex24.9 (2013): 2324-2333.
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Machine Learning for
Connectivity Network Analysis

« Random Forest regression to predict fluid intelligence from
HCP features

* 110 Cortical imaging features
averaged for each of the 360
regions

"9 > ’
L | =
'Sulc'
Relational

» Features reflect

Mean Curvature

210P 210V 210P 210V 210P
Story

* Cortical morphology
 T1/T2 ratio myelin maps
 ttMRI ICA maps

« rfMRI ICA maps

Myelin Map
210v 210P 210V 210P 210V 210P

210P 210V
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Thickness

* Cross-validated R2 = 0.347

« Feature Importance mapped
back to the image space .



Machine Learning for
Connectivity Network Analysis

« Random Forest regression to predict fluid intelligence from
HCP features

* 110 Cortical imaging features
averaged for each of the 360 regions

» Features reflect

* Cortical morphology
 T1/T2 ratio myelin maps
« ttMRI ICA maps

* rfMRI ICA maps

* Cross-validated R2 = 0.347

« Feature Importance mapped back
to the image space
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Machine Learning for
Connectivity Network Analysis

3rg
A : 2 2 i
04% o Picture vocabulary test 'é HUMAN
2 Fluid intelligence (number of correct responses) 15 C t
‘D o
3 Delay discounting (area under the curve for discounting of $200) ) 4 Onpec ome
o ] 0rs PROJECT
Years of education completed : s
Life satisfaction -1rg Fluid intelligence score
List sorting working memory test 2}% .i.te"" (onedotpersubject)
Oral reading recognition test - S8 ,;_ —2: ° 1
Sustained attention continuous performance test (true positives) -3 '8 CCA weights: omes Smlth et al' Nature m
Sustained attention continuous performance test (specificity) N A i R

Delay discounting (area under the curve for discounting of $40,000) -4-4 -3 -2-1 01 2 3 4 NeurOSCIence 2015 FMRIB

Oxford Centre for Functional MRI of the Brain

Picture sequence memory test
Years since smoked last cigarette
Financial income (eight bands)
Peg-board dexterity test (time taken)
Visual acuity (ratio) a CCA edge strength increases,
No history of psychiatric or neurologic disorders - father 30 node-pair with summed over edges
Pattem comparison processing speed the hi mz: CCAg
Two-minute walking endurance test 9 edge

Correlation (r) between each SM
and the CCA mode

o
%)

Included in CCA
Excluded Aow ook avnakoed (aarcliors ooy
Variance exp|ained; Thought problems score (self-report)
» Still smoking
0, Perceived stress score

17% Regional taste intensity score

Rule breaking behavior score (seif-report)

Anger-physical aggression score
Times used any tobacco today
Pittsburgh sleep quality index (higher is worse)
Drug or alcohol problems ~ father
Total weekdays with any tobacco in last week
Sustained attention continuous performance test (false positives)
Positive test for THC (cannabis)

Fluid intelligence (number of skipped responses)

8

Negative

-0.36

e CCA Prediction of 280 HCP
behavioural markers from
fMRI netmats for 819
samples

CCA edge strength decreases,
summed over edges

32



Machine Learning for
Connectivity Network Analysis

Are differences in functional connectivity in fact reflecting
changes in spatial topography?

Difference:
4 Negative Positive Positive - Negative

Bijsterbosch, Janine Diane, et al. "The relationship between spatial configuration and functional

connectivity of brain regions." bioRxiv (2017): 210195. 33



Geometric (surface) deep learning =

Train CNNSs on spatial filters fit to the
cortical surface

e.g.

-» mapping and resampling
=» DiNe cony, BN, RelLU

Zhao, Fengiang, et al.
"Spherical U-Net on Cortical

Surfaces: Methods and
Seong, Si-Baek, et

Applications." IPMI 2019.
al Frontiers in

Neuroinformatics 12
(2018): 42.

34



« 3 channels: cortical
thickness, curvature and
myelin

 Projected to 2D(via
sphere)

* ResNet - 5 blocks of
residual layers (2 units per
block

o Accuracy for prem vs
term classification =
100%

o GA at scan mae=0.493

45.0 -

425 4

40.0 A

37.5 1

35.0 1

32.5 1

30.0 1

27.5 1

4 2l z’é\
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et MeTrICS

WAy

Regression of Age at scan

oex

-

X

R

275 300 25 350 375 400 425 450

x Train mae=0.198; Best mae= 0.49335



Geometric (surface) deep

learning

* Outperforms ROI
analysis
* 100 Voronoi parcels

« Average data for each
parcel

* GAregression Test
mae= 0.95

45.0 -

425 1

37.5 1

35.0 -

32.5 -

27.5 -

275 300 325 350 375 400 425

x Train mae=0.41; Test ma@= 0.95

36
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Geometric (surface) deep
learning

* Features visualised using Grad
CAM

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations
from deep networks via gradient-based localization." Proceedings of
the IEEE International Conference on Computer Vision. 2017.

Increasing GA




& MeTrICS
277 (NI

» S

Geometric deep learning on
graphs

Constrained variance loss - LLE (ABIDE)

raw fMRI timeseries connectivity matrix labelled graph 0.10
0.05 - ,m
Mt o e A g AN 0.00 4 * * %G,
b A Mt - : ‘ '.
—0.05 A -
ERTNIROP SV Pearson’s |& graph / %
correlation construction —0.10 1 ¢ -
S S ~0.15 / *
Input connectivity | | Graph Convolutional | | Similarity metric learning ~0.20 1 P
graphs P Network | - L oz -
! ! [ ASD
' —0.30 4 . . . . . . E ® H‘C -
/ i -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
P ] Constrained variance loss - LLE (UK Biobank)
P sl s ‘ FC . 0.05
! shared weights el :
i (siamese) I : @ |#f | i >
R B ' ! 0705+ ' 4
i i Graph Convolutional / ] ! i 005 y
b Network II b \ pr i ~0.101 ;’
P 1 ! :
—k ull \ i : -0.15 1 35!
P fmv c fmv b 1 . '
P conV 7 g : i o .
(Gg yo): —» ¥ - Dotlaprc;?uct similarity ! 020 o —
N [ . ! ‘emale
P R.Ll} R..lfu L Y estimate ! i ® male
——————————————————————————————————————————— ~0.10 ~0.05 0.00 0.05

Ktena, Sofia Ira, et al. "Metric learning with spectral

graph convolutions on brain connectivity @ MIA
networks." Neurolmage 169 (2018): 431-442. 38



Modelling brain Development
with Gaussian Process Regression

g P SR Gy
SR
W

GP model of brain growth

® 446 neonates scanned cross
sectionally

* Input variables, GA, PMA, sex

® Gaussian Process regression |
estimated ; ‘ Age at Scan: 24.5 weeks

Age at Birth: 22.5 weeks
\E[

® brain tissue intensity on T1
and T2

® ]Jocal tissue shape (dx,dy,dz
deformation maps)

Icentre forthe
developing brain

J O’Muircheartaigh, EC Robinson et al, Modelling brain development: investigating white
matter injury in term and preterm born neonates, submitted



L
rICS
LG RN ey
aﬂ‘f\x,w

N

Modelling brain Development
with Gaussian Process Regression

GP model of intensity changes

® 446 neonates scanned cross
sectionally

* Input variables, GA, PMA, sex

® Gaussian Process regression .
estimated l. L Age at Scan: 24.5 weeks

Age at Birth: 22.5 weeks
Male

® brain tissue intensity on T1
and T2

® ]Jocal tissue shape (dx,dy,dz
deformation maps)

Icentre forthe
developing brain

J O’Muircheartaigh, EC Robinson et al, Modelling brain development: investigating white
matter injury in term and preterm born neonates, submitted



Modelling brain Development

o o [ ;@W
with Gaussian Process Regression

What would a term-aged infant look like if they were born
with varying degrees of prematurity?

Age at Scan: 41 weeks
Age at Birth: 28 weeks 2 days
Male

J O’Muircheartaigh, EC Robinson et al, Modelling brain development: investigating white
matter injury in term and preterm born neonates, submitted



@l

Modelling brain Development et ics
e
with Gaussian Process Regression
Room for improvement in the cortex?
Representative Age in Weeks AI';,slzftz‘t o
Space 24 28 32 36 40 44 Error

Template ‘* ,"A

Non-linear ? 3(‘ b“

Template A ‘/"
P
Native ﬁ 4‘ k& 4’1’}
88000

J O’Muircheartaigh, EC Robinson et al, Modelling brain development: investigating white 42
matter injury in term and preterm born neonates, submitted

T2-weighted




Summary

 Use cortical surface constrained processing to study
behaviour/cognition disorders of the cortex

» But beware promises of personalised medicine here!

 Predictive modelling of outcomes is more challenging due to
heterogeneities of
* cortical organisation

* behavioural/cognitive traits and
» neuro-pathological classifications

* In future interpretable Al can play a role in improving
understanding of the underlying neural mechanisms




We’re hiring!

https://metrics-lab.github.io/vacancies/

EPSRC Centre for Doctoral Training

Smart Medical
Imaging

PhD positions:

https://www.imagingcdt.com/applications/

Postdoc Position:

Deep Learning and Image Processing algorithms for
precision registration of multimodality brain scans.

ING'S
College dh\ DO 17\19151}5E
LONDON F |\/||:g|

emma.robinson@kecl.ac.uk y @emrobSci
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Data sets and surface extraction
pipelines

 FreeSurfer: https://surfer.nmr.mgh.harvard.edu/

- HCP/dHCP

 Pipelines: https://github.com/Washington-
University/HCPpipelines/releases https://github.com/BioMedIA/dhcp-

structural-pipeline

 Data: https://db.humanconnectome.org,
http://www.developingconnectome.org/second-data-release/

« Atlases: https://brain-development.org/brain-atlases/atlases-from-the-
dhcp-project/

« MSM and dHCP surface-to-template alignment
e https://github.com/ecro5/MSM HOCR
* https://github.com/ecro5/dHCP template alignment

emma.robinson@kecl.ac.uk y @emrobSci .


https://surfer.nmr.mgh.harvard.edu/
https://github.com/Washington-University/HCPpipelines/releases
https://github.com/BioMedIA/dhcp-structural-pipeline
https://db.humanconnectome.org/
http://www.developingconnectome.org/second-data-release/
https://brain-development.org/brain-atlases/atlases-from-the-dhcp-project/
https://github.com/ecr05/MSM_HOCR
https://github.com/ecr05/dHCP_template_alignment

