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Mechanical Hinges

Additive manufacturing and rapid prototyping 
have developed at exceptional rates and gained 
wide acceptance since their invention in 1984 
by Charles Hull. Also the founder of 3D Systems, 
Charles Hull invented stereolithography as a 
new process for viewing and testing designs 
before investing in full production.1 Today, 
these technologies are used in countless 
industries, in the home and across the globe. 
The ability to mass-produce customised 
components without substantial increases in 
time, material or inefficiency has been coined 
as one of the revolutionary advantages of 
additive manufacturing. However, the realities 
of our current capabilities are far behind 
our expectations and visions for additive 
manufacturing technologies. Further, mass-
customisation ignores the time and energy 
needed after custom parts have been printed, 
requiring excessive sorting and labour-intensive 
assembly. 

Some of the main applications for printing 
today include food, toys and proof-of-concept 
prototypes, thus falling far short of our visions for 
revolutionising manufacturing.2 At the 2013 US 
Manufacturing Competitiveness Initiative Dialogue 
on Additive Manufacturing, Boeing’s Michael 
Hayes highlighted this issue by outlining the main 
hurdles that lie ahead for additive manufacturing, 
including: a larger build-envelope and increased 
scale for printing applications; structural 
materials that can be used in functional and high-
performance settings; and multi-functional and 
smart/responsive materials.3 

How might 4D printing overcome 
the obstacles that are hampering 
the rolling out and scaling up 
of 3D printing? Skylar Tibbits, 
Director of the Self-Assembly Lab 
at the Massachusetts Institute of 
Technology (MIT), describes how 
the Lab has partnered up with 
Stratasys Ltd, an industry leader in 
the development of 4D Printing, 
and is making the development 
of self-assembly programmable 
materials and adaptive technologies 
for industrial application in building 
design and construction its focus.

MIT Self-Assembly Lab and Stratasys (Skylar Tibbits, Shelly 
Linor, Daniel Dikovsky and Shai Hirsch), 4D Printing, 2013
Sequence showing the self-folding of a 4D-Printed multi-material 
single strand into a three-dimensional cube.

118 Tibbits, Arch. Design 84 116 (2014)
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pattern of UV light (365 nm) via maskless lithography using a 
digital micromirror array device (DMD), [ 47 ]  and then developed 
by soaking in solvent to dissolve the uncross-linked regions. A 
similar procedure is followed to photo-crosslink a fl uorescent 
and temperature-responsive poly( N -isopropyl acrylamide- co -
sodium acrylate) (PNIPAM) copolymer fi lm with thickness 
 h  N  = 1–6 µm, and subsequently a top fi lm of PpMS with thick-
ness  h  P  matching that of the bottom PpMS fi lm. The dose 
applied to each layer is suffi cient to fully convert all of the 
benzophenone units within the illuminated regions. For the 
PNIPAM layer, this leads to a gel fi lm that, if allowed to swell 
to its equilibrium state in an aqueous buffer at room tempera-
ture (unconstrained by attachment to PpMS or the substrate), 
would expand by a factor of 2.7 in volume relative to its initial 
dry dimensions and would have a modulus of  E  N  = 0.8 MPa. [ 48 ]  
Critically, the use of benzophenone photochemistry allows for 
not only effi cient crosslinking of each individual layer [ 46 ]  but 
also chemical grafting between layers that provides excellent 
interlayer adhesion. [ 45 ]  The locations of mountain and valley 
folds are programmed by patterning gaps in the top and bottom 
PpMS layers, with respective widths  W  m  and  W  v , that are inde-
pendently specifi ed for each crease segment. An optical image 
of a patterned trilayer fi lm in the unswelled state is shown in 
Figure  1 f; in this case, the crease pattern was chosen to generate 
Randlett's fl apping bird. [ 49 ]  The folded structure resulting upon 
releasing the patterned trilayer fi lm from the substrate and 
allowing it to swell at room temperature in an aqueous buffer, 
as visualized by laser scanning confocal fl uorescence micros-
copy (LSCM), is shown in Figure  1 h alongside an image of the 

same crease pattern folded by hand in paper on a 200 times 
larger length scale in Figure  1 g. The self-folding origami adopts 
a shape that very closely matches the programmed structure; as 
follows, we explain in detail the fabrication and characterization 
of such self-folded structures. 

 Our choice of the PpMS/PNIPAM/PpMS trilayer geometry 
is directed by three primary concerns. First, the stretching 
modulus of the PNIPAM layer  Y  N  =  h  N  E  N  is roughly two orders 
of magnitude smaller than that of each PpMS layer  Y  P  =  h  P  E  P , 
meaning that the laminated fi lm will undergo negligible in-
plane expansion upon swelling of PNIPAM. Second, the result 
of patterning an open stripe in either the top or the bottom 
PpMS layer is to locally defi ne a bilayer fi lm that undergoes 
bending due to the swelling stress in the confi ned PNIPAM 
layer, allowing for the bending direction and fold angle of the 
crease to be programmed. Third, the bending modulus of the 
trilayer regions  B  t  ∼ EP  h  P  h  N  2 , where EP  = E  P  /(1−ν  P  2  )   is the plane 
strain modulus of PpMS (with  ν  P  as the Poisson's ratio), is 
much larger than that in the bilayer crease regions dominated 
by the larger of EN  h N   3  or EP  h P   3 . This means that the “panels” 
between each crease are relatively stiff compared with the folds. 
We note that a similar trilayer approach was reported very 
recently by Rus and co-workers [ 40,41 ]  for folding of macroscopic 
sheets based on heat shrink fi lms as the active middle layer; 
however, in this case folding was irreversible, and fold angles 
for each crease were limited to less than π/2. 

 Using the bending of bilayers to guide our choices of layer 
thicknesses (see Supporting Information for details), we next 
calibrate how the folding angle adopted by trilayer samples 

Adv. Mater. 2015, 27 , 79–85
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 Figure 1.    Fabrication of self-folding polymer origami. a) A thin layer of a photo-crosslinkable glassy polymer (PpMS) on a substrate precoated with 
a sacrifi cial layer is b) photolithographically patterned with open stripes of width  W  v  to defi ne the positions and angles of the valley folds. c) Next, a 
thicker layer of a photo-crosslinkable temperature-responsive polymer (PNIPAM) is coated on top and uniformly crosslinked over the entire area of 
the bottom PpMS sheet. d) Finally, a third layer of PpMS is coated and patterned with open stripes of width  W  m  to defi ne the positions and angles of 
the mountain folds. e) A magnifi ed schematic of the resulting trilayer fi lm (dimensions not to scale), with  h  N  and  h  P  as the respective thicknesses of 
PNIPAM and PpMS layers. f) An optical image of a trilayer fi lm patterned to fold into Randlett's fl apping bird (scale bar: 400 µm), along with a sche-
matic indicating the locations and widths of mountain (solid lines) and valley (dotted lines) folds. g) A photograph of Randlett's fl apping bird folded 
using paper, h) alongside a fl uorescence image of the self-folded trilayer fi lm.

Na, et al. Adv. Mat. 27 79 (2015)

Swelling Hydrogels

‘‘printing’’ a wide range of target metrics in a high spatial reso-

lution. An example is presented in Fig. 9.

There are many other materials that can be used for the

construction of NEP and responsive NEP. Materials such as

electro active polymers26 or nematic elastomers27 seem to be

excellent candidates for using the shaping principles, with

responses in different time scales and environments.

Finally, we mention alteration of growth in plants as a way of

constructing ‘‘biological NEP’’. Growth of tissue can be viewed

as a process in which the target metric is constantly updated. It

was shown that genetic manipulation,28 as well as hormone

treatment29 can alter the growth distribution and cause a natu-

rally flat leaf to become non-Euclidean. Similar effects often

occur as a result of fungus attacks, when the leaf tissue grows

without proper control (Fig. 10).

5. Some results and interpretations

After reviewing the theoretical framework and experimental

techniques, we review the main results in this new field.

5.1 Rectangle geometry

Experiments in torn plastic sheets

As described before, in a controlled experiment the target metric,

imposed by the plastic flow around the tear tip, is very simple and

highly symmetric: it determines negative target Gaussian curva-

ture, which is a function only of the distance from the edge, y.

Surprisingly, the configurations of the sheets consist of a

Fig. 7 Non-Euclidean plates and tubes made of NIPA gel. Examples of plates with !K > 0 (a), !K < 0 (b, c) and a disc that contains a central region of !K >

0 and an outer part of !K < 0 (d). (e)-(h) Non-Euclidean tubes. A tube with a metric similar to the one in Fig. 5 in its cold (e) and warm (f) states. Tubes

with negative curvature bellow (g) and above (h) the ‘‘buckling-wrinkling’’ transition (see section 5.3).

Fig. 8 Engineering discs with constant Gaussian curvature. The

perimeter of a circle on a disc as a function of its radius (measured along

the surface) for discs of positive (bottom) and negative (top) constant

| !K | ¼ 0.0011 mm"2. The blue lines are the calculated curves (the relevant

functions are indicated). The red lines are the data measured on the

buckled discs. The dashed line indicates a flat disc: f(r) ¼ 2pr.

Fig. 9 ‘‘Lithography of curvature’’. (a) NIPA solution is inserted into simple mold with a ‘‘mask’’. Polymerization is controlled by a UV activated

initiator (in this case Riboflavin), leading to the generation of a non-uniform gel disc (b). (c) The non-uniform shrinking properties of the gel turn into

a non-Euclidean target metric. In this case the gradients in the metric are sharp, leading to wrinkling of the disc.

5700 | Soft Matter, 2010, 6, 5693–5704 This journal is ª The Royal Society of Chemistry 2010
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Liquid Crystal Elastomers

Modes, et al. Phys. Today. 69 32 (2016)
Ware, et al. Science 347, 982 (2015) 

curring some extra but rel-
atively cheap bend energy,
the would-be cones re-
main the creased pyra-
mids with polyhedral cor-
ners that they were before
relaxing. The neighboring
pyramids meet along flat
lines, and there is no
longer Gaussian curvature
where there shouldn’t be.
As we describe below,
such pyramidal arrays can be used in devices that support
weight or pump liquids.

Our second example is also directly tailored to a device ap-
plication. The ability of a flat sheet to reversibly and control-
lably fold up and completely encapsulate a volume would be
desirable for many purposes, including drug delivery and
micro- or nanoscale mechanical transport. Imagine a texture
similar to the concentric squares, but instead using concentric
equilateral triangles. Now take four such equilateral triangles
and join them to form one larger equilateral triangle, as illus-
trated in figure 5a. As the large triangle of material is heated
or illuminated, four pyramids rise up from the four triangular
patches. To reduce any energy of creasing between the pyra-
mids, the material conspires to produce flat surfaces between
the central and outer pyramids. Creases only develop along the
rank-1 boundaries in the individual triangular patches, as seen
in figures 5b and 5c. Eventually, the material from the corners
of the large triangle is pushed so far around behind the central
patch that the outer pyramids meet behind the central one. At
the moment of their meeting, the sheet has closed itself into 
a cube.

The alternative to stitching together evolving polyhedra
would be, given a desired target shape, to find the correspond -
ing distribution of Gaussian curvature and then seed that dis-
tribution through prescribed director fields or NIPA concentra-
tions. That difficult problem remains open, though the tools of
differential geometry have allowed it to be at least partially ad-
dressed: Theoretical work has established that director fields
can be determined for rather general distributions of Gaussian
curvature.13–15 Finding the surface that corresponds to a speci-
fied distribution of curvature remains a difficult challenge that
may not even have a unique solution since the bending a sur-
face undergoes to minimize its bend energy does not change
Gaussian curvature.

Getting to work
Now is an exciting time to be exploring shape programmabil-
ity, thanks to the confluence of, first, recent laboratory advances
in the production of new, exotic materials that can change their
local dimensions and, second, theoretical insights about the in-
terplay between Gaussian curvature and elasticity. We in the
field are continuing to refine material techniques, extend our
ability to fully model the elastic energetics of shape-shi#ing
systems, and cleanly prescribe an exact director field or con-
centration gradient to achieve a specific, desired shape.

Several common themes emerge when considering the re-
quirements for a shape-shi#ing device. First, to be effective, ac-
tuation must involve stretch—which is strong—rather than

much weaker bends. Gaussian curvature is the perfect route to
usable stretch, as may be seen by returning to the array of rising
square pyramids shown in figure 4c. The pyramids in the array
rise to avoid stretch energy in the face of a changing internal
geometry. Accordingly, if the movement to the new shape were
frustrated—for instance, if a heavy plate were placed on the
array sheet before heating or illumination, then stretch would
result and a strong force would act. Indeed, Timothy White and
colleagues, who created the array in figure 4c,11 found that a
smaller array of four pyramids could li# a mass about 150 times
that of the original sheet. Forces can also develop if a shape-
shi#ing stimulus is removed. Consider a plate that has adopted
a new shape in response to a stimulus and imagine that fluid
flows underneath it. Upon removal of the stimulus, large
stretches develop if the plate is impeded in its return to pla-
narity. The enclosed liquid is vigorously pumped out of the
way, and, again, work is done. 

Second, shapes such as lenses, which exploit their curva-
ture, can be dialed up from complex but smooth director pat-
terns. Third, in most devices that would make use of shape-
shi#ing materials, the shape-changing component needs to be
anchored to a surrounding, unchanging medium. Encapsula-
tion applications are the exception, but a li#er or a pump must
be incorporated into a structure. And that need leads to a prob-
lem of great subtlety that is currently being addressed: How
can one have a substance that changes drastically but doesn’t
change along the line of contact with its surroundings?

Shape programmability is approaching the point where 
device design is limited only by the imagination and creativity
of the designer. Myriad avenues to effective so# devices are
open. Drug delivery and encapsulation methods, peristaltic
pumps and gateway switching for lab-on-a-chip microfluidics,
repeatedly flushable sieves for large chemical or colloidal re-
action chambers, dynamically controllable surface bumpiness
for modulating aerodynamic effects on a wing, morphable dig-
ital displays of Braille for the blind, haptic feedback for touch
screens, switchable and transformable gears, and even “photo-
mechanical” cells in which energy is stored in intrinsic geom-
etry are just a few of the possible practical applications of shape
programmability. All those and more are now within reach. 

In a wonderful adaption of the words of Marshall McLuhan,
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FIGURE 4. BUILDING BLOCKS FOR SHAPE
PROGRAMMING. (a) The straight lines in 
these wedges represent liquid-crystal director
patterns. When combined according to rules 
described in the text, such wedges can be the
building blocks of shape-programmable materials.
(b) A concentric-square director pattern built
from four building-block wedges deforms into a
square pyramid when the liquid crystals along

the directors contract. The pyramid then relaxes to a smooth cone.
(c) This array of concentric squares explicitly shows the 36 building-
block wedges. It deforms into an array of square pyramids that 
cannot relax to their smooth conical form because the stretch-energy
cost for doing so is too great. The array in the photograph (adapted
from ref. 11) can support more than 100 times its own weight. 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. IP:  128.103.149.52 On: Thu, 18 Feb 2016 19:43:35
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Hygroscopic Motion

3. Recent insight into the control of actuation by cellulose fibril
architectures

A more detailed discussion of the influence of cell wall architecture on plant
actuation is provided on the basis of recent studies on the locomotion of
wheat dispersal units and the bending movements of trees to upright leaning
stems and branches.

(c)

(a) (b)

Figure 3. A pine cone cut equatorially along its longitudinal axis: (a) one of the halves was kept wet
(mirrored in the image) and (b) the other half was dried for cone opening. (c) Schematic of a
magnified scale; the cellulose fibril orientations in the cell walls of fibres being part of the upper side
(white band) and of the cells on the lower side of the scale are illustrated by the inclined lines in
each rectangle (after Dawson et al. 1997).

1547Actuation systems in plants

Phil. Trans. R. Soc. A (2009)

 on September 3, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

(a)

(e)

( f )

(b) (c) (d )

Figure 3. Cooperative cell spiralling creates the macroscopic coil. (a) The coiling section of the complete awn showing five to six
coils. (b) The separated inner layer of the awn, showing seven to eight coils. The inner layer, split into (c) once and (d ) twice still
coils to about the same extent as the complete inner layer (the distortions of some of the sections result from the unevenness of the
cuts). (e) Scanning electron micrograph of the inner layer of the awn showing a group of coiling cells behind a single coiled cell
connected to the tissue at one end (delineated). ( f ) A close up of the cell region is indicated by an arrow in (e). Scale bars, (a–d)
5 mm, (e) 100 mm and (f) 20 mm.

(a) (b)

tilt 10.1º

tilt 19.8º

(c)

Figure 4. The cellulose microfibrils organization in the cell walls of the coiling cells. (a) Small-angle X-ray scattering (SAXS)
pattern of a vertical sample from the inner layer of the stork’s bill awn, measured at the top and bottom parts of the coiling
region. The tighter coil in the bottom part shows a larger SAXS tilt. (b) Longitudinal section of the inner layer showing the
cells’ alignment with the length of the awn. As the length of single cells is about 1 mm, it is impossible to see complete cells
in this view. (c) Cryo-scanning electron image showing the change in microfibril angle in a single cell, marked by a broken
line. Arrows indicate remains of the middle lamella. Scale bars, (b) 100mm, and (c) 5mm.

Unusual single layer hygroscopic coiling Y. Abraham et al. 643

J. R. Soc. Interface (2012)

 on September 3, 2015http://rsif.royalsocietypublishing.org/Downloaded from 

Pine Cone Erodium Awn

Burgert & Fratzl, Phil. Trans. R. Soc. A 367 1541 (2009) Abraham, et al. J. R. Soc. Interface 9 640 (2012)
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Our Ink
Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. 15 (413) 2016.
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Encoding Local Anisotropy
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Bi-Metallic Strips

Timoshenko, J. Opt. Soc.  Am. 11 233 (1925)

ANALYSIS OF BI-METAL THERMOSTATS 
BY S. TIMOSHENKO 

INTRODUCTION 

The following investigation contains a general theory of bending of a 
bi-metal strip submitted to a uniform heating. This theory is applied 
in analysis of operation of a bi-metal strip thermostat. The equations 
are obtained for calculating the temperature of buckling, the complete 
travel during buckling, and the temperature of buckling in a backward 
direction.. By using these equations the dimensions of the thermostat 
for a given temperature of operation and a given complete range of 
temperature can be calculated. The results obtained are based on 
certain ideal conditions. For example, it was assumed that the differ-
ence in the coefficients of expansion remained constant during heating, 
that the friction at the supports could be neglected and that the width 

FIG. 1. Deflection of a bi-metal strip while uniformly heated. 

of the strip could be considered as being very small. It is the opinion 
that these assumptions are not far removed from real conditions and 
the results obtained by using this theory can be considered as a useful 
guide in choosing the dimensions of thermostats and in discussing the 
stresses occurring in bi-metallic strips during operation. 

1. Deflection of a bi-metal strip while uniformly heated. Let a narrow 
strip consisting of two metals welded together be uniformly heated from 
to0 to t°C. If the coefficient of linear expansion of these metals be 
different the heating will produce bending of the strip. 
Let α1 and α2 denote the coefficients of expansion of the two metals 
(l)and(2), (see Fig. 1). 
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2. Compatibility Condition
“On the bearing surface of both metals the unit 
elongation occurring in the longitudinal fibres of 
metals (1) and (2) must be equal.”

Timoshenko, J. Opt. Soc.  Am. 11 233 (1925)
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The Model
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+1 → K>0

↵k↵?

↵? > ↵k

↵k = 1.1

↵? = 1.4

✓ = 52�

Disclinations and Gaussian Curvature
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+1 → K>0

↵k↵?

↵? > ↵k

↵k = 1.1

↵? = 1.4

✓ = 52�

−1 → K<0
↵?

↵k

Disclinations and Gaussian Curvature
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+1 → K>0

↵k↵?

↵? > ↵k

↵k = 1.1

↵? = 1.4

✓ = 52�

K<0 & K>0−1 → K<0
↵?

↵k

Disclinations and Gaussian Curvature
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Controlling Mean Curvature

Bilayers control the 
sign of mean curvature

Thickness controls
its magnitude
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Controlling Mean Curvature

h = 1.25 mm h = 0.75 mm h = 0.5 mm

2.5 mm

κ = 3/2(α₁-α₂)/h = 0.45/h mm⁻¹

κ = 0.34 mm⁻¹ κ = 0.61 mm⁻¹ κ = 0.85 mm⁻¹
measured

κ = 0.36 mm⁻¹ κ = 0.6 mm⁻¹ κ = 0.9 mm⁻¹
predicted

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. 15 (413) 2016.



Orthogonal Bilayers: Two Morphologies

Bottom Layer:  0°
Top Layer:  90°

Bottom Layer:  -45°
Top Layer:  45°

Pine Cone Bauhinia Seed Pod

Burgert & Fratzl, Phil. Trans. R. Soc. A 367 1541 (2009)

S. Armon, E. Efrati, R. Kupferman, E. Sharon, 333 1726 Science (2011)
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mirror rotation by 180°
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To Twist or Not To Twist, That is the Question
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Forty 4D Folding Flowers
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Forty 4D Folding Flowers

funnel

helicoids

ruffles

S-shaped
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Forty 4D Folding Flowers
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Left-handed or Right-handed?

Left-handed

bottom top

Right-handed

bottom top
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The Simulations

W. van Rees, EAM, A.S. Gladman, J.A. Lewis, and L. Mahadevan, in preparation 2018.

Geometric Elastic Energy: E =
1

2
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The Simulations: Comparison to Experiments

W. van Rees, EAM, A.S. Gladman, J.A. Lewis, and L. Mahadevan, in preparation 2018.
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t = 0 t = 5 min t = 0 t = 25 min
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f

Figure 3 | Complex flower morphologies generated by biomimetic 4D printing. a,b, Simple flowers composed of 90�/0� (a) and �45�/45� (b) bilayers
oriented with respect to the long axis of each petal, with time-lapse sequences of the flowers during the swelling process (bottom panel) (scale bars, 5 mm,
inset = 2.5 mm). c–f, Print path (c), printed structure (d) and resulting swollen structure (e) of a flower demonstrating a range of morphologies inspired by
a native orchid, the Dendrobium helix (courtesy of Ricardo Valentin) (f). Based on the print path, this orchid architecture exhibits four di�erent
configurations: bending, twisting and ru�ing corolla surrounding the central funnel-like domain (scale bars, 5 mm).

the poly(N ,N -dimethylacrylamide) matrix with stimuli-responsive
poly(N -isopropylacrylamide) allows reversible shape changes
in water of varying temperature (Supplementary Fig. 11 and
Supplementary Movie 4).

As an example of the versatility of bio-4DP, we mimic the
complexity of the orchid Dendrobium helix by encoding multiple
shape-changing domains. The print path is designed with discrete
bilayer orientations in each petal (Fig. 3c,d, see Supplementary
Movie 5 for a video of the printing process, and Supplementary
Fig. 12 for the fibril alignment needed for these complex shapes).
The resulting 3Dmorphology (Fig. 3e and Supplementary Movie 6)
following swelling in water resembles the orchid (Fig. 3f) and
exhibits four distinct types of shape change (three di�erent petal
types and the flower centre), based on configurations demonstrated
in Figs 2 and 3a,b.

In each of the previous examples, our model can be used
to predict the final curvature based on the print path, which
naturally suggests the inverse problem: how may we design print
paths associated with specific target surfaces? In an illustrative
demonstration, we harness continuous, detailed control over print
path, predicted by our model and enabled by bio-4DP, to mimic the

complex curvature of the calla lily flower (Zantedeschia aethiopica,
Fig. 4a). Our model enables the translation of a complex three-
dimensional surface (Fig. 4b and Supplementary Text) into the
two-layered print path (Fig. 4d and Supplementary Movie 7)
required to achieve this shape using only the local curvatures
(Fig. 4c), swelling ratio, elastic constants, height and size of
the structure. Gauss’s Theorema Egregium dictates the metric
of one of the layers (as demonstrated in ref. 25) whereas our
mechanical model determines the architecture of the other layer.
The good agreement between the final 3D shape, calculated
theoretically (Fig. 4e) andprinted experimentally (Fig. 4f), illustrates
our unprecedented control over smooth gradients in curvature
and the consequent ability to create shapes that are almost
impossible to create by any other method. In addition, our
bio-4DP approach allows the fabrication of shape changing elements
beyond planar bilayers, by encoding anisotropy in the z-direction
(Supplementary Fig. 13).

Our 4D printing method relies on a combination of materials
and geometry that can be controlled in space and time. This
technique has potential as a platform technology, where the
hydrogel composite ink design can be extended to a broad

4
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Figure 2 | Printing simple architectures with precise control over mean and Gaussian curvatures. a–c, Print paths and final swollen geometries display
positive (a), negative (b) and varying Gaussian curvature (c) (scale bar, 2.5 mm). d, Bending and twisting conformations are possible with strips of
90�/0� (left) and �45�/45� (right) print path orientations (see text for details). e, A gradient in local interfilament spacing generates a logarithmic spiral
(scale bars, 5 mm). f, Breaking lateral symmetry in print paths order takes a ru�ed structure (left) to a helicoidal structure (right) (scale bar, 10 mm).

exhibit uniform cylindrical curvature (H 6= 0, K = 0) arise with
90�/0� orientation of ink paths, whereas �45�/45� yields twisted
bilayer strips (Fig. 2d), similar to their natural counterparts
the Erodium awn28 and the Bauhinia seed pod9, respectively.
Because interfilament spacing acts as a proxy for the thickness
(see Supplementary Text), we can also make the curvature
spatially inhomogeneous, leading, for example, to the logarithmic
spiral (Fig. 2e and more examples in Supplementary Figs 7
and 8). Overlapping circular arcs generate a structure, which
transitions from primarily swelling perpendicular to the spine
of the petal to parallel to the border, leading to a surface with
varying K (Fig. 2f). This structure possesses negative Gaussian
curvature, which increases towards the edge. Similarly, in the
print path of a ribbon, breaking translational symmetry across
the midplane and replacing it by reflection symmetry yields a
ru�ed structure, whereas breaking the reflection symmetry across
the midplane and the midline yields a helicoid29,30 (Fig. 2f and
Supplementary Movie 1). Figure 2 also illustrates our ability to
control curvatures of both solid (infilled) structures and lattice-
based structures with varying porosity (see Supplementary Text
for details).

By combining patterns that generate simple curved surfaces,
we created a series of functional folding flower architectures to
demonstrate the capabilities of bio-4DP (Fig. 3). Inspired by flower
opening/closing31, we printed petals in a floral form (Fig. 3a)
comprised of a bilayer lattice with a 90�/0� configuration, similar
to previous bilayer strips9,16 and see that the structure closes as it
swells (see Supplementary Movie 2). As a control, we also printed
an identical pattern using an ink devoid of microfibrils, and
observe that it remains flat on swelling (Supplementary Fig. 9).
When the petals are printed with the ink filaments oriented
at �45�/45� (Fig. 3b) the resulting structure yields a twisted
configuration (see Supplementary Movie 3)9; the chirality of the
resulting structures is due to broken top–bottom symmetry of
the bilayer and thence di�erential swelling across the thickness.
Importantly, these constructs contain spanning filaments that are
readily fabricated by direct writing of the viscoelastic composite ink.
The interfilament spacing promotes rapid uptake of water through
the filament radius (⇠100 µm), leading to shape transformations
that occur on the order of minutes (Fig. 3a,b), consistent with
di�usion-limited dynamics (Supplementary Fig. 10). Whereas the
shape transformation shown in Fig. 3 is not reversible, replacing
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The Inverse Problem
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Programming Local Curvatures

bottom

top

H =
↵? � ↵k

h

c1 sin
2(✓)

c2 � c3 cos(2✓) +m4 cos(4✓)
, K = �

(↵? � ↵k)
2

h2

c4 sin
2(✓)

c5 � c6 cos(2✓) +m4 cos(4✓)

Solve for : ✓, m = a1/a2Given: H, K, ↵k, ↵?, E
(1)

, E(2)

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. 15 (413) 2016.



Programming Local Curvatures

bottom

top

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. 15 (413) 2016.



Conclusions and Future Directions
• 3D printing hydrogel ink + cellulose nanofibrils simultaneously encodes anisotropy 

in swelling and elastic modulus.  Complexity is free with additive manufacturing 
techniques.

• Local swelling anisotropy in a bilayer system generates curvature.
• Elasticity theory of anisotropic plates and shells allows us to predict mean and 

Gaussian curvatures.
• The inverse problem:  How may we design print paths associated with specific 

target surfaces?
• Platform technology can be used with multi-stimuli responsive inks: light, 

temperature, electric field, hydration.
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