Biomimetic 4D Printing: Programmable Shape Shifting 3D Printed Polymer Gels

Sabetta Matsumoto (she/her/hers) Georgia Institute of Technology 3rd Edwards Symposium ~ 7 Sept 2018

Shape-morphing Systems

Shape-morphing Systems

4D Printing

Shape-morphing Systems

Mechanical Hinges

Tibbits, Arch. Design **84** 116 (2014)

Na, et al. Adv. Mat. 27 79 (2015)

Swelling Hydrogels

Sharon & Efrati, Soft Matter 6 5693 (2010)

Modes, et al. Phys. Today. **69** 32 (2016) Ware, et al. Science 347, 982 (2015)

Hygroscopic Motion

Pine Cone

Erodium Awn

Abraham, et al. J. R. Soc. Interface 9 640 (2012)

3D Printing

Our Ink

Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

Our Ink Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

Elastic Anisotropy leads to swelling anisotropy

Encoding Local Anisotropy

bottom

Bi-Metallic Strips

I. Equilibrium Condition

"Due to the fact that there are not external forces acting on the strip, all forces acting over any crosssection of the strip must be in equilibrium"

 σ

 M^{tot}

Stress from fictitious force

$$=\frac{\Gamma}{h}$$

Deff

Bending Moment from stress

$$M^{\rm tot} = \int z\sigma dz = \frac{{\bf P}^{\rm eff}h}{2}$$

Bending Moment from curvature

$$= \int_{-a_2}^{a_1} z \mathbf{E}(z) \varepsilon dz$$
$$= \kappa \mathbf{E}_1 \int_{-a_2}^{a_1} z^2 dz + \kappa \mathbf{E}_2$$

 $= \frac{\kappa}{3} \left(\mathbf{E}_1 a_1^3 + \mathbf{E}_2 a_2^3 \right)$

ANALYSIS OF BI-METAL THERMOSTATS

FIG. 1. Deflection of a bi-metal strip while uniformly heated.

 $z^2 dz$

Moment-stress relationship

$$^{\rm ot} = \frac{M^{\rm tot}}{2h}$$

 σ

Bi-Metallic Strips

2. Compatibility Condition

"On the bearing surface of both metals the unit elongation occurring in the longitudinal fibres of metals (1) and (2) must be equal."

$$\varepsilon^{(1)} = \varepsilon^{(2)}$$

Strain from swelling $\varepsilon^{s} = \alpha$

Strain from curvature $\varepsilon^{s} = z\kappa$

Strain from stress $\varepsilon = E^{-1}\sigma^{tot} = \frac{1}{E}\frac{M^{tot}}{2h}$

ANALYSIS OF BI-METAL THERMOSTATS

FIG. 1. Deflection of a bi-metal strip while uniformly heated.

$$\frac{1}{a_1} \int_0^{a_1} \left(\varepsilon^{s(1)} + \varepsilon^{e(1)}(z) + \frac{\sigma^{tot}}{E_1} \right) dz = \frac{1}{a_2} \int_{-a_2}^0 \left(\varepsilon^{s(2)} + \varepsilon^{e(2)}(z) + \frac{\sigma^{tot}}{E_2} \right) dz$$

$$\alpha_1 + \frac{a_1\kappa}{2} + \frac{1}{E_1a_1}\frac{M^{\text{tot}}}{2h} = \alpha_2 - \frac{a_2\kappa}{2} - \frac{1}{E_2a_2}\frac{M^{\text{tot}}}{2h}, \quad M^{\text{tot}} = \frac{\kappa}{3}\left(E_1a_1^3 + E_2a_2^3\right)$$

$$\kappa = \frac{6(\alpha_2 - \alpha_1)(1+m)^2}{h\left(3(1+m)^2 + (1+mn)\left(m^2 + \frac{1}{mn}\right)\right)}, \quad m = \frac{a_1}{a_2}, \ n = \frac{E_1}{E_2}$$

Timoshenko, J. Opt. Soc. Am. 11 233 (1925)

A Brief Primer on Curvature

Thus the formula of the preceding article leads of itself to the remarkable THEOREM. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.

 $K(x,y) = K\left(g, \partial_x g, \partial_y g, \partial_{xx} g, \partial_{xy} g, \partial_{yy} g\right)$

$$K(x,y) = (\alpha_{\parallel} - \alpha_{\perp}) \left[\frac{(\phi^2 - 1)\phi_{xy} - \phi(\phi_{xx} - \phi_{vv})}{(\phi^2 + 1)^2} + \frac{(3\phi^2 - 1)(\phi_x^2 - \phi_y^2) - 2\phi(\phi^2 - 3)\phi_x\phi_y}{(\phi^2 + 1)^3} \right]$$

Aharoni, Sharon, Kupferman, PRL 113 257801 (2014)

The Model

Theory of Anisotropic Plates and Shells Curvature in Monge Gauge $\kappa_{ij} = \partial_i \partial_j H(x, y)$ Swelling Strain $\varepsilon^{s} = \begin{bmatrix} \alpha_{\parallel} & 0 \\ 0 & \alpha_{\perp} \end{bmatrix}$ Elastic Strain $\varepsilon_{ij}^{\rm e} = -z\kappa_{ij}$ Strain Tensor $\varepsilon = \varepsilon^{s} + \varepsilon^{e}$ $\varepsilon_{ij}(\theta) = R_{im}(\theta)\varepsilon_{mn}R_{in}^{T}(\theta)$ Elastic Modulus Tensor $E_{ijkl}(\theta) = R_{im}(\theta)R_{kp}(\theta)E_{mnpq}R_{jp}^{T}(\theta)R_{lq}^{T}(\theta)$ Stress-Strain Relation $\sigma_{ij} = E_{ijkl} \varepsilon_{kl}^{e}$ Bending Moments $M_{ij} = \int_{-\infty}^{a_1} z \sigma_{ij} dz = - \int_{-\infty}^{a_1} z^2 E_{ijkl} \kappa_{kl} dz$ $= -\int_{0}^{a_{1}} \mathbf{E}_{ijkl}(0)\kappa_{kl}z^{2}dz - \int_{0}^{0} \mathbf{E}_{ijkl}(\theta)\kappa_{kl}z^{2}dz$

I. Equilibrium Condition

"Due to the fact that there are not external forces acting on the strip, all forces acting over any crosssection of the strip must be in equilibrium"

2. Compatibility Condition

"On the bearing surface of both metals the unit elongation occurring in the longitudinal fibres of metals (1) and (2) must be equal."

θ

The Model

 θ

Theory of Anisotropic Plates and Shells Curvature in Monge Gauge $\kappa_{ij} = \partial_i \partial_j H(x, y)$ Swelling Strain $\varepsilon^{\mathrm{s}} = \begin{bmatrix} lpha_{\parallel} & 0 \\ 0 & lpha_{\perp} \end{bmatrix}$ Elastic Strain $\varepsilon_{ij}^{e} = -z\kappa_{ij}$ Strain Tensor $\varepsilon = \varepsilon^{s} + \varepsilon^{e}$ $\varepsilon_{ij}(\theta) = R_{im}(\theta)\varepsilon_{mn}R_{in}^{T}(\theta)$ Elastic Modulus Tensor $E_{ijkl}(\theta) = R_{im}(\theta)R_{kp}(\theta)E_{mnpq}R_{jn}^{T}(\theta)R_{lq}^{T}(\theta)$ Stress-Strain Relation $\sigma_{ij} = E_{ijkl} \varepsilon_{kl}^{e}$ Bending Moments $M_{ij} = \int^{a_1} z \sigma_{ij} dz = - \int^{a_1} z^2 E_{ijkl} \kappa_{kl} dz$ $= -\int_{0}^{a_{1}} \mathbf{E}_{ijkl}(0)\kappa_{kl}z^{2}dz - \int_{-1}^{0} \mathbf{E}_{ijkl}(\theta)\kappa_{kl}z^{2}dz$ $\frac{1}{\alpha_1} \int_0^{a_1} \left(\varepsilon_{ij}^{(1)} + \frac{\mathbf{E}_{ijkl}^{-1}}{a_1} M_{kl}(\theta) \right) dz = \frac{1}{\alpha_2} \int_{-a_2}^0 \left(\varepsilon_{ij}^{(2)}(\theta) + \frac{\mathbf{E}_{ijkl}^{-1}(\theta)}{a_2} M_{kl}(\theta) \right) dz$

Disclinations and Gaussian Curvature

Disclinations and Gaussian Curvature

Controlling Mean Curvature

Bilayers control the **sign** of mean curvature

Thickness controls its **magnitude**

Orthogonal Bilayers: Two Morphologies Pine Cone Bauhinia Seed Pod

Burgert & Fratzl, Phil. Trans. R. Soc. A **367** | 541 (2009)

Bottom Layer: 0° Top Layer: 90°

S. Armon, E. Efrati, R. Kupferman, E. Sharon, 333 1726 Science (2011)

Bottom Layer: -45° Top Layer: 45°

A. S. Gladman, **EAM**, R. Nuzzo, L. Mahadevan, and J. Lewis, *Nat. Mater.* **15** (413) 2016.

Left-handed or Right-handed?

Left-handed

Right-handed

The Simulations

Geometric Elastic Energy: $E = \frac{1}{2} \int_{\Omega} \left[\frac{h}{4} \left(g_{ij} - \overline{g}_{ij} \right)^2 + \frac{h^3}{12} \left(b_{ij} - \overline{b}_{ij} \right)^2 \right]$

W. van Rees, EAM, A.S. Gladman, J.A. Lewis, and L. Mahadevan, in preparation 2018.

The Simulations: Comparison to Experiments

The Inverse Problem

The Inverse Problem

Programming Local Curvatures

$$H = \frac{\alpha_{\perp} - \alpha_{\parallel}}{h} \frac{c_1 \sin^2(\theta)}{c_2 - c_3 \cos(2\theta) + m^4 \cos(4\theta)}, \quad K = -\frac{(\alpha_{\perp} - \alpha_{\parallel})^2}{h^2} \frac{c_4 \sin^2(\theta)}{c_5 - c_6 \cos(2\theta) + m^4 \cos(4\theta)}$$

Given: $H, K, \alpha_{\parallel}, \alpha_{\perp}, E^{(1)}, E^{(2)}$ Solve for: $\theta, m = a_1/a_2$

Programming Local Curvatures

Conclusions and Future Directions

- 3D printing hydrogel ink + cellulose nanofibrils simultaneously encodes anisotropy in swelling and elastic modulus. Complexity is free with additive manufacturing techniques.
- Local swelling anisotropy in a bilayer system generates curvature.
- Elasticity theory of anisotropic plates and shells allows us to predict mean and Gaussian curvatures.
- The inverse problem: How may we design print paths associated with specific target surfaces?
- Platform technology can be used with multi-stimuli responsive inks: light, temperature, electric field, hydration.

Acknowledgements

- Dr. A. Sydney Gladman Harvard SEAS
- Dr.Wim van Rees MIT Mechanical Engineering
- Prof. L. Mahadevan Harvard SEAS
- Prof. Jennifer Lewis Harvard SEAS
- NSF MRSEC DMR 14-20570
- NSF DMREF 15-33985
- Army Research Office Award W911NF-13-0489

