Machine Learning for Cardiac MR Image Segmentation

Dr Wenjia Bai Imperial College London

Cardiac MR imaging

Clinical relevance

- Diagnosis of cardiovascular diseases
- Quantitative measures
 - Ventricular volumes across a cardiac cycle
 - Ejection fraction
 - Myocardial mass, myocardial wall thickness

Challenge

- Clinical routine
 - Most medical images are analysed manually (contour drawing)
 - It takes 20 minutes to analyse cardiac MR for a single subject
 - Time consuming and prone to subjective bias
- Can we make the computer understand medical images?
 - Automatically analyse anatomical structures
 - Save time and cost
 - Consistent clinical measures
- My research
 - Medical image segmentation

Image segmentation

Learning a model that maps pixel/patch to label

Machine learning

- Segmentation
 - Thresholding
 - Gaussian mixture model
 - Level set
 - •
 - Atlas-based segmentation
 - Convolutional neural networks

• Template matching

- The anatomies of individuals share a lot of similarities (**if** we do not account for pathologies).
- The image of one subject may be transformed to another similar subject via a diffeomorphic deformation.

Single-atlas segmentation

Label fusion

- How do we combine propagated label maps from multiple atlases?
- Search for most similar atlas patches and combine by weighted voting

Patch-based label fusion

Label fusion

Weighted voting

Nearest neighours

$$f: x \to y$$

• Look for neighbours of x and utilise anatomical knowledge of this neighbourhood.

Image registration

Before image registration

Image registration

After image registration

Nearest neighours

$$f: x \to y$$

- Utilise prior anatomical knowledge from neighbours of x.
- Pros and cons
 - Interpretability (+)
 - Slow (-)

- 1st places in MICCAI segmentation challenges
 - MICCAI 2012 RV Segmentation Challenge
 - MICCAI 2013 SATA Cardiac Data Segmentation Challenge
- UK Digital Heart Project
 - Segmented cardiac MR images for ~2,000 subjects acquired at Hammersmith Hospital London

Cardiac image segmentation

Convolutional neural networks

- Encode anatomical knowledge implicitly in a network
- End-to-end learning of image features

Fully convolutional network

$$x^{(1)} = \sigma(W^{(1)}x + b^{(1)})$$
 feature activation convolution image bias map function kernel

Fully convolutional network

Map x to y by a series of convolutions

$$x^{(1)} = \sigma(W^{(1)}x + b^{(1)})$$

$$x^{(2)} = \sigma(W^{(2)}x^{(1)} + b^{(2)})$$
.....
$$x^{(n)} = \sigma(W^{(n)}x^{(n-1)} + b^{(n)})$$

$$y_i = \frac{\exp(x_i^{(n)})}{\sum_{j=1}^{L} \exp(x_j^{(n)})} \quad \text{softmax}$$

Optimisation

Loss function

$$\min_{\theta} L(x, \theta) = -\sum_{i=1}^{L} z_i \log(y_i(x, \theta))$$

$$\theta = \{W^{(i)}, b^{(i)}\}$$
ground truth predicted label map

Stochastic gradient descent (SGD)

$$\theta^{(n)} = \theta^{(n-1)} + \nabla_{\theta} L(x, \theta^{(n-1)})$$

Dataset

- UK Biobank
 - Manual annotations of 5,000 subjects (QMUL and Oxford)
 - Divide into training(80%)/validation(6.7%)/test(13.3%)
 - Evaluate segmentation accuracy
 - Dice overlap metric between automatic and manual segmentations
 - Clinically relevant measures: ventricular volume and mass

Short-axis basal mid-ventricular apical Long-axis LV cavity RV cavity LA cavity RA cavity LV myocardium 4 chamber 2 chamber

Performance

- Fast
 - 9 seconds to segment 50 time frames across a cardiac cycle

Comparable to human inter-observer variability

Accurate

	LV cavity	LV myo.	RV cavity	LA (2Ch)	LA (4Ch) /	RA (4Ch)
Auto vs Man	0.94 ± 0.04	0.88 ± 0.03	0.90 ± 0.05	0.93 ± 0.05	0.95 ± 0.02	0.96 ± 0.02

Table 1: Dice overlap metrics for 600 test subjects.

	LVEDV (mL)	LVESV (mL)	LVM (gram)	RVEDV (mL)	RVESV (mL)
Auto vs Man	6.1 ± 5.3	5.3 ± 4.9	6.9 ± 5.5	8.5 ± 7.1	7.2 ± 6.8

Table 2: Difference between automated measurement and manual measurement for ventricular volume and mass.

Network architectures

- Deeper
 - Hundreds to thousands of convolutional layers
 - Residual network (He et al. CVPR 2016)
- Denser
 - More connections between layers
 - Dense network (Huang et al. CVPR 2017)
- Wider
 - Higher number of features at each layer
 - Wide Residual Network (Zagoruyko et al. BMVC 2016)
- Better optimisation (Reddi et al. ICLR 2018)
- Uncertainty estimation (Gal. Thesis 2016)

Spatio-temporal network for image sequence segmentation

Noisy image sequence

Segmentation

Fully convolutional network

- Pros and cons
 - Fast (+)
 - Interpretability
 - Generalisability

Visualisation of feature maps

Saliency map: $S = \nabla_{x} L(x, \theta^{(n)})$

Generalisability

- UK Biobank: a relatively homogeneous dataset
 - Standard imaging protocol and MR scanner
- Generalisability
 - Different imaging protocol or MR scanner
- Apply the UK Biobank-trained network to other datasets
 - MICCAI 2009 Left Ventricle Segmentation Challenge (LVSC 2009)
 - MICCAI 2017 Automated Classification and Diagnosis Challenge (ACDC 2017)

LVSC 2009 data ACDC 2017 data Case 1 (HF) Case 2 (HYP) Case 3 (DCM) Case 4 (ARV) Without tuning After fine-tuning

Generalisability

- Domain adaptation
 - Collect training data (annotations) in the new domain
 - If we do not have annotations for the new dataset, can we still make the network adaptable?

Medical image segmentation

- Atlas-based methods
 - Encode anatomical knowledge explicitly
 - Propagate anatomical knowledge using image registration
- Convolution neural networks
 - Encode anatomical knowledge implicitly
 - Learn features from training data

Future research

- Machine learning in medical imaging
 - Accurate in extracting clinical information
 - Interpretability
 - Generalisablity
 - Data collection and annotation
- Not just imaging data
 - UK Biobank (500,000 subjects, 100,000 with imaging data)
 - US Precision Medicine Initiative (1,000,000 subjects)
 - Better understanding between imaging, genetics and health for a large population

Thank you.