Biomimetic 4D Printing:

Programmable Shape Shifting 3D Printed Polymer Gels

Sabetta Matsumoto (she/her/hers) Georgia Institute of Technology 3rd Edwards Symposium ~ 7 Sept 2018

Shape-morphing Systems

Shape-morphing Systems

4D Printing

Shape-morphing Systems

Mechanical Hinges
Origami

Tibbits, Arch. Design 84 ||6 (20|4)

Sharon \& Efrati, Soft Matter 65693 (2010)

Liquid Crystal Elastomers

Modes, et al. Phys. Today. 6932 (2016) Ware, et al. Science 347, 982 (2015)

Hygroscopic Motion

Pine Cone

Burgert \& Fratzl, Phil. Trans. R. Soc. A 367 I54I (2009)

Erodium Awn

Abraham, et al. J. R. Soc. Interface 9640 (20| 2)

3D Printing

Our Ink

Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

Our Ink

Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

Elastic Anisotropy leads to swelling anisotropy

Encoding Local Anisotropy

Bi-Metallic Strips

I. Equilibrium Condition

"Due to the fact that there are not external forces acting on the strip, all forces acting over any crosssection of the strip must be in equilibrium"

Stress from
fictitious force

$$
\sigma=\frac{\mathrm{P}^{\mathrm{eff}}}{h}
$$

Bending Moment from stress

$$
M^{\mathrm{tot}}=\int z \sigma d z=\frac{\mathrm{P}^{\mathrm{eff}} h}{2}
$$

ANALYSIS OF BI-METAL THERMOSTATS
By S. Timoshenko

Bending Moment from curvature

$$
\begin{aligned}
M^{\mathrm{tot}} & =\int_{-a_{2}}^{a_{1}} z \mathrm{E}(z) \varepsilon d z \\
& =\kappa \mathrm{E}_{1} \int_{0}^{a_{1}} z^{2} d z+\kappa \mathrm{E}_{2} \int_{-a_{2}}^{0} z^{2} d z \\
& =\frac{\kappa}{3}\left(\mathrm{E}_{1} a_{1}^{3}+\mathrm{E}_{2} a_{2}^{3}\right)
\end{aligned}
$$

Moment-stress relationship

$$
\sigma^{\mathrm{tot}}=\frac{M^{\mathrm{tot}}}{2 h}
$$

Bi-Metallic Strips

2. Compatibility Condition

"On the bearing surface of both metals the unit elongation occurring in the longitudinal fibres of metals (I) and (2) must be equal.'

$$
\varepsilon^{(1)}=\varepsilon^{(2)}
$$

Strain from swelling $\quad \varepsilon^{\mathbf{s}}=\alpha$
Strain from curvature $\quad \varepsilon^{\mathrm{s}}=z \kappa$
Strain from stress $\quad \varepsilon=\mathrm{E}^{-1} \sigma^{\text {tot }}=\frac{1}{\mathrm{E}} \frac{M^{\mathrm{tot}}}{2 h}$

ANALYSIS OF BI-METAL THERMOSTATS
By S. Timoshenko

Fig. 1. Deffection of a bi-metal strip while uniformly heated.

$$
\begin{gathered}
\frac{1}{a_{1}} \int_{0}^{a_{1}}\left(\varepsilon^{\mathrm{s}(1)}+\varepsilon^{\mathrm{e}(1)}(z)+\frac{\sigma^{\mathrm{tot}}}{\mathrm{E}_{1}}\right) d z=\frac{1}{a_{2}} \int_{-a_{2}}^{0}\left(\varepsilon^{\mathrm{s}(2)}+\varepsilon^{\mathrm{e}(2)}(z)+\frac{\sigma^{\mathrm{tot}}}{\mathrm{E}_{2}}\right) d z \\
\alpha_{1}+\frac{a_{1} \kappa}{2}+\frac{1}{\mathrm{E}_{1} a_{1}} \frac{M^{\mathrm{tot}}}{2 h}=\alpha_{2}-\frac{a_{2} \kappa}{2}-\frac{1}{\mathrm{E}_{2} a_{2}} \frac{M^{\mathrm{tot}}}{2 h}, \quad M^{\mathrm{tot}}=\frac{\kappa}{3}\left(\mathrm{E}_{1} a_{1}^{3}+\mathrm{E}_{2} a_{2}^{3}\right) \\
\kappa=\frac{6\left(\alpha_{2}-\alpha_{1}\right)(1+m)^{2}}{h\left(3(1+m)^{2}+(1+m n)\left(m^{2}+\frac{1}{m n}\right)\right)}, \quad m=\frac{a_{1}}{a_{2}}, n=\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}
\end{gathered}
$$

A Brief Primer on Curvature

$$
k_{2}=-\frac{1}{R_{2}}
$$

Mean (Extrinsic) Curvature: $\quad H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)$
Bending energy

Gaussian (Intrinsic) Curvature: $\quad K=\kappa_{1} \kappa_{2}$ Stretching energy

$$
K<0
$$

A Geometric Model

$$
g(x, y)=R[\theta(x, y)]\left[\begin{array}{cc}
\alpha_{\|} & 0 \\
0 & \alpha_{\perp}
\end{array}\right] R^{T}[\theta(x, y)]
$$

Gauss's Theorema Egregium

GENERAL INVESTIGATIONS

OF
 CURVED SURFACES

$B Y$
KARL FRIEDRICH GAUSS
PRESENTED TO THE ROYAL SOCIETY, OCTOBER 8, 1827

Thus the formula of the preceding article leads of itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.

$$
K(x, y)=K\left(g, \partial_{x} g, \partial_{y} g, \partial_{x x} g, \partial_{x y} g, \partial_{y y} g\right)
$$

$$
K(x, y)=\left(\alpha_{\|}-\alpha_{\perp}\right)\left[\frac{\left(\phi^{2}-1\right) \phi_{x y}-\phi\left(\phi_{x x}-\phi_{v v}\right)}{\left(\phi^{2}+1\right)^{2}}+\frac{\left(3 \phi^{2}-1\right)\left(\phi_{x}^{2}-\phi_{y}^{2}\right)-2 \phi\left(\phi^{2}-3\right) \phi_{x} \phi_{y}}{\left(\phi^{2}+1\right)^{3}}\right]
$$

The Model

Theory of Anisotropic Plates and Shells

Curvature in Monge Gauge $\kappa_{i j}=\partial_{i} \partial_{j} H(x, y)$
Swelling Strain $\quad \varepsilon^{s}=\left[\begin{array}{cc}\alpha_{\|} & 0 \\ 0 & \alpha_{\perp}\end{array}\right]$
Elastic Strain $\quad \varepsilon_{i j}^{\mathrm{e}}=-z \kappa_{i j}$
Strain Tensor

$$
\varepsilon=\varepsilon^{\mathrm{s}}+\varepsilon^{\mathrm{e}} \quad \varepsilon_{i j}(\theta)=R_{i m}(\theta) \varepsilon_{m n} R_{j n}^{T}(\theta)
$$

Elastic Modulus Tensor

$$
\mathrm{E}_{i j k l}(\theta)=R_{i m}(\theta) R_{k p}(\theta) \mathrm{E}_{m n p q} R_{j n}^{T}(\theta) R_{l q}^{T}(\theta)
$$

Stress-Strain Relation $\quad \sigma_{i j}=\mathrm{E}_{i j k l} \varepsilon_{k l}^{\mathrm{e}}$
Bending Moments $M_{i j}=\int_{-a_{2}}^{a_{1}} z \sigma_{i j} d z=-\int_{-a_{2}}^{a_{1}} z^{2} \mathrm{E}_{i j k l} \kappa_{k l} d z$

$$
=-\int_{0}^{a_{1}} \mathrm{E}_{i j k l}(0) \kappa_{k l} z^{2} d z-\int_{-a_{2}}^{0} \mathrm{E}_{i j k l}(\theta) \kappa_{k l} z^{2} d z
$$

I. Equilibrium Condition

"Due to the fact that there are not external forces acting on the strip, all forces acting over any crosssection of the strip must be in equilibrium"

2. Compatibility Condition

"On the bearing surface of both metals the unit elongation occurring in the longitudinal fibres of metals (I) and (2) must be equal."

The Model

Theory of Anisotropic Plates and Shells

Curvature in Monge Gauge $\kappa_{i j}=\partial_{i} \partial_{j} H(x, y)$
Swelling Strain $\quad \varepsilon^{s}=\left[\begin{array}{cc}\alpha_{\|} & 0 \\ 0 & \alpha_{\perp}\end{array}\right]$
Elastic Strain $\quad \varepsilon_{i j}^{\mathrm{e}}=-z \kappa_{i j}$
Strain Tensor

$$
\varepsilon=\varepsilon^{\mathrm{s}}+\varepsilon^{\mathrm{e}} \quad \varepsilon_{i j}(\theta)=R_{i m}(\theta) \varepsilon_{m n} R_{j n}^{T}(\theta)
$$

Elastic Modulus Tensor $\quad \mathrm{E}_{i j k l}(\theta)=R_{i m}(\theta) R_{k p}(\theta) \mathrm{E}_{m n p q} R_{j n}^{T}(\theta) R_{l q}^{T}(\theta)$
Stress-Strain Relation $\quad \sigma_{i j}=\mathrm{E}_{i j k l} \varepsilon_{k l}^{\mathrm{e}}$
Bending Moments $M_{i j}=\int_{-a_{2}}^{a_{1}} z \sigma_{i j} d z=-\int_{-a_{2}}^{a_{1}} z^{2} \mathrm{E}_{i j k l} \kappa_{k l} d z$

$$
=-\int_{0}^{a_{1}} \mathrm{E}_{i j k l}(0) \kappa_{k l} z^{2} d z-\int_{-a_{2}}^{0} \mathrm{E}_{i j k l}(\theta) \kappa_{k l} z^{2} d z
$$

$$
\frac{1}{\alpha_{1}} \int_{0}^{a_{1}}\left(\varepsilon_{i j}^{(1)}+\frac{\mathrm{E}_{i j k l}^{-1}}{a_{1}} M_{k l}(\theta)\right) d z=\frac{1}{\alpha_{2}} \int_{-a_{2}}^{0}\left(\varepsilon_{i j}^{(2)}(\theta)+\frac{\mathrm{E}_{i j k l}^{-1}(\theta)}{a_{2}} M_{k l}(\theta)\right) d z
$$

The Model

$$
\frac{1}{\alpha_{1}} \int_{0}^{a_{1}}\left(\varepsilon_{i j}^{(1)}+\frac{\mathrm{E}_{i j k l}^{-1}}{a_{1}} M_{k l}(\theta)\right) d z=\frac{1}{\alpha_{2}} \int_{-a_{2}}^{0}\left(\varepsilon_{i j}^{(2)}(\theta)+\frac{\mathrm{E}_{i j k l}^{-1}(\theta)}{a_{2}} M_{k l}(\theta)\right) d z
$$

Given: $\alpha_{\|}, \alpha_{\perp}, \mathrm{E}_{i j k l}, a_{1}, a_{2}, \theta \quad$ Solve for: $\kappa_{i j}$

$$
H=\frac{\alpha_{\perp}-\alpha_{\|}}{h} \frac{c_{1} \sin ^{2}(\theta)}{c_{2}-c_{3} \cos (2 \theta)+m^{4} \cos (4 \theta)}
$$

$$
K=-\frac{\left(\alpha_{\perp}-\alpha_{\|}\right)^{2}}{h^{2}} \frac{c_{4} \sin ^{2}(\theta)}{c_{5}-c_{6} \cos (2 \theta)+m^{4} \cos (4 \theta)}
$$

$$
, \quad c_{i}=c_{i}\left(\mathrm{E}^{(1)}, \mathrm{E}^{(2)}, \mathrm{m}=\mathrm{a}_{1} / \mathrm{a}_{2}\right)
$$

Disclinations and Gaussian Curvature

$$
\theta=52^{\circ}
$$

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4|3) 20 I6.

Disclinations and Gaussian Curvature

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4I3) 2016.

Disclinations and Gaussian Curvature
$+1 \rightarrow k=0$

$$
\theta=52^{\circ}
$$

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4|3) 2016.

Controlling Mean Curvature

Bilayers control the sign of mean curvature

Thickness controls its magnitude

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4I3) 20 I 6.

Controlling Mean Curvature

$$
k=3 / 2\left(a_{1}-a_{2}\right) / \mathrm{h}=0.45 / \mathrm{h} \mathrm{~mm}^{-1}
$$

Orthogonal Bilayers: Two Morphologies

Pine Cone

Burgert \& Fratzl, Phil. Trans. R. Soc. A 367 |54| (2009)

Bottom Layer: 0°
Top Layer: 90°

Bauhinia Seed Pod

S. Armon, E. Efrati, R. Kupferman, E. Sharon, 3331726 Science (2011)

Bottom Layer: -45°
Top Layer: 45º
A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4I3) 20 I6.

To Twist or Not To Twist, That is the Question

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4।3) 2016.

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4।3) 2016.

Forty 4D Folding Flowers

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4।3) 2016.

Forty 4D Folding Flowers

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4।3) 2016.

Forty 4D Folding Flowers

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4।3) 2016.

Left-handed or Right-handed?

Right-handed

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4I3) 20 I 6.

The Simulations

$$
\text { Geometric Elastic Energy: } \quad E=\frac{1}{2} \int_{\Omega}\left[\frac{h}{4}\left(g_{i j}-\bar{g}_{i j}\right)^{2}+\frac{h^{3}}{12}\left(b_{i j}-\bar{b}_{i j}\right)^{2}\right]
$$

W. van Rees, EAM, A.S. Gladman, J.A. Lewis, and L. Mahadevan, in preparation 2018.

The Simulations: Comparison to Experiments

W. van Rees, EAM, A.S. Gladman, J.A. Lewis, and L. Mahadevan, in preparation 20 I 8.

The Inverse Problem

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4|3) 20 I6.

The Inverse Problem

Programming Local Curvatures

$$
H=\frac{\alpha_{\perp}-\alpha_{\|}}{h} \frac{c_{1} \sin ^{2}(\theta)}{c_{2}-c_{3} \cos (2 \theta)+m^{4} \cos (4 \theta)}, \quad K=-\frac{\left(\alpha_{\perp}-\alpha_{\|}\right)^{2}}{h^{2}} \frac{c_{4} \sin ^{2}(\theta)}{c_{5}-c_{6} \cos (2 \theta)+m^{4} \cos (4 \theta)}
$$

Given: $H, K, \alpha_{\|}, \alpha_{\perp}, \mathrm{E}^{(1)}, \mathrm{E}^{(2)} \quad$ Solve for: $\quad \theta, m=a_{1} / a_{2}$

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4।3) 2016.

Programming Local Curvatures

bottom

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nat. Mater. I5 (4।3) 2016.

Conclusions and Future Directions

- 3D printing hydrogel ink + cellulose nanofibrils simultaneously encodes anisotropy in swelling and elastic modulus. Complexity is free with additive manufacturing techniques.
- Local swelling anisotropy in a bilayer system generates curvature.
- Elasticity theory of anisotropic plates and shells allows us to predict mean and Gaussian curvatures.
- The inverse problem: How may we design print paths associated with specific target surfaces?
- Platform technology can be used with multi-stimuli responsive inks: light, temperature, electric field, hydration.

Acknowledgements

- Dr. A. Sydney Gladman - Harvard SEAS
- Dr.Wim van Rees - MIT Mechanical Engineering
- Prof. L. Mahadevan - Harvard SEAS
- Prof. Jennifer Lewis - Harvard SEAS
- NSF MRSEC DMR I4-20570
- NSF DMREF I5-33985
- Army Research Office Award W9 I INF-I 3-0489

