ODE and PDE Based Modelling of Biological Transportation Networks

Lisa Maria Kreusser

Joint work with Jan Haskovec and Peter A. Markowich

The Mathematics of Machine Learning, Isaac Newton Institute, Cambridge May 24, 2018

Discrete model (Hu, Cai)

• Flow of a material through the **network graph** $(\mathcal{V}, \mathcal{E})$:

Pressures
$$P_j$$
 on vertices $j \in \mathcal{V}$
Conductivities C_{jk} on edges $(j,k) \in \mathcal{E}$

Fluxes:

$$Q_{jk} = C_{jk} \frac{(\Delta P)_{jk}}{L_{jk}}$$

Discrete model (Hu, Cai)

• Flow of a material through the **network graph** $(\mathcal{V}, \mathcal{E})$:

Pressures P_j on vertices $j \in \mathcal{V}$ Conductivities C_{jk} on edges $(j, k) \in \mathcal{E}$

Fluxes:

$$Q_{jk} = C_{jk} \frac{(\Delta P)_{jk}}{L_{jk}}$$

• Kirchhoff law (conservation of mass) with sources S_j :

$$\sum_{k \in N(j)} Q_{jk} = \sum_{k \in N(j)} \left(P_j - P_k \right) \frac{C_{jk}}{L_{jk}} = S_j \qquad \text{for all } j \in \mathcal{V}$$

for set N(j) of vertices adjacent to vertex j

• Energy cost functional:

$$E_{\mathsf{disc}}[C] = \sum_{(j,k) \in \mathcal{E}} \left(C_{jk} \left(\frac{(\Delta P_{jk})}{L_{jk}} \right)^2 + \frac{\nu}{\gamma} C_{jk}^{\gamma} \right) L_{jk}$$

Connection between the discrete and the continuum model

Construction of continuum energy minimizers

- Regularisation and reformulation of the discrete model so that energy functional in integral form with added diffusion
- Continuum model:

$$\mathbb{E}[c] = \int_{\Omega} D^2 |\nabla c|^2 + \nabla p \cdot (r\mathbb{I} + c) \nabla p + \frac{\nu}{\gamma} |c|^{\gamma} dx,$$

where p[c] is a weak solution of the Poisson equation

$$-\nabla \cdot ((r\mathbb{I} + c)\nabla p) = S$$

Convergence proof

Steady states

Dependence on γ

- $\gamma \in (0,1)$: All local minima of the discrete model are trees, i.e. trees are stable steady states.
- ho γ > 1: The graph associated with any local minimum contains loops. In particular, a tree cannot be steady state.

Stability of steady states when several loops in tree-structured initial data are closed in the discrete model

Conclusion

Results and future work

- Existence of solutions to the discrete and continuum model
- Rigorous proof of the continuum limit of the discrete model via Γ-convergence
- Numerical analysis of steady states and their stability
- Modelling and simulation of leaf venation networks in collaboration with The Sainsbury Lab, University of Cambridge

References

- J. Haskovec, LMK and P. Markowich, ODE and PDE based modeling of biological transportation networks, arXiv:1805.08526, submitted to CMS, 2018.
- J. Haskovec, LMK and P. Markowich, Continuum Limit for the Discrete Network Formation Problem, in preparation.

Conclusion

Results and future work

- Existence of solutions to the discrete and continuum model
- Rigorous proof of the continuum limit of the discrete model via Γ-convergence
- Numerical analysis of steady states and their stability
- Modelling and simulation of leaf venation networks in collaboration with The Sainsbury Lab, University of Cambridge

References

- J. Haskovec, LMK and P. Markowich, ODE and PDE based modeling of biological transportation networks, arXiv:1805.08526, submitted to CMS, 2018.
- J. Haskovec, LMK and P. Markowich, Continuum Limit for the Discrete Network Formation Problem, in preparation.

Thank you for your attention!