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1 - Introduction Segmentation 1/2

Image segmentation : aims to partition a given image into
relevant constituents or to delineate the contours inside the
image for further analysis and understanding.

Initial contour
segmentation

Obtained contour
segmentation Region segmentation.
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1 - Introduction Segmentation 2/2

Challenges : definition of meaningful constituents is ambiguous
and is subject to the applications and to the subjective human
interpretation.

Applications : object detection, scene parsing, organ recon-
struction, tumor detection, etc.
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1 - Introduction Registration 1/2

Image registration: Given two images called Template (T )
and Reference (R), registration consists in determining an op-
timal diffeomorphic transformation ϕ such that the deformed
Template (T ◦ ϕ) image is aligned with the Reference (R).

From left to right : Reference R; Template T (mouse atlas and

gene expression data); deformed Template T ◦ ϕ.
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1 - Introduction Registration 2/2

Challenges : under-constrained problem ⇒ ill-posedness, non-
linearity, non-convexity, high dependency to the considered ap-
plication.

Applications : shape tracking, multi-modality fusion, computer-
aided diagnosis and disease follow-up, atlas generation, etc.
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1 - Introduction Atlas generation/shape averaging and statistical analysis 1/2

Atlas generation: construct a statistical representative image
and an associated set of coordinated transformations from an
ensemble of images.

Atlas generation schemes involving deforming and registering all

images to the unknown atlas (Raj et al. [7], Joshi et al. [3]).
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1 - Introduction Atlas generation/shape averaging and statistical analysis 2/2

Challenges : same as the registration ones with one more diffi-
culty since the Reference to which the images should be mapped
is unknown.

Applications : characterization of the expected structure and
variability of a population through a statistical analysis (PCA
for instance), compare different populations (healthy/unhealthy
for example), shape a-priori, etc.
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1 - Introduction Overview of our process

Figure: Overview of our framework
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2 - Motivation of the modelling Goal 1/4

Main ideas for joint segmentation/registration models :

As structure matching and intensity distribution comparison rule
registration, combining both tasks into a single framework sounds
relevant.

Registration is seen as prior information to guide segmentation
and to overcome the difficulty of weak boundary definition.

Accurate segmented structures drive the registration process
correctly based on geometrical and topological features.

Difficulty : lies in the construction of such a relevant functional
since the problem is underconstrained and involves nonlinearity
and nonconvexity.
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2 - Motivation of the modelling Goal 2/4

Proposed Methodology:

⇒ introduction of an original geometric dissimilarity measure
based on segmentation principles and shape comparisons allow-
ing for joint segmentation and registration:

↪→ Potts model(Potts [6], Storath et al. [10]) in order to
segment each image of the dataset.
↪→ Non local shape descriptors inspired by the Potts model

for segmentation to match regions.
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2 - Motivation of the modelling Goal 3/4

Proposed Methodology: (continuation)

⇒ introduction of a deformation model in a nonlinear elasticity
framework.

↪→ Shapes to be matched are viewed as isotropic, homo-
geneous, hyperelastic materials and more precisely as Ogden
materials (see Ciarlet’s book [1]).
↪→ Addition of two original constraints to ensure the defor-

mations are bi-Lipschitz homeomorphisms.
↪→ Hyperelasticity is a suitable framework when dealing with

large and nonlinear deformations.
↪→ Rubber, filled elastomers, biological tissues are often mod-

elled within the hyperelastic framework.

12/34



2 - Motivation of the modelling Goal 4/4

Proposed Methodology: (continuation)

Observation (Rumpf et al. [8]) : the arithmetic mean x of
observations (xi )

M
i=1 can be interpreted as the minimizer of the

total elastic deformation energy in a system where the average
x is connected to each xi by an elastic spring under the Hooke’s
law.

=⇒ introduction of a mean segmentation given by the par-
ticular deformed configuration that minimizes the total nonlin-
ear energy required to deform each segmentation so that it is
aligned to this mean configuration.
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2 - Motivation of the modelling Prior Related Works

Prior related works suggest jointly treating segmentation and regis-
tration. Among others:

Droske et al. ([2]): combine the general Mumford and Shah
functional and registration via nonlinear elasticity principles;

Ozeré, Gout and Le Guyader ([5]): combine a weighted total
variation to align the edges, and the modified stored energy
function of a Saint Venant-Kirchhoff material.

Prior works on joint segmentation/registration/shape averaging :
Rumpf and Wirth ([8]): combine the Ambrosio-Tortorelli phase
field approximation of the Mumford and Shah functional, gen-
eration of a mean shape, and the stored energy function of an
Ogden material.
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2 - Motivation of the modelling General Notations

Ω ⊂ R2: open bounded and connected subset of R2 with
boundary ∂Ω of class C1.

Ti : Ω̄ → R the i-th Template image, for i = 1, · · · ,M where
M is the total number of images.

For theoretical purposes:

Ti are assumed to be compactly supported on Ω.
Ti are assumed to be Lipschitz continuous.

ϕi : Ω̄ → R2: deformation (or transformation) from the Tem-
plate Ti to the unknown mean.

θTi
: Ω̄→ R corresponds to the segmentation of the Template

Ti , and θR : Ω̄ → R represents the mean segmented atlas
(unknown of our problem).

ui : associated displacement s.t. ϕi = Id + ui .
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2 - Motivation of the modelling Functional to be minimized 1/4

Construction of the nonlinear-elasticity-based regularizer:

⇒ proposed regularizer on each ϕi based on the coupling of the
stored energy function WO of an Ogden material and on a term
controlling that the Jacobian and the inverse Jacobian remain
small.
⇒ the deformation map does not exhibit contractions or expan-
sions that are too large and is a bi-Lipschitz homeomorphism.
To sum up, the regularization can be written as

Ereg (ϕi ) =

∫
Ω

W (∇ϕi ) dx ,

with

W (F ) = WO(F ) + 1{‖.‖L∞(Ω,M2(R))≤α}(F ) + 1{‖.‖L∞(Ω,M2(R))≤β}(F
−1).
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2 - Motivation of the modelling Functional to be minimized 2/4

Construction of the Template segmentation:

Potts model

D u∗=argmin
u∈Rs

Eseg (u)=‖∇u‖0+‖u−f ‖2
2, with f the observed image.

C u∗= argmin

u∈



u=
N∑
l=1

c lθl ,

θl∈BV (Ω,{0,1}),
N∑
l=1
θl=1, a.e.



Eseg (u)=
N∑
l=1

TV (θl )+
∫

Ω

N∑
l=1
θl (c

l−f )2 dx .

Interpretation

Approximation in the L2 sense of the image f by N regions whose
characteristic functions are respectively θl with a constant intensity
c l for each l = 1, · · · ,N minimizing the length of the overall edges.
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2 - Motivation of the modelling Functional to be minimized 3/4

Construction of the dissimilarity measure:

Distance measure criterion

D Edist(θR , (θTi
, ϕi )i=1,··· ,M) =

1

M

M∑
i=1

‖∇(θR − θTi
◦ ϕi )‖0,

C Edist(θR , (θTi
, ϕi )i=1,··· ,M) =

1

M

M∑
i=1

N∑
l=1

TV (θR,l − θTi ,l ◦ ϕi ),

with θR =
N∑
l=1

c lRθR,l , θTi
=

N∑
l=1

c lTi
θTi ,l .

Interpretation

It aims at minimizing the length of the contours defined by the dif-
ference between the deformed segmentation θTi

◦ϕi of the Template
Ti and the mean segmentation θR . =⇒ aligns the edges of each
homogeneous region.
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2 - Motivation of the modelling Functional to be minimized 4/4

Functional minimization problem

inf
{
I (θR , (θTi

, ϕi )i=1,··· ,M) = Edist(θR , (θTi
, ϕi )i=1,··· ,M)

+
1

M

M∑
i=1

(Ereg (ϕi ) + Eseg (θTi
))

+ Eseg (θR)
}
. (P)

Numerical difficulties: nonlinearity in ∇ϕi , the presence of (∇ϕi )
−1

and the composition θTi
◦ ϕi in the distance measure criterion.
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3 - Numerical Resolution Optimization

Inspired by the work of Negrón Marrero [4], we introduce aux-
iliary variables Vi simulating ∇ϕi , Wi simulating (∇ϕi )

−1, and
θ̃Ti

simulating θR − θTi
◦ϕi for each i = 1, · · · ,M, and use an

Lp-penalization method to ensure their closeness to the initial
variable.

We use an alternating optimization scheme in which we solve
the subproblem with respect to each unknown alternatively.
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3 - Numerical Resolution Numerical simulation : Cardiac MRI

# Ti θTi
θTi
◦ ϕi Ti ◦ ϕi θR

1

2

3

4

5
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4 - Deformation-informed PCA PCA Definition

Principal Component Analysis

Principal Component Analysis (PCA) : statistical procedure that
uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncor-
related variables called principal components. This transformation
is defined in such a way that the first principal component has the
largest possible variance, and each succeeding component in turn
has the highest variance possible under the constraint that it is or-
thogonal to the preceding components. The resulting vectors (each
being a linear combination of the variables) are an uncorrelated or-
thogonal basis set.

Requirement: the variables need to live in a linear space.

22/34



4 - Deformation-informed PCA Goal

Objective : statistical analysis of the dataset through a Principal
Component Analysis on the deformations to retrieve the main
modes of variations inside the population.

Difficulty : our deformation maps do not live in a linear space.

Solution : get a good representation of our deformations in a
linear space equipped with a scalar product.
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4 - Deformation-informed PCA Introduction of the Cauchy stress tensor

Cauchy stress tensor

σ =
∂W

∂F
(ϕ)Cof∇ϕ

Interpretation

In an equilibrium position, we have :

∀y , ~n, t(y , ~n) = σ(y)~n,

f (y) = −divσ,

t(y , ~n) is the pressure applied to the material at the boundary point
y in the normal direction ~n, f (y) is the inner volumetric force applied
at the point y inside the material.
The tensor thus relates the forces applied to the material and the
corresponding deformation.
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4 - Deformation-informed PCA First method : linearisation of the regularizer

Observation (Rumpf et al. [9]): The classical covariance ten-
sor can be identified with the covariance tensor of the displace-
ments obtained by adding a small fraction of the i-th spring
force under the Hooke’s law.
=⇒min

vi

∫
Ω W (x , Id + δvi ) + δ2

∫
Ω divσi : vi dx .

σi is the Cauchy stress tensor corresponding to the deformation
ϕi .

We apply a Taylor development to W and get back to the

linearized elasticity equation, with ε(vi ) =
∇vi+∇vT

i
2 :

min
vi∈H1(Ω,R2)

∫
Ω
µTr(ε(vi )

2) +
λ

2
Tr(ε(vi ))2 + δ2

∫
Ω

divσi : vi dx ,

whose solution is in the linear H1(Ω,R2) space.

PCA performed on the obtained displacements vi .
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4 - Deformation-informed PCA Second method : Cauchy stress tensors

Drawback : loss of the initial nonlinear nature of the deforma-
tion. =⇒ PCA performed on the Cauchy stress tensors directly
after noticing they belong to the linear space L2(Ω,M2(R)) and
get (σpca,i ).

Resolution of the following problem to get back to the deforma-
tions by assuming the correspondence between the forces and
the displacements is one-to-one which is true at least locally :

min
vi

M∑
k=1

∫
Ω
W (∇((Id + δvi ) ◦ ϕk)) dx + δ2

∫
Ω

divσpca,i : vi dx

+1{‖.‖L∞(Ω,M2(R))≤α}(∇vi )
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4 - Deformation-informed PCA Third method : Interpolation/Approximation in a linear space

Change of vision and consider this problem as an interpola-
tion/approximation one. Find the best approximation of our
deformation fields belonging to H3(Ω,R2) such that the lin-

ear deformation tensor ∇v+∇vT

2 is equal to the complete initial

deformation tensor
∇ui+∇uTi +∇uTi ∇ui

2 , with ui the displacement
associated to the deformation ϕi obtained previously.

Drawback : this interpolation problem is too constrained and
might create some memory storage issues.

We propose to relax it as an approximation one by solving :

min
v∈H3(Ω,R2)

|v |2H3(Ω,R2) + ‖ui − v‖2
2

+
γ

2
‖(∇v +∇vT )− (∇ui +∇uTi +∇uTi ∇ui )‖2

2
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5 - Numerical simulation : Cardiac MRI First Method

Figure: First mode of variation obtained with the first method.
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5 - Numerical simulation : Cardiac MRI Second Method

Figure: First mode of variation obtained with the second approach.
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5 - Numerical simulation : Cardiac MRI Third Method

Figure: First mode of variation obtained with the third model.

30/34



5 - Numerical simulation : Cardiac MRI Comparison between Methods 2 and 3

Figure: Comparison of methods 2 and 3.
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6 - Conclusion

Summary of the developed model:

Joint Registration/Segmentation/Atlas generation model based
on the Potts model for segmentation and the nonlinear elasticity
principles.

Three different methods to approximate the obtained deforma-
tions in a linear space to perform PCA and retrieve the main
modes of variations inside the studied population.

Preliminary numerical simulations on cardiac MRIs.
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8 - Conclusion

Thank you for your attention.
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