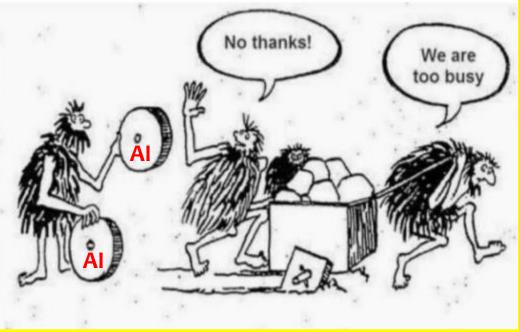
What reassurances do NHS Clinicians need to Engage with AI?

Dr Nicola H Strickland President of The Royal College of Radiologists, UK Consultant Radiologist Imperial College Healthcare NHS Trust, London

Al will change clinicians' lives We must welcome Al: helps us, helps patients

nothing to be scared of
 clinicians are flexible

Healthcare preparedness for change?



Reassurances needed integration into normal workflow ➢radiologists usefulness accuracy Source data testing and validation data publication transparency regulation

Al integration into normal workflow:

A sine qua non:

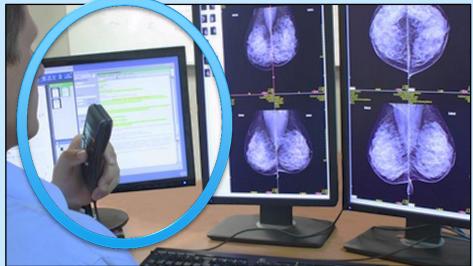
- Al products <u>must</u> be seamlessly integrated into RIS/PACS/EPR (and radiotherapy planning)
 - otherwise won't be used
 - cf stand alone MPR/other software, CADs

vendor neutral interfacing standards do now exist, so no excuse for not using them

Al integration into workflow

speech recognition

- 20 years use in radiology reporting
- seamlessly integrated into clinical workflow
- continues to learn whilst in use
- natural language processing
- neural networks
- 5% error rate

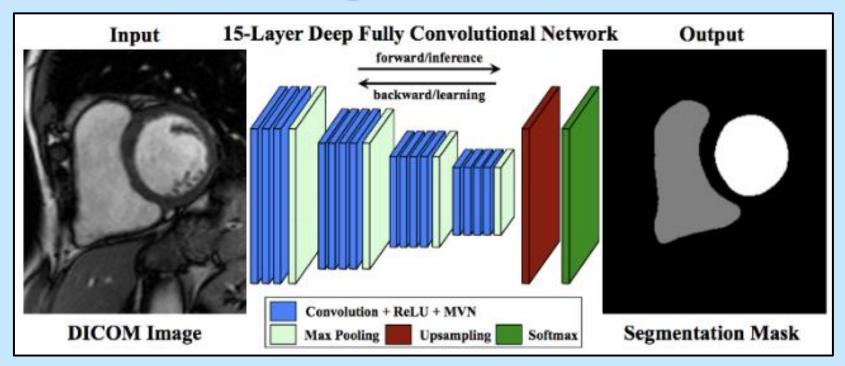


Reassurances needed integration into normal workflow ➤ radiologists usefulness accuracy > source data testing and validation data publication ► transparency regulation

Al usefulness

cardiac MR/CT segmentation

- automated LV and RV segmentation
- removes drudgery

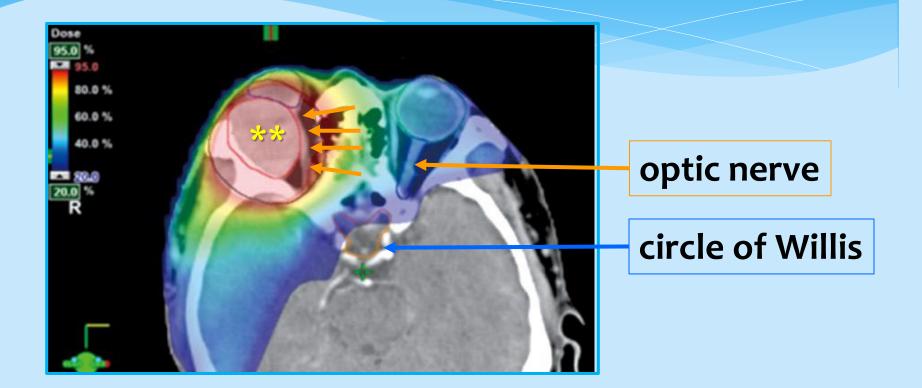


the deep learning in cardiac segmentation:

- utilizes information from adjacent MR slices (not just single 2D MR slices)
- employs 'transfer learning' for RV segmentation (learnt from LV data)
- has high DICE indices ~ 0.9 (accurate)
 compares Al contour with expert-drawn
 contour

0= complete mismatch: 1= complete match

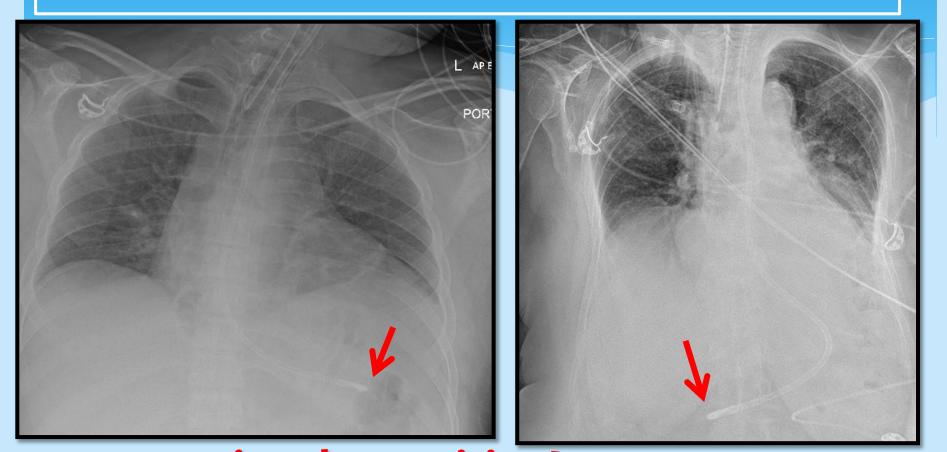
Al identification of normal structures in radiotherapy contouring



** = orbital metastasis

Reassurances needed integration into normal workflow ➤radiologists usefulness accuracy source data testing and validation data publication ≻transparency regulation

Al accuracy example



nasogastric tube position? 70% accuracy not good enough!

Data requirements

- struggle to access sufficiently large datasets
- for training, testing, validating cohorts
 - uniformly acquired (e.g. imaging protocols)
 - cleaned (artifacts removed)
 - curated (annotated) need radiologist input
 - labelled
 - properly anonymised/pseudoanonymised with ethical approval/appropriate consent
 - representative: applicable to patient population

Al expected development solutions

- major change to unsupervised learning techniques
 - discriminative features are learned without explicit labelling
 - "generative adversarial networks" "variational autoencoders"
 - because lack of radiologists to curate (annotate) the data

data use:

- shift from processed medical images to raw acquistion data
- advantage: no loss of information in downsampling and optimising for human viewers
- odisadvantages:
 - more noise
 - human validation more difficult

Reassurances needed integration into normal workflow ➤radiologists usefulness accuracy > source data testing and validation data publication transparency regulation

No peer reviewed publication

Thrombotic stroke detection alerts (viz.AI)

- large vessel occlusions, LVOs
- analyses data directly on CT scanner
 notifies mobile device of neurorad/stroke physician
- 6 mins (versus 52 mins)
- <u>but</u>: analysed only 300 CTA studies vs 2 neurorads, 90% sensitivity and specificity
- no peer reviewed publication
- yet CE mark / FDA approval

Publication - transparency

in reputable peer-reviewed journal

reassurance re:

- data used at all stages of AI development
- methodology

fear of "black box" component of deep learning – convolutional neural networks CNN

- In a car etc: mechanism of action not fully understood by user
- Safe and effective approved drugs: exact mechanism of action unknown

Radiomics research

- AI methods of 'mining' of radiological image data:
 predefined engineered features
 - shape
 - intensity
 - texture
 - 2) automatically learnt features identified by deep learning 'black box'
- mined radiological imaging data are coupled with data on: - clinical outcomes, genetics, Rx response

Ref: Gillies RJ et al. Radiomics: images are more than pictures, they are data. Radiology, 2016. Vol 278, issue 2

Radiomics research

- image based precision 'personalised' medicine in:
 - diagnosis
 - prognosis assessment
 - therapy response prediction
- Published examples:
- non small cell lung cancer: histological subtype and biomarkers, disease recurrence, overall survival
- chronic heart failure prognosis from MRI and genetics
- multparametric MR prostate malignancy probability map
- image reconstruction software: artefact correction, better image registration accuracy and motion compensation

Ref: Hosney Aet al. Artificial intelligence in radiology. Perspectives (2018). Nature Reviews Cancer. 18: 500-510

Reassurances needed integration into normal workflow ➤radiologists usefulness accuracy >source data testing and validation data publication ►transparency regulation

Proper AI regulation:

protect the patient and his/her data

ensure safety of the product: software testing

- need enough data for testing
- access to these data
- standardize data acquisition and imaging protocols

periodic testing over specific time intervals

deep learning methods evolve over time

Proper AI regulation: FDA approval (USA) CE mark (Europe) can sell anywhere in Europe > < 50% all medical software in Europe – Medical Device Regulation law becoming EU law (and therefore UK law) International Medical Regulations Forum seeking global harmonization

Who is to blame when AI makes an error?

Al regulation in the UK

MHRA (medicines and healthcare products regulatory agency)

- working with DEAC (devices expert advisory committee)
 - > a medical device = 'a thing with a medical purpose'
 - health-related software = facilitates clinical decision making / changes patient management
- medical devices (software) are risk stratified
 - ➤ classes 1, 2a, 2b, 3
 - > AI mostly class 2a (2b and 3 implantable)
 - must have a notified body check their technical file and perform post-marketing surveillance

RCR (& other Royal Colleges) need to be involved

an exemplar of AI (deep learning) development

retinal scans – Google DeepMind

optical coherence tomography, OCT (3D retinal images)

- collaborative project with Moorfields Eye Hospital
- huge dataset 14,884 scans
- data were:
 - cleaned
 - curated (annotated)
- >94% accuracy compared with 8 eye experts
- vendor independent this AI technology can be applied to different types of eye scanners

optical coherence tomography (OCT)

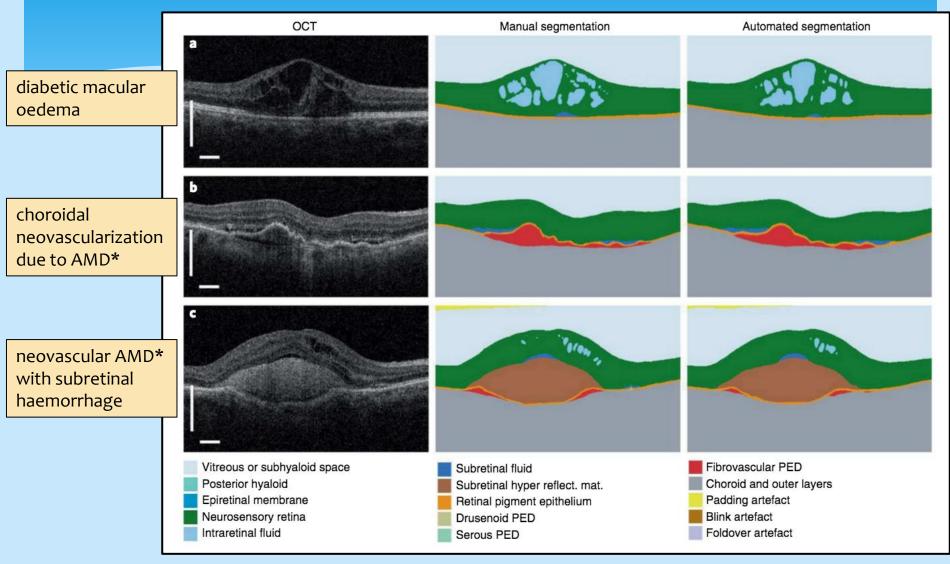
ARTICLES https://doi.org/10.1038/s41591-018-0107-6 medicine

Clinically applicable deep learning for diagnosis and referral in retinal disease

Jeffrey De Fauw¹, Joseph R. Ledsam¹, Bernardino Romera-Paredes¹, Stanislav Nikolov¹, Nenad Tomasev¹, Sam Blackwell¹, Harry Askham¹, Xavier Glorot¹, Brendan O'Donoghue¹, Daniel Visentin¹, George van den Driessche¹, Balaji Lakshminarayanan¹, Clemens Meyer¹, Faith Mackinder¹, Simon Bouton¹, Kareem Ayoub¹, Reena Chopra², Dominic King¹, Alan Karthikesalingam¹, Cían O. Hughes^{1,3}, Rosalind Raine³, Julian Hughes², Dawn A. Sim², Catherine Egan², Adnan Tufail², Hugh Montgomery³, Demis Hassabis¹, Geraint Rees³, Trevor Back¹, Peng T. Khaw², Mustafa Suleyman¹, Julien Cornebise^{1,3,4}, Pearse A. Keane^{2,4*}

Results have been published: Nature Medicine (2018) 24: 1342–1350

Results of the segmentation network: maps the disease features



*age-related macular degeneration

Nature Medicine (2018) 24: 1342-1350

the classification network then analyses this segmentation map → makes diagnoses and referral recommendation, with % confidence figure

- clinician can interrogate each step: transparency
- eliminates the "black box" fear
- <u>the need 1000 OCTs per day at Moorfields</u>
 - instant triaging eliminates delay between scan and Rx
 - **V**risk removes risk of interval sight loss
 - diabetic eye disease
 - age-related macular degeneration (AMD)

Reassurances NHS Clinicians need to engage with Al

- Integration into normal workflow
- usefulness
- accuracy
 publication
 regulation

