Multiresolution Algorithms for Faster Optimization in Machine Learning

Panos Parpas
Computational Optimization Group
Department of Computing
Imperial College London

www.doc.ic.ac.uk/~pp500
p.parpas@imperial.ac.uk

Joint work with: Vahan Hovhannisyan & Stefanos Zafeiriou

Workshop on the Mathematics of Machine Learning
Isaac Newton Institute,
Cambridge, United Kingdom
May 2018
I. The success of optimization in ML

- Learning as an optimization model.
- Stochastic algorithms & large datasets.

II. Challenges for optimization algorithms in ML

- Performance & stability guarantees
- New computer architectures

III. Multiresolution optimization algorithms

- Composite convex optimization
- Theoretical & numerical results
Learning as an optimization problem

- **Input:** Training data
- **Learn a prediction function** H
- Learning \neq memorising!

$$H(a') = \begin{cases} \ b_i & \text{if } a' = a_i \\ \text{random} & \text{otherwise} \end{cases}$$

- **Linear prediction function**

$$h(x; (a, b)) = a_i^\top x$$

- Minimise #mistakes $x \in \arg \min = |\{i|\text{sign}(a_i^\top x) \neq b_i\}|$
- Even the simplest model is NP-hard!
Learning as an optimization problem

- Input: Training data
- Learn a prediction function H
- Learning \neq memorising!

$$H(a') = \begin{cases} b_i & \text{if } a' = a_i \\ \text{random} & \text{otherwise} \end{cases}$$

- Linear prediction function

$$h(x; (a, b)) = a_i^T x$$

- Minimise #mistakes $x \in \arg\min = |\{i|\text{sign}(a_i^T x) \neq b_i\}|$
- Even the simplest model is NP-hard!
Learning as an optimization problem

- Input: Training data
- Learn a prediction function H
- Learning \neq memorising!

$$H(a') = \begin{cases} b_i & \text{if } a' = a_i \\ \text{random} & \text{otherwise} \end{cases}$$

- Linear prediction function

$$h(x; (a, b)) = a_i^\top x$$

- Minimise #mistakes $x \in \arg\min = |\{i|\text{sign}(a_i^\top x) \neq b_i\}|$
- Even the simplest model is NP-hard!

Classify new observation
Learning as an optimization problem

- Input: Training data
- Learn a prediction function H
- Learning \neq memorising!

\[H(a') = \begin{cases} \ b_i & \text{if } a' = a_i \\ \text{random} & \text{otherwise} \end{cases} \]

- Linear prediction function

\[h(x; (a, b)) = a_i^\top x \]

- Minimise #mistakes $x \in \arg \min \{ \{ i | \text{sign}(a_i^\top x) \neq b_i \} \}$
- Even the simplest model is NP-hard!
Learning as a tractable optimization problem

- Counting → non-convex
- Convex model with regulariser

\[F(x) = \sum_{i=1}^{m} L(x; (a_i, b_i)) + G(x) \]

Example:

\[L(x; (a_i, b_i)) = \ln(1 + \exp(-b_i a_i^\top x)) \]

\[G(x) = \lambda \|x\|_1 = \lambda \sum_{i=1}^{n} |x_i| \]

Minimise #mistakes

\[= \left| \left\{ i | \text{sign}(a_i^\top x) \neq b_i \right\} \right| \]
Learning as a tractable optimization problem

- Counting \rightarrow non-convex
- Convex model with regulariser

\[F(x) = \sum_{i=1}^{m} L(x; (a_i, b_i)) + G(x) \]

Example:

\[L(x; (a_i, b_i)) = \ln(1 + \exp(-b_i a_i^\top x) \]

\[G(x) = \lambda \|x\|_1 = \lambda \sum_{i=1}^{n} |x_i| \]

Difficult to optimise
Learning as a tractable optimization problem

- Counting → non-convex
- Convex model with regulariser

\[
F(x) = \sum_{i=1}^{m} L(x; (a_i, b_i)) + G(x)
\]

Example:

\[
L(x; (a_i, b_i)) = \ln(1 + \exp(-b_i a_i^\top x))
\]

\[
G(x) = \lambda \|x\|_1 = \lambda \sum_{i=1}^{n} |x_i|
\]
Learning as a tractable optimization problem

- Counting \rightarrow non-convex
- Convex model with regulariser

$$F(x) = \sum_{i=1}^{m} L(x; (a_i, b_i)) + G(x)$$

- Example:

$$L(x; (a_i, b_i)) = \ln(1 + \exp(-b_i a_i^\top x))$$

$$G(x) = \lambda \|x\|_1 = \lambda \sum_{i=1}^{n} |x_i|$$
Optimisation methods use local approximations

\[x^* \in \arg \min F(x) \]

- Guess a solution \(x \)
- Select \(d \) to improve e.g.
 \[
 F(x + d) < F(x) \\
 \| x + d - x^* \| < \| x - x^* \|
 \]
- Select \(d \) to optimise a local approximation:
 \[
 F(x + d) \approx F(x) + \nabla F(x) \top d + \frac{1}{2} d \top \nabla^2 F(x) d
 \]
 linear: \(l_x(d) \)
 quadratic: \(q_x(d) \)
- Update guess (learning)
 \[
 x \leftarrow x + d
 \]
Why use a quadratic approximation?

- **Greedy/Pragmatic**

\[
F(x + d) \approx F(x) + \nabla F(x)^\top d + \frac{1}{2} d^\top \nabla^2 F(x) d
\]

- **Linear:** \(l_x(d) \)
- **Quadratic:** \(q_x(d) \)

- **Smoothness:** \(F(x + d) \leq l_x(d) + \frac{1}{2} \| d \|^2 \)
- **Convexity:** \(F(x + d) \geq l_x(d) \)
- **Strong convexity:** \(0 < \frac{1}{2} \mu \| d \|^2 \leq q_x(d) \)

\[
l_x(d) + \frac{1}{2} \mu \| d \|^2 \leq F(x + d) \leq l_x(d) + \frac{L}{2} \| d \|^2
\]

First Order, Gradient Descent: Stochastic, Proximal, Accelerated, Block Coordinate, ...
Second Order: Newton Method, Quasi-Newton, Sketched, Subsampled ...
Why use a quadratic approximation?

- Greedy/Pragmatic

\[
F(x + d) \approx F(x) + \nabla F(x) \top d + \frac{1}{2} d \top \nabla^2 F(x) d
\]

- Linear: \(l_x(d) \)
- Quadratic: \(q_x(d) \)

- Smoothness: \(F(x + d) \leq l_x(d) + \frac{1}{2} \| d \|^2 \)
- Convexity: \(F(x + d) \geq l_x(d) \)
- Strong convexity: \(0 < \frac{1}{2} \mu \| d \|^2 \leq q_x(d) \)

\[
l_x(d) + \frac{1}{2} \mu \| d \|^2 \leq F(x + d) \leq l_x(d) + \frac{L}{2} \| d \|^2
\]

First Order, Gradient Descent: Stochastic, Proximal, Accelerated, Block Coordinate, ...
Second Order: Newton Method, Quasi-Newton, Sketched, Subsampled ...
Why use a quadratic approximation?

- Greedy/Pragmatic

\[
F(x + d) \approx F(x) + \nabla F(x)^\top d + \frac{1}{2} d^\top \nabla^2 F(x) d
\]

linear: \(l_x(d) \)
quadratic: \(q_x(d) \)

- Smoothness: \(F(x + d) \leq l_x(d) + \frac{L}{2} \|d\|^2 \)
- Convexity: \(F(x + d) \geq l_x(d) \)
- Strong convexity: \(0 < \frac{1}{2} \mu \|d\|^2 \leq q_x(d) \)

\[
l_x(d) + \frac{1}{2} \mu \|d\|^2 \leq F(x + d) \leq l_x(d) + \frac{L}{2} \|d\|^2
\]

First Order, Gradient Descent: Stochastic, Proximal, Accelerated, Block Coordinate, ...
Second Order: Newton Method, Quasi-Newton, Sketched, Subsampled ...
Success Story I - Convexity

\[F(x) = \sum_{i=1}^{m} L(x; (a_i, b_i)) + G(x) \]

- Fidelity
- Sparsity

Models
- Support Vector Machines
- Basis Pursuit
- Regularised Regression
- Empirical Risk Min.
- Clustering
- Reinforcement Learning
- Bayesian Optimization
- Robust PCA

ML Applications
- Sparse signal reconstruction
- Image processing
- Statistical Pattern recognition
- Filtering
- Feature Selection
- Time series analysis
Success Story II - Simple Stochastic Methods

\[
F(x) = \sum_{i=1}^{m} L(x; (a_i, b_i)) + G(x)
\]

- Large \(m \) (observations)
- Large \(n \) (model size)
- Fast Algorithm Exist (but need all data)
- Generalization error
- Stochastic Methods (e.g. Stochastic Gradient Descent)

GD with linear rate
Success Story II - Simple Stochastic Methods

\[F(x) = \sum_{i=1}^{m} L(x; (a_i, b_i)) + G(x) \]

- Large \(m \) (observations)
- Large \(n \) (model size)
- Fast Algorithm Exist (but need all data)
- Generalization error

Stochastic Methods (e.g. Stochastic Gradient Descent)
Success Story II - Simple Stochastic Methods

\[F(x) = \sum_{i=1}^{m} L(x; (a_i, b_i)) + G(x) \]

- Large \(m \) (observations)
- Large \(n \) (model size)
- Fast Algorithm Exist (but need all data)
- Generalization error
- Stochastic Methods (e.g. Stochastic Gradient Descent)

![GD vs Stochastic Diagram](chart.png)
I. The success of optimization in ML

- Learning as an optimization model.
- Stochastic algorithms & large datasets.

II. Challenges for optimization algorithms in ML

- Performance & stability guarantees
- New computer architectures

III. Multiresolution optimization algorithms

- Composite convex optimization
- Theoretical & numerical results
Challenge I - Provably Fast and Stable

- Why provably?
 - Affine invariant
 - Guaranteed performance
- Reduce development cost
 - Training
 - Tuning
- Solution accuracy matters
- Models/data keep growing
 - Physical models
 - Engineering models

https://xkcd.com/1185/
Many-core architectures

Parallelism via:

- Duality (e.g. ADMM, ALM)
- Block structures (e.g. BCD, Jacobi, Domain Decomp.)

Simple algorithms (e.g. SGD) are hard to parallelise

Theory (asynchronous case) in its infancy

- Pessimistic error bounds
- Hard to tune parameters
- Disparity between theory & practice
Challenge II - Evolving Computer Architectures

- Many-core architectures
- Parallelism via:
 - Duality (e.g. ADMM, ALM)
 - Block structures (e.g. BCD, Jacobi, Domain Decomp.)

Simple algorithms (e.g. SGD) are hard to parallelise

Theory (asynchronous case) in its infancy
 - Pessimistic error bounds
 - Hard to tune parameters
 - Disparity between theory & practice
I. The success of optimization in ML

- Learning as an optimization model.
- Stochastic algorithms & large datasets.

II. Challenges for optimization algorithms in ML

- Performance & stability guarantees
- New computer architectures

III. Multiresolution optimization algorithms

- Composite convex optimization
- Theoretical & numerical results
Composite Convex Optimisation

\[
\min_{x \in \Omega} f(x) + g(x)
\]

- \(f : \Omega \to \mathbb{R} \) convex & Lipschitz continuous gradient,
 \[\| \nabla f(x) - \nabla f(y) \| \leq L \| x - y \| \]
- \(g : \Omega \to \mathbb{R} \) convex, continuous, non-differentiable.
- \(g \) is “simple” (e.g. norm).
Composite Convex Optimisation

\[\min_{x \in \Omega_h} f_h(x) + g_h(x) \]

- \(f_h : \Omega_h \rightarrow \mathbb{R} \) convex & Lipschitz continuous gradient,
 \[\| \nabla f_h(x) - \nabla f_h(y) \| \leq L_h \| x - y \| \]

- \(g_h : \Omega_h \rightarrow \mathbb{R} \) convex, continuous, non-differentiable.
- \(g_h \) is “simple” (e.g. norm).

Multiresolution notation:
- \(h \) fine (full) model
- \(H \) coarse (approximate) model
Information transfer between levels

- **Coarse** model design vector: \(x_H \in \mathbb{R}^H \)
- **Fine** model design vector: \(x_h \in \mathbb{R}^h \) and \(h > H \)

Two standard techniques

Restriction Operator: \(R \in \mathbb{R}^{H \times h} \)

Prolongation Operator: \(P \in \mathbb{R}^{h \times H} \)

Main Assumption:

\[
P = cP^\top, \quad c > 0
\]

I Geometric

II Algebraic
Image Restoration – Problem Formulation

$$\min_{x_h} \| A_h x_h - b_h \|_2^2 + \mu_h \| W(x_h) \|_1$$

- b_h input image
- A_h blurring operator
- $W(\cdot)$ wavelet transform
- $x \in \mathbb{R}^h$ restored image, $h = 1024 \times 1024$
Stack each image as a column vector

\[\begin{align*}
\min_x & \quad \frac{1}{2} \| D x - b \|_2^2 + \lambda \| x \|_1 \\
& \quad \text{LASSO}
\end{align*} \]

A new incoming image

\[= b \]
First Order Algorithms

- **Iterative Shrinkage Thresholding Algorithm (ISTA, Proximal Point Algorithm)** [Rockafellar, 1976], [Beck and Teboulle, 2009]
- Accelerated Gradient Methods [Nesterov, 2013]
- **Fast Iterative Shrinkage Thresholding Algorithm (FISTA)** [Beck and Teboulle, 2009]
- Block Coordinate Descent [Nesterov, 2012]
- Incremental gradient/subgradient [Bertsekas, 2011]
- Mirror Descent [Ben-Tal et al., 2001]
- Smoothing Algorithms [Nesterov, 2005]
- Bundle Methods [Kiwiel, 1990]
- Dual Proximal Augmented Lagrangian Method [Yang and Zhang, 2011]
- Homotopy Methods [Donoho and Tsaig, 2008]
\[
\min_{x \in \Omega_h} F_h(x) \triangleq f_h(x) + g_h(x)
\]

Iterative Shrinkage Thresholding Algorithm (ISTA)

1. **Iteration** \(k \): \(x_{h,k}, f_{h,k}, \nabla f_{h,k}, L_h \).

2. **Quadratic Approximation**:

\[
Q_L(x_{h,k}, x) = f_{h,k} + \langle \nabla f_{h,k}, x - x_{h,k} \rangle + \frac{L_h}{2} \| x - x_{h,k} \|^2 + g_h(x)
\]

3. **Compute Gradient Map**: (minimize Quadratic Approximation)

\[
D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k})
\]

\[
= x_{h,k} - \arg \min_x \left\| x - \left(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k} \right) \right\|^2 + g_h(x)
\]

\[
= x_{h,k} - \arg \min_x Q_L(x_{h,k}, x)
\]

4. **Error Correction Step**:

\[
x_{h,k+1} = x_{h,k} - s_{h,k} D_{h,k}.
\]
\[
\min_{x \in \Omega_h} F_h(x) \triangleq f_h(x) + g_h(x)
\]

Iterative Shrinkage Thresholding Algorithm (ISTA)

1. **Iteration** \(k \): \(x_{h,k}, f_{h,k}, \nabla f_{h,k}, L_h \).

2. **Quadratic Approximation:**

\[
Q_L(x_{h,k}, x) = f_{h,k} + \langle \nabla f_{h,k}, x - x_{h,k} \rangle + \frac{L_h}{2} \| x - x_{h,k} \|^2 + g_h(x)
\]

3. **Compute Gradient Map:** (minimize Quadratic Approximation)

\[
D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k})
\]

\[
= x_{h,k} - \arg \min_x \| x - \left(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k} \right) \|^2 + g_h(x)
\]

\[
= x_{h,k} - \arg \min_x Q_L(x_{h,k}, x)
\]

4. **Error Correction Step:**

\[
x_{h,k+1} = x_{h,k} - s_{h,k} D_{h,k}.
\]
\[
\min_{x \in \Omega_h} F_h(x) \triangleq f_h(x) + g_h(x)
\]

Iterative Shrinkage Thresholding Algorithm (ISTA)

1. Iteration \(k\): \(x_{h,k}, f_{h,k}, \nabla f_{h,k}, L_h\).

2. Quadratic Approximation:

\[
Q_L(x_{h,k}, x) = f_{h,k} + \langle \nabla f_{h,k}, x - x_{h,k} \rangle + \frac{L_h}{2} \| x - x_{h,k} \|^2 + g_h(x)
\]

3. Compute Gradient Map: (minimize Quadratic Approximation)

\[
D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k})
\]

\[
= x_{h,k} - \arg \min_{x} \left\| x - \left(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k} \right) \right\|^2 + g_h(x)
\]

\[
= x_{h,k} - \arg \min_{x} Q_L(x_{h,k}, x)
\]

4. Error Correction Step:

\[
x_{h,k+1} = x_{h,k} - s_{h,k} D_{h,k}.
\]
\[
\min_{x \in \Omega_h} F_h(x) \triangleq f_h(x) + g_h(x)
\]

Iterative Shrinkage Thresholding Algorithm (ISTA)

1. **Iteration** \(k\): \(x_{h,k}, f_{h,k}, \nabla f_{h,k}, L_h\).

2. **Quadratic Approximation:**

 \[
 Q_L(x_{h,k}, x) = f_{h,k} + \langle \nabla f_{h,k}, x - x_{h,k} \rangle + \frac{L_h}{2} \| x - x_{h,k} \|^2 + g_h(x)
 \]

3. **Compute Gradient Map:** (minimize Quadratic Approximation)

 \[
 D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k})
 \]

 \[
 = x_{h,k} - \arg \min_x \| x - \left(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k} \right) \|^2 + g_h(x)
 \]

 \[
 = x_{h,k} - \arg \min_x Q_L(x_{h,k}, x)
 \]

4. **Error Correction Step:**

 \[
 x_{h,k+1} = x_{h,k} - s_{h,k} D_{h,k}.
 \]
\[
\min_{x \in \Omega_h} F_h(x) \triangleq f_h(x) + g_h(x)
\]

Iterative Shrinkage Thresholding Algorithm (ISTA)

1. Iteration \(k \): \(x_{h,k}, f_{h,k}, \nabla f_{h,k}, L_h \).
2. **Quadratic Approximation**: Coarse model
3. **Compute Gradient Map**: (minimize Quadratic Approximation)

\[
D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k})
\]

\[
= x_{h,k} - \arg \min_x \left\| x - \left(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k} \right) \right\|^2 + g_h(x)
\]

\[
= x_{h,k} - \arg \min_x Q_L(x_{h,k}, x)
\]

4. **Error Correction Step**:

\[
x_{h,k+1} = x_{h,k} - s_{h,k} D_{h,k}.
\]
\[
\min_{x \in \Omega_h} F_h(x) \triangleq f_h(x) + g_h(x)
\]

Iterative Shrinkage Thresholding Algorithm (ISTA)

1. **Iteration** \(k\): \(x_{h,k}, f_{h,k}, \nabla f_{h,k}, L_h\).

2. **Quadratic Approximation**: **Coarse model**

3. **Compute Gradient Map** Solve (approx) coarse model

\[
D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k})
\]

\[
= x_{h,k} - \arg \min_x \left\| x - \left(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k} \right) \right\|^2 + g(x)
\]

\[
= x_{h,k} - \arg \min_x Q_L(x_{h,k}, x)
\]

4. **Error Correction Step**:

\[
x_{h,k+1} = x_{h,k} - s_{h,k} D_{h,k}.
\]
\[
\min_{x \in \Omega_h} F_h(x) \triangleq f_h(x) + g_h(x)
\]

Iterative Shrinkage Thresholding Algorithm (ISTA)

1. **Iteration** \(k \): \(x_{h,k}, f_{h,k}, \nabla f_{h,k}, L_h \).

2. **Quadratic Approximation**: Coarse model

3. **Compute** Gradient Map Solve (approx) coarse model

\[
D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k})
\]

\[
= x_{h,k} - \arg \min_x \left\| x - \left(x_{h,k} - \frac{1}{L_h} \nabla f_{h,k} \right) \right\|^2 + g(x)
\]

\[
= x_{h,k} - \arg \min_x Q_L(x_{h,k}, x)
\]

4. **Error Correction Step**: Compute & Apply Error Correction

\[
x_{h,k+1} = x_{h,k} - s_{h,k} D_{h,k}.
\]
Coarse Model Construction – Smooth Case

First Order Coherent Condition

\[\min f_h(x_h) \]

\[x_{H,0} = R x_{h,k}, \text{ then } \nabla f_{H,0} = R \nabla f_{h,k} \]

Coarse Model:

\[f_H(x_H) \triangleq \hat{f}_H(x_H) + \langle R \nabla f_{h,k} - \nabla \hat{f}_{H,0}, x_H \rangle \]

coarse representation of \(f_h \)

first order coherent

[Lewis and Nash, 2005, Gratton et al., 2008, Wen and Goldfarb, 2009]
Coarse Model Construction – Smooth Case

First Order Coherent Condition

\[
\min f_h(x_h)
\]

\[x_{H,0} = Rx_{h,k}, \text{ then } \nabla f_{H,0} = R
\nabla f_{h,k}\]

Coarse Model:

\[
f_H(x_H) \triangleq \hat{f}_H(x_H) + \langle R \nabla f_{h,k} - \nabla \hat{f}_{H,0}, x_H \rangle
\]

coarse representation of \(f_h \)

first order coherent

[Lewis and Nash, 2005, Gratton et al., 2008, Wen and Goldfarb, 2009]
Non-Smooth Case

$$\min f_h(x_h) + g_h(x_h)$$

Optimality Conditions – Gradient Mapping

$$D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L} \nabla f_{h,k})$$

$$= x_{h,k} - \arg\min_x \left\| x - \left(x_{h,k} - \frac{1}{L} \nabla f_{h,k} \right) \right\|^2 + g(x)$$

$$D_{h,k} = 0 \text{ if and only if } x_{h,k} \text{ is stationary.}$$

First Order Coherent Condition:

$$D_{H,0} = RD_{h,k}$$
Non-Smooth Case

\[
\min f_h(x_h) + g_h(x_h)
\]

Optimality Conditions – Gradient Mapping

\[
D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L} \nabla f_{h,k})
\]

\[
= x_{h,k} - \arg \min_x \| x - \left(x_{h,k} - \frac{1}{L} \nabla f_{h,k} \right) \|^2 + g(x)
\]

\[D_{h,k} = 0 \text{ if and only if } x_{h,k} \text{ is stationary.}\]

First Order Coherent Condition:

\[D_{H,0} = RD_{h,k}\]
Non-Smooth Case

\[
\min f_h(x_h) + g_h(x_h)
\]

Optimality Conditions – Gradient Mapping

\[
D_{h,k} = x_{h,k} - \text{prox}_h(x_{h,k} - \frac{1}{L}\nabla f_{h,k})
\]

\[
= x_{h,k} - \arg\min_x \left\| x - \left(x_{h,k} - \frac{1}{L}\nabla f_{h,k} \right) \right\|^2 + g(x)
\]

\(D_{h,k} = 0\) if and only if \(x_{h,k}\) is stationary.

First Order Coherent Condition:

\[
D_{H,0} = RD_{h,k}
\]
MISTA

1.0 If condition to use coarse model is satisfied at $x_{h,k}$
 1.1. Set $x_{H,0} = Rx_{h,k}$
 1.2. m coarse iterations, any monotone algorithm
 1.3. Compute feasible coarse correction term,

 $$d_{h,k} = P(x_{H,0} - x_{H,m})$$
 $$x^+ = \text{prox}_h(x_{h,k} - \tau d_{h,k})$$

 1.4. Update fine model

 $$x_{h,k+1} = x_{h,k} - s_{h,k}(x_{h,k} - x^+)$$

 1.5. Go to 1.0

2.0 Otherwise do a fine iteration, any monotone algorithm, go to 1.0.
1.0 If condition to use coarse model is satisfied at $x_{h,k}$
 1.1. Set $x_{H,0} = Rx_{h,k}$
 1.2. m coarse iterations, any monotone algorithm
 1.3. Compute feasible coarse correction term,

 $$d_{h,k} = P(x_{H,0} - x_{H,m})$$
 $$x^+ = \text{prox}_h(x_{h,k} - \tau d_{h,k})$$

 1.4. Update fine model

 $$x_{h,k+1} = x_{h,k} - s_{h,k}(x_{h,k} - x^+)$$

 1.5. Go to 1.0

2.0 Otherwise do a fine iteration, any monotone algorithm, go to 1.0.
MISTA

1.0 If condition to use coarse model is satisfied at $x_{h,k}$

1.1. Set $x_{H,0} = Rx_{h,k}$

1.2. m coarse iterations, any monotone algorithm

1.3. Compute feasible coarse correction term,

$$d_{h,k} = P(x_{H,0} - x_{H,m})$$

$$x^+ = \text{prox}_h (x_{h,k} - \tau d_{h,k})$$

1.4. Update fine model

$$x_{h,k+1} = x_{h,k} - s_{h,k}(x_{h,k} - x^+)$$

1.5. Go to 1.0

2.0 Otherwise do a fine iteration, any monotone algorithm, go to 1.0.
Related work in Multiresolution Optimization

Nonlinear Optimization

Complexity Results
- First-order-method, rate: $O(L/k)$ (convex)
- Asymptotic convergence for non-convex case
Convergence Rates – Multiresolution Case

- Nonsmooth/constrained problems
- Related to multigrid but beyond PDEs.
 - Convex case[1] (Accelerated rate)
 \[
 F(x_k) - F(x^\star) \leq O\left(\frac{L_f}{k^2}\right)
 \]
 - Strongly convex case [2] (Linear rate)
 \[
 F(x_k) - F(x^\star) \leq \sigma^k (F(x_0) - F(x^\star)) \quad \sigma \in (0, 1)
 \]
 - Non-convex [2] (Sublinear):
 \[
 F(x_k) - F(x^\star) \leq O\left(\frac{L_f}{k}\right)
 \]

Papers&Code:
http://www.doc.ic.ac.uk/~pp500/publications.html
CPU Time Comparison – Image De-blurring

10x faster than ISTA
3-4x faster than FISTA
Face Recognition

Stack each image as a column vector

\[\min_x \frac{1}{2} \| Dx - b \|_2^2 + \lambda \| x \|_1 \]

LASSO

A new incoming image

= b
Low Accuracy Solution (10e-3)
High Accuracy Solution (10e-7)
Current Research

(A) Structures for multiresolution methods
- Use more structure but have same convergence rate.
- Cannot be expected to work for all problems.

(B) Construction of coarse models
- Known for same problems (e.g. linear PDEs)
- Goals of optimization different than for PDEs

(C) Distributed variants
- Distributed multiresolution optimisation in its infancy

Preliminary results
- (A) Spectral structure of Hessian important
- (A+B) Low rank approximations with randomized linear algebra
- (C) Predict complicating variables (coarse), correct in parallel
Current Research

(A) Structures for multiresolution methods
- Use more structure but have same convergence rate.
- Cannot be expected to work for all problems.

(B) Construction of coarse models
- Known for same problems (e.g. linear PDEs)
- Goals of optimization different than for PDEs

(C) Distributed variants
- Distributed multiresolution optimisation in its infancy

Preliminary results
- (A) Spectral structure of Hessian important
- (A+B) Low rank approximations with randomized linear algebra
- (C) Predict complicating variables (coarse), correct in parallel
I. The success of optimization in ML

- Learning as an optimization model.
- Stochastic algorithms & large datasets.

II. Challenges for optimization algorithms in ML

- Performance & stability guarantees
- New computer architectures

III. Multiresolution optimization algorithms

- Composite convex optimization
- Theoretical & numerical results
Summary of results

- Nonsmooth/constrained problems
- Beyond PDEs & quadratic approximations
- Improved convergence rates:
 - Convex case [1] (Accelerated rate)
 \[F(x_k) - F(x^*) \leq O\left(\frac{L_f}{k^2}\right) \]
 - Strongly convex case [2] (Linear rate)
 \[F(x_k) - F(x^*) \leq \sigma^k (F(x_0) - F(x^*)) \quad \sigma \in (0, 1) \]
 - Non-convex [2] (Sublinear):
 \[F(x_k) - F(x^*) \leq O\left(\frac{L_f}{k}\right) \]

Papers & Code:
http://www.doc.ic.ac.uk/~pp500/publications.html
References I

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

The ordered subsets mirror descent optimization method with applications to tomography.

Fast solution of-norm minimization problems when the solution may be sparse.

Recursive trust-region methods for multiscale nonlinear optimization.

Proximity control in bundle methods for convex nondifferentiable minimization.

Model problems for the multigrid optimization of systems governed by differential equations.

