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Clinical relevance

• Diagnosis of cardiovascular diseases

• Quantitative measures
• Ventricular volumes across a cardiac cycle

• Ejection fraction

• Myocardial mass, myocardial wall thickness



Challenge

• Clinical routine
• Most medical images are analysed manually (contour drawing)

• It takes 20 minutes to analyse cardiac MR for a single subject

• Time consuming and prone to subjective bias

• Can we make the computer understand medical images? 
• Automatically analyse anatomical structures

• Save time and cost

• Consistent clinical measures

• My research
• Medical image segmentation



Image segmentation

• Learning a model that maps pixel/patch to label

𝑓: 𝑥 → 𝑦

pixel/patch label class
0: background
1: left ventricle
2: myocardium

3: right ventricle



Machine learning

• Segmentation
• Thresholding

• Gaussian mixture model

• Level set

• ……

• Atlas-based segmentation

• Convolutional neural networks



Atlas-based segmentation

• Template matching



Atlas-based segmentation

• The anatomies of individuals share a 
lot of similarities (if we do not account 
for pathologies).

• The image of one subject may be 
transformed to another similar subject 
via a diffeomorphic deformation.



Atlas-based segmentation
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Label fusion

• How do we combine propagated label 
maps from multiple atlases?

• Search for most similar atlas patches 
and combine by weighted voting

Patch-based label fusion

Target patch

Atlas patches

Voting result



Label fusion

• Weighted voting

෠𝐿(𝑥)= argmax𝑙෍

𝑛

෍

𝑘

𝑃 𝐼 𝑥 𝑘, 𝐼𝑛 ∙ 𝑃(𝐿 𝑥 = 𝑙|𝑘, 𝐿𝑛)

atlases patches in
a search window

intensity similarity atlas label

Bai, IEEE TMI, 2013; Bai MedIA, 2015.



Atlas-based segmentation

• Nearest neighours

• Look for neighours of 𝑥 and utilise anatomical knowledge of this 
neighbourhood.

𝑓: 𝑥 → 𝑦



Image registration
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Image registration
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Atlas-based segmentation

• Nearest neighours

• Utilise prior anatomical knowledge from neighours of 𝑥.

• Pros and cons
• Interpretability (+)

• Slow (-)

𝑓: 𝑥 → 𝑦



Atlas-based segmentation

• 1st places in MICCAI segmentation challenges
• MICCAI 2012 RV Segmentation Challenge

• MICCAI 2013 SATA Cardiac Data Segmentation 
Challenge

• UK Digital Heart Project
• Segmented cardiac MR images for ~2,000 subjects 

acquired at Hammersmith Hospital London

Cardiac image segmentation



Convolutional neural networks

• Encode anatomical knowledge implicitly in a network

• End-to-end learning of image features



Fully convolutional network

convolution (stride = 2)

transposed convolutionfeature map convolution

concatenation

𝑥(1) = 𝜎 𝑊(1)𝑥 + 𝑏(1)

imagefeature 
map

convolution 
kernel

biasactivation 
function



Fully convolutional network

• Map 𝑥 to 𝑦 by a series of convolutions 

𝑥(1) = 𝜎 𝑊(1)𝑥 + 𝑏(1)

𝑥(2) = 𝜎 𝑊(2)𝑥(1) + 𝑏(2)

……

𝑥(𝑛) = 𝜎 𝑊(𝑛)𝑥(𝑛−1) + 𝑏(𝑛)

𝑦𝑖 =
exp(𝑥𝑖

𝑛
)

σ𝑗=1
𝐿 exp(𝑥𝑗

𝑛
)

softmax



Optimisation

• Loss function

• Stochastic gradient descent (SGD)

min
𝜃

𝐿 𝑥, 𝜃 = −෍
𝑖=1

𝐿

𝑧𝑖log(𝑦𝑖(𝑥, 𝜃))

ground truth predicted label map𝜃 = 𝑊(𝑖), 𝑏(𝑖)

𝜃(𝑛) = 𝜃(𝑛−1) + 𝛻𝜃𝐿(𝑥, 𝜃
(𝑛−1))



Dataset

• UK Biobank
• Manual annotations of 5,000 subjects (QMUL and Oxford)

• Divide into training(80%)/validation(6.7%)/test(13.3%)

• Evaluate segmentation accuracy
• Dice overlap metric between automatic and manual segmentations

• Clinically relevant measures: ventricular volume and mass
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Performance

• Fast
• 9 seconds to segment 50 time frames across a cardiac cycle

• Accurate

LVEDV (mL) LVESV (mL) LVM (gram) RVEDV (mL) RVESV (mL)

Auto vs Man 6.1 ± 5.3 5.3 ± 4.9 6.9 ± 5.5 8.5 ± 7.1 7.2 ± 6.8

LV cavity LV myo. RV cavity LA (2Ch) LA (4Ch) RA (4Ch)

Auto vs Man 0.94 ± 0.04 0.88 ± 0.03 0.90 ± 0.05 0.93 ± 0.05 0.95 ± 0.02 0.96 ± 0.02

Table 1: Dice overlap metrics for 600 test subjects.

Table 2: Difference between automated measurement and 
manual measurement for ventricular volume and mass.

Comparable to human
inter-observer variability

Bai, MICCAI, 2017; Bai, Arxiv, 2018.



Network architectures

• Deeper
• Hundreds to thousands of convolutional layers
• Residual network (He et al. CVPR 2016)

• Denser
• More connections between layers
• Dense network (Huang et al. CVPR 2017)

• Wider
• Higher number of features at each layer
• Wide Residual Network (Zagoruyko et al. BMVC 2016)

• Better optimisation (Reddi et al. ICLR 2018)

• Uncertainty estimation (Gal. Thesis 2016)
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Spatio-temporal network for image sequence segmentation



Noisy image sequence Segmentation
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Fully convolutional network

• Pros and cons
• Fast (+)

• Interpretability

• Generalisability
𝑆 = 𝛻𝑥𝐿(𝑥, 𝜃

(𝑛))

Visualisation of feature maps

Saliency map:



Generalisability

• UK Biobank: a relatively homogeneous dataset
• Standard imaging protocol and MR scanner

• Generalisability
• Different imaging protocol or MR scanner

• Apply the UK Biobank-trained network to other datasets
• MICCAI 2009 Left Ventricle Segmentation Challenge (LVSC 2009)

• MICCAI 2017 Automated Classification and Diagnosis Challenge (ACDC 2017)
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Generalisability

• Domain adaptation
• Collect training data (annotations) in the new domain

• If we do not have annotations for the new dataset, can we still make the 
network adaptable?



Medical image segmentation

• Atlas-based methods
• Encode anatomical knowledge explicitly

• Propagate anatomical knowledge using image registration

• Convolution neural networks
• Encode anatomical knowledge implicitly

• Learn features from training data



Future research

• Machine learning in medical imaging
• Accurate in extracting clinical information

• Interpretability

• Generalisablity

• Data collection and annotation

• Not just imaging data
• UK Biobank (500,000 subjects, 100,000 with imaging data)

• US Precision Medicine Initiative (1,000,000 subjects)

• Better understanding between imaging, genetics and health for a large 
population

Imaging

Health 
information

Genetics



Thank you.


