

Main Data science applications for EDF

- Power Generation
 - Process monitoring and condition-based maintenance from sensors
 - Power generation forecasting for renewables
- Energy management
 - Load forecasting
 - Balancing and optimizing generation and consumption (using smart metering information, including renewables)
- Electrical networks
 - Smart Grid operations (local)
 - Condition-based maintenance
- Customers and sales

 - Customer Relationship Management
 New services to customers using smart-metering data
 Smart Homes, Smart Building, Smart Cities operation related to energy

Data science value: optimization of internal processes

Data science value: creation of new services to customers/partners

BIG DATA SOLUTION FOR Operations and maintenance of the nuclear fleet

Focus on data:

- High volume:
 - data is stored up to 40-60 years (plant lifetime)
 - SCADA data can be sampled every 20 to 40 ms (but mainly a few seconds)
 - Around 10.000 sensors per plant
- Variety:
 - Data is heterogeneous
- Time series, images, documents
- Various data sources
- Current systems (historians) don't allow too many concurrent access, SLA's are quite low

A DATA LAKE FOR THE NUCLEAR FLEET

ESPADON: the Data Lake for the nuclear fleet

A Data Lake for the nuclear fleet

Industrial Motivation (1)

Forecasting at a low spatial resolution level for the grid management

7

Industrial Motivation (2)

Integrate individual metered data in our (global) forecasts

Industrial Motivation (3)

Probabilistic forecasts

Industrial Motivation (4)

Online learning for energy markets

Industrial Motivation (5)

- Demand response
- Sensors data
- Smart meters

GAMs (1)

$$Y_i = \beta_0 + f_1(X_{1,i}) + \dots + f_d(X_{d,i}) + \varepsilon_i$$

$$f_j(x_j) = \sum_{i=1}^k \beta_{ji} b_{ji}(x_j).$$

20

GAMs (2)

$$\sum_{i=1}^{n} (y_i - \beta_0 \mathbf{X}_i^0 - \sum_{q=1}^{p} f_q(x_i))^2 + \sum_{q=1}^{p} \lambda_q \int |||f_q''(x)|||^2 dx$$

GAMs (3)

Goude, Y.; Nedellec, R. & Kong, N. Local Short and Middle term Electricity Load Forecasting with semi-parametric additive models IEEE transactions on smart grid, **2013**, *5*, *Issue:* 1, 440 – 446.

Pierrot and Y. Goude, Short-Term Electricity Load Forecasting With Generalized Additive Models *Proceedings of ISAP power*, pp 593-600, 2011.

R. Nédellec, J. Cugliari and Y. Goude, GEFCom2012: Electricity Load Forecasting and Backcasting with Semi-Parametric Models, *International Journal of Forecasting*, 2014, 30, 375 - 381.

S.N. Wood, Goude, Y. and S. Shaw, Generalized additive models for large datasets, Journal of Royal Statistical Society-C, Volume 64, Issue 1, pages 139–155, January 2015.

Covariate selection with GAMs

Algorithm

- 1. First step: subset selection (Group LASSO) For each $\lambda_i \in \Lambda_{GrpL}$
 - Solve

$$\hat{\boldsymbol{\beta}}^{\lambda_i} = \arg\min\{Q^{OLS}(\boldsymbol{\beta}) + \lambda_i \sum_{j=1}^d \sqrt{m_j} ||\boldsymbol{\beta}_j||_2\}$$

- Denote $S^{\lambda_i} = \{j | \hat{\boldsymbol{\beta}}_i^{\lambda_i} \neq 0\}$
- 2. Second step: Estimation of the additive model (by OLS) For each support set $S^{\lambda_s} \in \{S^{\lambda_{min}}, \dots, S^{\lambda_{max}}\}$
 - Compute

$$Q_{S_{\lambda_s}}^{OLS}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left(Y_i - \beta_0 - \sum_{j \in S_{\lambda_s}} C_{ij}(\boldsymbol{\beta}_j) \right)^2$$

Solve

$$\tilde{\boldsymbol{\beta}}^{S_{\lambda_s}} = \arg\min\{Q_{S_{\lambda_s}}^{OLS}(\boldsymbol{\beta})\},$$

- Compute the BIC (see Eq. (5)) for each $\tilde{\beta}^{S_{\lambda_s}}$
- 3. Third step: Selection of the final model Select $\tilde{\beta}^{S_{\lambda_b}}$ which minimizes the BIC

Criterion	MAPE	RMSE
Post2Bic>0.2	1.12	645
Post2Gcv>0.3	1.15	648
Post2Aic	1.17	663
Post2Gcv	1.17	667
EDF model	1.16	667
Post2Bic	1.24	730
BenchMT1	2.00	1173

- Automatic calibration and selection of GAMs
- Perform as an expert calibrated model on EDF data

Thouvenot, V.; Pichavant, A.; Goude, Y.; Antoniadis, A. & Poggi, J.-M. Electricity Forecasting Using Multi-Stage Estimators of Nonlinear Additive Models Power Systems, IEEE Transactions on, 2015, PP, 1-9

PhD thesis of Vincent Thouvenot (UPSUD-EDF R&D) Estimation et sélection pour des modèles additifs et application à la prévision de la consommation électrique.

qGAM (1)

$$q_{\tau}(Y|X) = F_{Y|X}^{-1}(\tau) = \inf \left\{ y \in \mathbb{R}, F_{Y|X}(y) \ge \tau \right\}$$

Gaillard, P., Goude, Y. and Nedellec, R. (2016). Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting. International Journal of Forecasting, 32, 3, 1038-1050.

https://cran.r-project.org/web/packages/qgam/index.html

qGAM (2)

Hybrid PLAM (Wavelets and splines)

 $Y_i = \mathbf{X}_i^T \boldsymbol{\beta} + \sum_{j=1}^{q_s} f_j^{(1)}(T_{ij}^{(1)}) + \sum_{j=1}^{q_w} f_j^{(2)}(T_{ij}^{(2)}) + \varepsilon_i$

- estimation of unsmooth components at low cost
- Tarif effects, peaks

Simulated data

Simulated data

Simulated data

Simulated data

Forecasting total consomption of a set of customers (1)

Individual consumption metered half-hourly

Forecasts total cons. of each cluster

Disaggregated Electricity Forecasting using Wavelet-Based Clustering of Individual Consumer Proceedings of IEEE Energycon, 2016, Jairo Cugliari, Yannig Goude, Jean-Michel Poggi

Forecasting total consomption of a set of customers (2)

What type of customers in each cluster?

Do they behave similarly?

Are they complementary?

How many (at least) customers in each cluster?

From: C. Alzate and M. Sinn, "Improved electricity load forecasting via kernel spectral clustering of smartmeter", International Conference on Data Mining, vol. 948, pp. 943 – 948, 2013.

Which forecasting model, clustering algorithm? Are they related in any sense?

How many clusters?

Forecasting total consomption of a set of customers (3)

- Data set of 25011 professional customers
- Sampling period: 30 minutes
- Period: 2009, 2010 and 2011 (only 6 months)
- 1 year = 25011*17520= 438 millions of samples = 3.25 Go

Total consumption 2010

Individual consumption 2010

Forecasting total consomption of a set of customers (4)

• 1st stage: create a large number of K' = 200 super customers fast and scalable

• 2nd stage: (Ward) ascendant hierarchical clustering of the K' super customers with WER (wavelet coherence) distance *coherent with the forecasting algorithm, computer intensive*

Forecasting total consomption of a set of customers (5)

Automatic calibration of machine learning algorithms

- a need for automatic calibration
- optimising both prediction performance and calculation time (smart & data driven grid search)

current work with Charles de Lastic Saint Jaal

Online robust aggregation algorithms (1)

- We want to forecast a sequence of observation y_1, y_2, \dots, y_T
- Observations and predictions are made in a sequential fashion
 - predictions o y_t ...

 \dots are based on past observations/predict y_1, y_2, \dots, y_{t-1}

Join work with Pierre Gaillard (during his PhD at EDF R&D/Université Paris-Sud), Gilles Stoltz (CNRS-HEC Paris), Marie Devaine (Ecole Normale Supérieure, Paris, France)

Online robust aggregation algorithms (2)

- Linear
 lasso, lars2, lars, enet, foba, icr, leapBackward, leapForward, leapSeq, lm, lmStepAlC, spikeslab, glm, BstLm, glm, glmboost, glmnet, glmStepAlC
- Generalised Additive Models bagEarth, bagEarthGCV, bstTree, earth, gamLoess, gamSpline, gcvEarth
- Projection based pcr, ppr, pls, plsRglm, simpls
- Regression tree: Gbm, blackboost, ctree, ctree2, rpart1SE, rpart2, treebag, xgbTree

```
modelList<-c("earth","ppr","gbm","xgbTree")
trControl<-trainControl("repeatedcv", repeats=1, number=5)
k<-1
train(x, y, method = modelList[[k]], trControl = trControl)</pre>
```

• Kernel Kernelpls, svmLinear, svmPoly, svmRadial, svmRadialSigma, svmRadialCost, knn, kknn

Online robust aggregation algorithms (3)

Parameters

$$\eta > \mathsf{0} \quad p_0 = (rac{1}{N} \,, \ldots, rac{1}{N})$$

Weights update

$$p_{j,t} = rac{\exp(-\eta \sum_{i=1}^{t-1} l_{i,j})}{C}$$

Oracle bounds

$$\frac{1}{T}\sum_{t=1}^T \hat{l}_t - \min_k \frac{1}{T}\sum_{t=1}^T \hat{l}_{t,k} \leq \Box \sqrt{\frac{\log(N)}{T}}$$

Loss of the expert j at time i

Prediction, Learning, and Games

Nicolò Cesa-Bianchi et Gábor Lugosi

Online robust aggregation algorithms (4)

https://cran.rstudio.com/web/packages/opera/index.html

opera: Online Prediction by Expert Aggregation

Misc methods to form online predictions, for regression-oriented time-series, by combining a finite set of forecasts provided by the user.

Version: 1.0

Depends: $R \ge 3.1.0$

Imports: quadprog, quantreg, RColorBrewer

Suggests: <u>testthat</u>, splines, <u>caret</u>, <u>mgcv</u>, <u>survival</u>, <u>knitr</u>, <u>gbm</u>

Published: 2016-08-17

Author: Pierre Gaillard [cre, aut], Yannig Goude [aut]

Maintainer: Pierre Gaillard <pierre at gaillard.me>
BugReports: https://github.com/dralliag/opera/issues

License: <u>LGPL-2</u> | <u>LGPL-3</u> [expanded from: LGPL]

Copyright: EDF R&D 2012-2015

URL: http://pierre.gaillard.me/opera.html

DEMO

Perspectives

- Deep learning for forecasting (with D. Obst, S. Claudel, J. Cugliari and B. Ghattas)
- Random forest for time dependant data (with B. Goerhy, P. Massart and J.M. Poggi)
- Bandit algortihms for optimizing demand response (with M. Brégère, P. Gaillard and G. Stoltz)
- Hierarchical GAMs (with M. Fasiolo, R. Nédellec and S. Wood)
- Hierarchical Deep Learning Models for Forecasting (with M. Huard and G. Stoltz)

A few interesting data sets to test your model:

- Irish individual consumption data, http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
- UK individual consumption data https://data.london.gov.uk/dataset/low-carbon-generators or https://www.kaggle.com/jeanmidev/smart-meters-in-london
- RE-Europe, a large-scale dataset for modeling a highly renewable European electricity systemTue V. Jensen & Pierre Pinson, Scientific Data volume 4, Article number: 170175 (2017), https://www.nature.com/articles/sdata2017175
- gefcom12 &14 https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting/data