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I. The success of optimization in ML

s m e delnt @ Learning as an optimization model.
@ Stochastic algorithms & large datasets.

[l. Challenges for optimization algorithms in ML

@ Performance & stability guarantees
@ New computer architectures

[ll. Multiresolution optimization algorithms

@ Composite convex optimization
@ Theoretical & numerical results




Learning as an optimization problem

@ Input: Training data
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@ Input: Training data Classify new observation
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Learning as an optimization problem

@ Input: Training data Classify new observation
@ Learn a prediction function H
@ Learning # memorising!

H(a,> - b,' if a’ = 4aj a2
~ ]random otherwise

@ Linear prediction function

h(x;(a, b)) = a x

@ Minimise #mistakes x € argmin = |{i|sign(a/ x) # b;}|
@ Even the simplest model is NP-hard!



Learning as a tractable optimization problem

) Minimise #mistakes
@ Counting — non-convex — [{ilsign(a] x) # b;}|
1




Learning as a tractable optimization problem

@ Counting — non-convex Difficult to optimise

L




Learning as a tractable optimization problem

@ Counting — non-convex Convex Approximation
@ Convex model with regulariser

F(x) = )_L(x;(a, b))+ G(x)
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Learning as a tractable optimization problem

@ Counting — non-convex Convex Approximation
@ Convex model with regulariser

Fx) =

s

L(x; (&, b))+ G(x)
1

@ Example:

L(x; (aj, b)) = In(1+exp(—bja; x))

n
G(x) = Mlxlli = A} |
i=1



Optimisation methods use local approximations

x* € argmin F(x)

@ Guess a solution x
@ Select d to improve e.g.

F(x+d) < F(x)
X +d = x*[| < [lx = x|

@ Select d to optimise a local approximation:

F(x+d)~ F(X)+VF(x) d+ %dTVQF(x)d

linear: Ix(d) quadratic: gx(d)

@ Update guess (learning)
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Why use a quadratic approximation?

@ Greedy/Pragmatic

1
Fix+d)~ F(x)+VF(x)'d+5d"VEF(x)d

linear: Ix(d) quadratic: gx(d)
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Why use a quadratic approximation?

@ Greedy/Pragmatic

F(x+d)~ F(x)+VF(x)'d+ %dTVQF(X)d

linear: Ix(d) quadratic: gx(d)

@ Smoothness: F(x +d) < l(d) + 5||d||?
@ Convexity: F(x +d) > Ix(d)
@ Strong convexity: 0 < 2u|d||? < gx(d)

1 L
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Why use a quadratic approximation?

@ Greedy/Pragmatic
F(x+d)~ F(x)+VF(x)'d+ %dTVQF(X)d

linear: Ix(d) quadratic: gx(d)

@ Smoothness: F(x +d) < l(d) + 5||d||?
@ Convexity: F(x +d) > Ix(d)
@ Strong convexity: 0 < 2u|d||? < gx(d)

1 L
(@) + |2 < F(x+d) < L(d) + 5 1dI

First Order, Gradient Descent: Stochastic, Proximal, Accelerated,

Block Coordinate, ...
Second Order: Newton Method, Quasi-Newton, Sketched,

Subsampled ...
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Success Story | - Convexity

s

Fx) =
1

L(x; (aj, b))+ G(x)

—_— =

Fidelity Sparsity

Models

Support Vector Machines
Basis Pursuit
Regularised Regression
Empirical Risk Min.
Clustering
Reinforcement Learning
Bayesian Optimization
Robust PCA

ML Applications

@ Sparse signal
reconstruction

Image processing

Statistical Pattern
recognition

Filtering
Feature Selection
Time series analysis




Success Story Il - Simple Stochastic Methods

F(x) = Y. Lxi (a, b)) + G(x)

GD with linear rate

@ Large m (observations)

@ Large n (model size) ke *oe
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Success Story Il - Simple Stochastic Methods

F(x) = Y. Lxi (a, b)) + G(x)

. GD vs Stochastic
@ Large m (observations)

@ Large n (model size) kel Koo
@ Fast Algorithm Exist (but need 08 *
all data) 06 *

@ Generalization error

@ Stochastic Methods (e.g.
Stochastic Gradient Descent)

Progress
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Challenge | - Provably Fast and Stable

@ Why provably?

o Affine invariant
o Guaranteed performance

@ Reduce development cost
e Training
e Tuning
@ Solution accuracy matters
@ Models/data keep growing

e Physical models
e Engineering models

DEFINE FRSTBOGOSORTILIST):
// AN OPTIM\ZED BOGDSORT
/ RuNS N O(NLoGN)
FOR N FROM 1. TO LOG( LENGTH( LIST)):
SHUFFLE(LST):
IF I850RTED (LIST ):
REURN LisT
RETURN "KERNEL PRGE FRULT (ERROR (0DE: 2)°

https://xkcd.com/1185/
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Challenge Il - Evolving Computer Architectures

Breakdown of Dennard scaling

40 Years of Microprocessor Trend Data
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Challenge Il - Evolving Computer Architectures

Breakdown of Dennard scaling

40 Years of Microprocessor Trend Data
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@ Simple algorithms (e.g. SGD) are hard to parallelise
@ Theory (asynchronous case) in its infancy

e Pessimistic error bounds
e Hard to tune parameters
o Disparity between theory & practice
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Composite Convex Optimisation

)r(r;i(n) f(x) +9(x)

@ f: Q) — R convex & Lipschitz continuous gradient,
IVE(x) = V()| < Llix -y

@ g: ) — R convex, continuous, non-differentiable.
@ gis “simple” (e.g. norm).
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Composite Convex Optimisation

min f,(x) 4+ gn(x)

xeQy,

@ fn: Oy — R convex & Lipschitz continuous gradient,
[V Ea(x) = VW)l < Lallx =y

@ g : Oy — R convex, continuous, non-differentiable.
@ gy is “simple” (e.g. norm).
@ Multiresolution notation:

o hfine (full) model
e H coarse (approximate) model

13/32



Information transfer between levels

@ Coarse model design vector: xy € R"
@ Fine model design vector: x, € R"and h > H

Two standard techniques

Restriction Operator: R € RP*"
Prolongation Operator: P € R"™H
Main Assumption:

P=cP' ¢>0

| Geometric
zr(1)  zn(2) xr(3) zr(4) zh(5)
zp(1) x

TH (3) TH (4)

H(2)
[l Algebraic

14/32



1280 x 1024 = 1310720

1024 x 768 = 786432

800 x 600 = 480000

640 x 480 = 307200

320 x 240 = 76800










Image Restoration — Problem Formulation

rr)(ihn || AnXn — balI3 + pall W (xn)|I

@ by input image

@ Ay, blurring operator

o W(-) wavelet transform

@ x € R" restored image, h = 1024 x 1024

17/32



Stack each image as a column vector A new incoming image

@ -8 |-
min %HDX —b|3 + Allx]lx "




Algorithms — State of the art

min £, (X) + gn(x)

First Order Algorithms

Iterative Shrinkage Thresholding Algorithm (ISTA, Proximal
Point Algorithm)[Rockafellar, 1976], [Beck and Teboulle, 2009]

@ Accelerated Gradient Methods [Nesterov, 2013]

Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
[Beck and Teboulle, 2009]

Block Coordinate Descent [Nesterov, 2012]
Incremental gradient/subgradient [Bertsekas, 2011]
Mirror Descent [Ben-Tal et al., 2001]

Smoothing Algorithms [Nesterov, 2005]

Bundle Methods [Kiwiel, 1990]

Dual Proximal Augmented Lagrangian Method
[Yang and Zhang, 2011]

Homotopy Methods [Donoho and Tsaig, 2008]




min Fp(x) £ fu(x) + gn(x)

xeQyp

Iterative Shrinkage Thresholding Algorithm (ISTA )
@ lteration k: Xh,k> fh,k: th,k1 Lp.




min Fp(x) £ fu(x) + gn(x)

xeQyp

Iterative Shrinkage Thresholding Algorithm (ISTA )

@ lteration k: Xh,k> fh,k: th,k1 Lp.
© AQuadratic Approximation:

L
QL(Xnk, X) = ok + (Vg X = Xnk) + EhHX — Xnkl? + gn(x)




min Fp(x) £ fu(x) + gn(x)

xeQyp

Iterative Shrinkage Thresholding Algorithm (ISTA )

@ lteration k: Xh,k> fh,k: th,k’ Lp.
© AQuadratic Approximation:

L
QL(Xpk: X) = foke + (Vink X — Xnk) + Eh 1 = Xnkl|? + gn(x)
© Compute Gradient Map: (minimize Quadratic Approximation)

1
Dhk = Xnkx — ProX,(Xnkx — Zthh,k)

1
X — <Xh,k — Lthh'k>

= Xp,xk —arg mxin QL(Xh,kv X)

2

= Xpk —argmin + gn(X)




min Fp(x) £ fu(x) + gn(x)

xeQyp

Iterative Shrinkage Thresholding Algorithm (ISTA )

@ lteration k: Xh,k> fh,k: th,k’ Lp.
© AQuadratic Approximation:

L
QL(Xpk: X) = foke + (Vink X — Xnk) + Eh 1 = Xnkl|? + gn(x)
© Compute Gradient Map: (minimize Quadratic Approximation)

1
Dhk = Xnkx — ProX,(Xnkx — Zthh,k)

1
X — <Xh,k — Lthh'k>

= Xp,xk —arg mxin QL(Xh,kv X)

2

= Xpk —argmin + gn(X)

© Error Correction Step:

Xhk+1 = Xnk — ShkDnk.




Xrgwh Fn(x) £ fa(X) + gn(x)

Iterative Shrinkage Thresholding Algorithm (ISTA )
@ lteration k: Xh, ks fh,ks th,k’ Lp.

© Quadratie-Approximation: Coarse model

© Compute Gradient Map: (minimize Quadratic Approximation)
1
L

1
X — <Xh,k — Lthh'k>

= Xpk — argmin Qp (xpk, X)

Dhk = Xpx — ProX,(Xnx — thh,k)

2

= Xpk —argmin + gn(X)

© Error Correction Step:

Xhk+1 = Xnk — Sh kD k-




min Fp(x) = fu(x) + gn(x)

xeQp

Iterative Shrinkage Thresholding Algorithm (ISTA )
@ lteration k: Xh ks fh,ks th,k’ Lp.

© Quadratie-Approximation: Coarse model
© Compute-GradientMap Solve (approx) coarse model

Drk = Xnx —pr = zhvfh,k)

= Xpkx —argmin || x — = thfh,k +9(x)
= Xnj — ArAMIn Qrtxhy, X)
X

© Error Correction Step:

Xhk+1 = Xnk — ShkDhp k-




min Fu(x) £ fu(x) + gh(X)

XGQh

Iterative Shrinkage Thresholding Algorithm (ISTA )
@ lteration k: Xh k> fh,ks th,k’ Lp.

© Quadratie-Approximatien: Coarse model
© Compute-GradientMap Solve (approx) coarse model

Dyk = Xnk —pr K — Zthh,k>

= Xpx —argmin ||x — = Zthh’k +g(x)
= Xnk — 21 Min-QrtXi k. X)
X

© ErrorCorrectionStep: Compute & Apply Error Correction

Xh k41 =Xk ShkDn k-




Coarse Model Construction — Smooth Case

First Order Coherent Condition

min fh(X/-,)

XHo = Rxh,k: then VfH,O = Rth,k

21/32



Coarse Model Construction — Smooth Case

First Order Coherent Condition

min fh(Xh)

XHo = RXh,k, then VfH,O = Rth,k

Coarse Model:

A ~ ~
fr(xp) = fr(XH) + (RVink — Vo, XH)
\W_/
coarse representation of fj, first order coherent

[Lewis and Nash, 2005, Gratton et al., 2008, Wen and Goldfarb, 2009]

21/32



Non-Smooth Case

min fo(xn) + gh(Xn)
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Non-Smooth Case
min f(Xn) + gh(Xn)
Optimality Conditions — Gradient Mapping

1
Dk = Xnk — ProXp(Xpx — Zth,k)

1
X — <Xh,k — Lthk)

Dy = 0 if and only if xp, x is stationary.

2

= Xpk — arg mXin +9(x)

22/32



Non-Smooth Case

min fo(xn) + gh(Xn)

Optimality Conditions — Gradient Mapping

1

Dhk = Xpk — ProxXp(Xpx — [

Vink)
2
+9g(x)

1
X — <Xh,k — Lthk)

Dy = 0 if and only if xp, x is stationary.

= Xpx — argmin
! X

First Order Coherent Condition:
Do = RDp k

22/32



MISTA

1.0 If condition to use coarse model is satisfied at x, x
1.1. Set XHo = FI)Xh’k
1.2. m coarse iterations, any monotone algorithm
1.3. Compute feasible coarse correction term,

dh,k = P(XH,O - XH,m)
xt = prox,(xpx — Tdhx)

23/32
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1.2. m coarse iterations, any monotone algorithm
1.3. Compute feasible coarse correction term,

dh,k = P(XH,O - XH,m)
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1.4. Update fine model

Xhk+1 = Xnk — Shk(Xnk — Xf,r)

1.5. Goto 1.0
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MISTA

1.0 If condition to use coarse model is satisfied at x, x
1.1. Set XHo = FI)Xh’k
1.2. m coarse iterations, any monotone algorithm
1.3. Compute feasible coarse correction term,

dh,k = P(XH,O - XH,m)
xt = prox,(xpx — Tdhx)

1.4. Update fine model
Xhk+1 = Xnk — Shk(Xnk — Xf,r)

1.5. Goto 1.0
2.0 Otherwise do a fine iteration, any monotone algorithm, go to 1.0.

23/32



Related work in Multiresolution Optimization

@ Nonlinear Optimization
@ Nash, S. G. A multigrid approach to discretized optimization problems.
Optimization Methods and Software, 2000
@ Gratton, S., Sartenaer, A., Toint, P. L. . Recursive trust-region methods for
multiscale nonlinear optimization. SIAM Journal on Optimization, 2008
e W, Zaiwen, and D. Goldfarb. A line search multigrid method for large-scale
nonlinear optimization. SIAM Journal on Optimization, 2009

Complexity Results
@ First-order-method, rate: O(L/k) (convex)
@ Asymptotic convergence for non-convex case

24/32



Convergence Rates — Multiresolution Case

@ Nonsmooth/constrained problems
@ Related to multigrid but beyond PDEs.
o Convex case[1] (Accelerated rate)
F(xk) — F(x*) < O(Lt/K?)
@ Strongly convex case [2](Linear rate)
F(x) — F(x*) < " (F(xo) = F(x*)) o€ (0,1)
e Non-convex [2] (Sublinear): F(xx) — F(x*) < O(L¢/k)

[1] V. Hovhannisyan, PP, and S. Zafeiriou. MAGMA: Multi-level accelerated
gradient mirror descent algorithm for large-scale convex composite
minimization , SIAM Journal on Imaging Sciences, 9(4), 18291857, 2016.

[2] P.P. A Multilevel Proximal Gradient Algorithm for Large Scale Optimization
, SIAM Journal on Scientific Computing, Vol. 39, Issue 5, Nov. 2017.
Papers&Code:

http://www.doc.ic.ac.uk/~pp500/publications.html
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CPU Time Comparison — Image De-blurring

100 ; .
=hu,

90 + EEMISTA|

80 | 10x faster than ISTA

70l 3-4x faster than FISTA

CPU Time (secs)

Barb. Cam. Chess Cog Lady Lena
Image 26/32



Face Recognition

Stack each image as a column vector A new incoming image

ol =D

.1
min = [|Dx — b[[3 + Allx| Iﬂg
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Low Accuracy Solution (10e-3)

%103
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1 1 1 1
0 200 400 600 800 1000
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High Accuracy Solution (10e-7)

0.025

0.02

0.015

0.01

0.005 F

-0.005

1 1 1 1
0 200 400 600 800 1000
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Current Research

(A) Structures for multiresolution methods
@ Use more structure but have same convergence rate.
@ Cannot be expected to work for all problems.

(B) Construction of coarse models
@ Known for same problems (e.g. linear PDESs)
@ Goals of optimization different than for PDEs

(C) Distributed variants
@ Distributed multiresolution optimisation in its infancy
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Current Research

(A) Structures for multiresolution methods
@ Use more structure but have same convergence rate.
@ Cannot be expected to work for all problems.

(B) Construction of coarse models
@ Known for same problems (e.g. linear PDESs)
@ Goals of optimization different than for PDEs

(C) Distributed variants
@ Distributed multiresolution optimisation in its infancy

Preliminary results
@ (A) Spectral structure of Hessian important
@ (A+B) Low rank approximations with randomized linear algebra

@ (C) Predict complicating variables (coarse), correct in parallel

28/32
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Summary of results

@ Nonsmooth/constrained problems
@ Beyond PDEs & quadratic approximations
@ Improved convergence rates:

o Convex case[1] (Accelerated rate)

Fx) = F(x*) < O(L/K?)
@ Strongly convex case [2](Linear rate)
F(xe) — F(x*) < " (F(xo) = F(x*)) o€ (0,1)
e Non-convex [2] (Sublinear): F(xx) — F(x*) < O(L¢/k)
[1] V. Hovhannisyan, PP, and S. Zafeiriou. MAGMA: Multi-level accelerated

gradient mirror descent algorithm for large-scale convex composite
minimization , SIAM Journal on Imaging Sciences, 9(4), 18291857, 2016.

[2] P.P. A Multilevel Proximal Gradient Algorithm for Large Scale Optimization
, SIAM Journal on Scientific Computing, Vol. 39, Issue 5, Nov. 2017.
Papers & Code:

http://www.doc.ic.ac.uk/~pp500/publications.html
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