What can Al contribute to neuroscience?
Caswell Barry, UCL.
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Two problems

. Bottom up - the data problem:
. fMRI (2GB per brain), electrodes (1GB/minute), microscopy (2GB+/minute)

. what information is present, how it it encoded, what computations are performed?

What’s encoded?

. Top down - the hypothesis & model problem:
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Deep networks (DNNs)

Bottom up

1. Deep learning is extremely good at mapping noisy
input data to an output

e.g. stimuli to neural data
once trained a DNN can be interrogated

2010 2016

Top down
2. DNNs sometimes solve problems in a similar way to
the brain — potentially provides a good model system

train to perform similar tasks to animals (e.g.
visual recognition, navigation, limb control)




Top down (build a model)
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Banino et al (2018) Vector-based navigation using grid-like representations in artificial agents



Tolman’s Cognitive Map (1948)




Place cells & grid cells

neural data
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- Stably represent self-location

. Common to mammals
(& possibly birds)



{€) Dergioman, Winitok, Waace, Moser & Moser, 2010




Place cells & grid cells

neural data
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Aims

1. Test if mammalian-like neural representations emerge in a deep
network trained to path integrate

2. Use such a network as a model system on which to conduct
experiments

— Demonstrate that grid cells are an effective basis for vector
based navigation
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Supervised learning architecture
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Supervised learning architecture
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Path integration task
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Analysis of linear layer
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Linear layer activations
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Linear layer: properties
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Grid cell agent: architecture
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Grid cell agent: architecture
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Grid cell agent: architecture
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Morris Water Maze
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Shortcut linearized sunburst

First trajectory
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Shortcut linearized sunburst
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Complex maze: stochastic doors

A novel maze configuration (colours, wall position, goal location) is generate for each
episode



Complex maze: analysis

= Girid cell agent Multivariate decoding
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Bottom up (data focused)



Decoding wide-band neural data with DNNs
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DNN comfortably outperforms standard decoding methods
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Conclusions

= Grid-like units emerge spontaneously when performing self localization and match
many properties of mammalian spatially modulated neurons

= Emergent grid-like representations provides a Euclidean spatial metric and
associated vector operations

= supporting proficient navigation

= DNNSs provide a powerful tool for interrogating neural codes
= understand what is encode, how, & when
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Can we decode location from human data?
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Cue Response Feedback
2sec ' Max. 20 sec ' 2-4sec

= 18 subjects perform a simple spatial memory task in the scanner

(Only dunng tralmng)

= learn location of objects in two environments that are disambiguated by back ground

= ~35 minutes of data per person
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Based solely on hippocampal voxels:
= performance exceeds SVM (just)
= 73% correctvs 71%

But categorization is hard:
= hippocampus is a small deep structure

= subjects might not be accurate themselves
— don’t know what max score is

= Do we have enough data?
= subsampled data indicates not

= with more data DNN performance increases
further above SVM (e.g. 1 hour plus)

= We need to investigate methods for augmenting
the existing data

= Next steps:
= explore which voxels are informative

how information is distributed & encoded
etc.

Tanni, S. & Barry, C. (in prep)



