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Particle filtering

Let X be the state-space, and Y be the observation space of a state space model. We assume
the dynamics are as follows:

Xt = f(Xt−1) + ζt

Yt = h(Xt) + ηt,

where ζt and ηt are independent random variables, and X0 ∼ µ0.

Given some observations yt, we are interested in finding the filtering distribution µt(xt|y1:t).

Particle filtering achieves this using a particle approximation to the true distribution.
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Particle filtering - applications

Climate modelling

Oceanography

Multi-target tracking
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Particle filtering

{X0,i}Ni=1 ∼ µ0
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Particle filtering

f(·)

{X0,i}Ni=1 ∼ µ0 {X1,i}Ni=1
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Particle filtering

f(·) wi ∝ L(X1,i|y1)

{X0,i}Ni=1 ∼ µ0 {X1,i, wi}Ni=1
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Particle filtering - in high dimensions

{X0,i}Ni=1 ∼ µ0 {X1,i, wi}Ni=1
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Particle filtering - the ideal case

{X0,i}Ni=1 ∼ µ0 {X1,i, wi =
1
N }

N
i=1
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Transport maps

Ideally, one wants to find a transport map Tt : X → X such that, if {X̂i}Ni=1 is a sample from
the prior, then {Tt(X̂i)}Ni=1 is a sample from the posterior (the filtering distribution).

This may be achieved by finding a flow f which solves the PDE ∂tπt = −∇ · (πtf), where πt is
a curve of measures with π0 being the prior and π1 being the posterior. [Heng et al. 2015]

Then a transport map is given by the final location of a particle Xi under the flow f .
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Future research

To tackle the challenges which particle filters face in high-dimensional settings, promising
research directions include:

Improving on inaccurate (but fast) approximations obtained using Ensemble Kalman
Filters.

Exploit time-forgetting properties and space-forgetting properties to accelerate existing
methods.

...
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Thank you for listening!

Torben Sell Particle filters in high-dimensions May 23, 2018 16 / 16


	Particle filtering
	Transport maps
	Future research

