Achieving the Optimal Convergence Rate in Stochastic Optimisation

Derek Driggs CCIMI

Advisor: Dr Carola Schönlieb

Collaborators: Dr Jingwei Liang, Dr Clarice Poon

Problem Setting

Many machine learning problems can be formulated as

$$\min_{x} \qquad \boxed{\frac{1}{n} \sum_{i=1}^{n} f_i(x)} + \boxed{g(x)}$$

Convex, smooth functions with L-Lipschitz continuous gradients

Convex, non-smooth function

Problem Setting

$$\min_{x} \qquad \boxed{\frac{1}{n} \sum_{i=1}^{n} f_i(x)} + \boxed{g(x)}$$

$$\begin{split} \|\mathcal{A}(\cdot)\|_2 - \ell_2\text{-norm with linear} & \|\cdot\|_1 - \ell_1\text{-norm} \\ \text{operator }\mathcal{A} & \|\cdot\|_* - \text{nuclear norm} \end{split}$$

Applications: LASSO, Robust PCA, Logistic Regression

Proximal Gradient Descent

$$\min_x \qquad \boxed{\frac{1}{n}\sum_{i=1}^n f_i(x)} + \boxed{g(x)}$$

This problem can be solved using *proximal gradient descent*:

$$x_{k+1} = \operatorname{prox}_{\gamma g} \left(x_k - \gamma \nabla f(x_k) \right)$$

where the *proximal operator* is defined as

$$\operatorname{prox}_h(y) := \operatorname{argmin}_x \quad \frac{1}{2} \|x - y\|^2 + h(x)$$

This algorithm requires the evaluation of n gradients per iteration.

Stochastic Gradient Descent

Computing the full gradient is expensive for large n, so we can replace $\nabla f(x_k)$ with an estimate of the gradient, $\widetilde{\nabla} f(x_k)$, where

$$\widetilde{\nabla}_{\text{SGD}} f(x_k) = \nabla f_i(x_k), \tag{SGD}$$

$$\widetilde{\nabla}_{\text{SAGA}} f(x_k) = \nabla f_j(x_k) - \nabla f_j(\boldsymbol{\varphi}_k^j) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\boldsymbol{\varphi}_k^i), \tag{SAGA}$$

$$\widetilde{\nabla}_{\text{SVRG}} f(x_k) = \nabla f_j(x_k) - \nabla f_j(\tilde{\pmb{x}}) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\pmb{x}}). \tag{SVRG}$$

The index j is chosen uniformly at random.

 $arphi_k^j$ — The gradient $\nabla f_j(arphi_k^j)$ is stored for future iterates.

 \tilde{x} — The full gradient $\frac{1}{n}\sum_{i=1}^n \nabla f(\tilde{x})$ is computed every 2n iterations and stored for future iterates.

Convergence Rates

With x^* the minimiser of $F(x):=\frac{1}{n}\sum_{i=1}^n f_i(x)+g(x)$, the suboptimality at iteration k is $F(x_k)-F(x^*)$.

For proximal gradient descent on convex objectives,

$$F(x_k) - F(x^*) \leq \mathcal{O}\left(\frac{1}{k}\right)$$

For SVRG and SAGA,

$$\mathbb{E}\left[F(x_k) - F(x^*)\right] \leq \mathcal{O}\left(\frac{1}{k}\right)$$

Accelerating Full Gradient Methods

Nesterov's momentum trick is a slight modification that offers enormous acceleration:

$$\begin{aligned} y_{k+1} &= x_k + \alpha(x_k - x_{k-1}) \\ x_{k+1} &= \mathsf{prox}_{\gamma g} \left(y_{k+1} - \gamma \nabla f(y_{k+1}) \right) \end{aligned}$$

With α and γ chosen appropriately,

$$F(x_k) - F(x^*) \leq \mathcal{O}\left(\frac{1}{k^2}\right),$$

and this rate is optimal.

Visualising Momentum

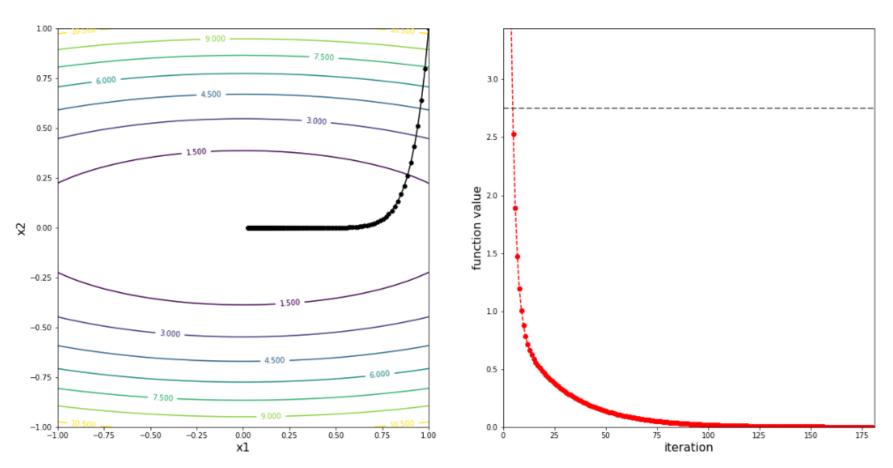


Figure: Using gradient descent to minimize $x_1^2+10x_2^2$ without momentum.

Visualising Momentum

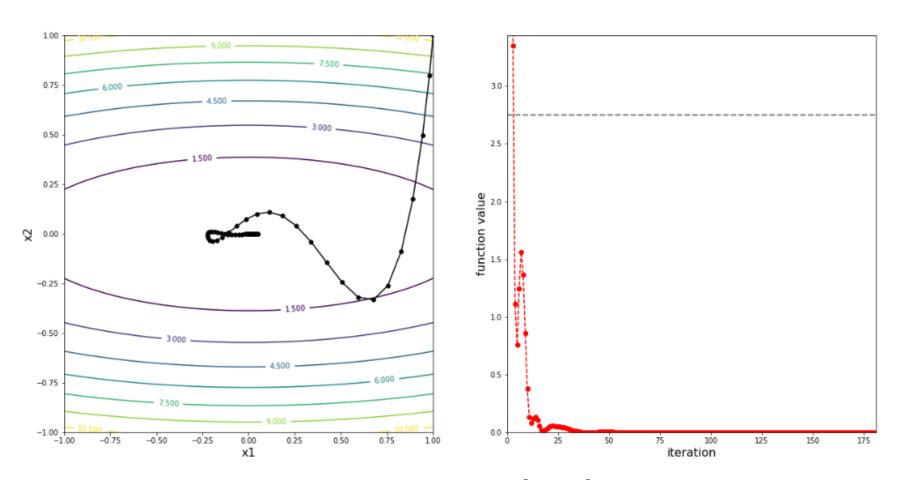


Figure: Using gradient descent to minimize $x_1^2+10x_2^2$ with momentum.

Accelerating Stochastic Gradient Methods

In the stochastic setting, momentum propagates "bad" gradient evaluations, so it is unclear whether momentum-based methods improve performance.

"Katyusha" (Allen-Zhu, 2017) achieves the optimal $\mathcal{O}\left(\frac{1}{k^2}\right)$ -rate using **negative** momentum and linear coupling:

$$\begin{split} x_{k+1} &= \alpha_1 z_k + \boxed{\alpha_2 \widetilde{x}} + (1 - \alpha_1 - \alpha_2) y_k \\ y_{k+1} &= \operatorname{prox} \left(x_{k+1} - \gamma \alpha_1 \widetilde{\nabla}_{\text{svrg}} f(x_{k+1}) \right) \\ z_{k+1} &= \operatorname{prox} \left(z_k - \gamma \widetilde{\nabla}_{\text{svrg}} f(x_{k+1}) \right) \end{split}$$

The term $\alpha_2 \tilde{x}$ "attracts" x_{k+1} , supposedly limiting the effects of detrimental gradient evaluations.

Our Results

Using linear-coupling analysis, we prove the following:

Theorem

Consider the algorithm

$$\begin{split} x_{k+1} &= \alpha z_k + (1-\alpha) y_k \\ y_{k+1} &= \operatorname{prox} \left(x_{k+1} - \gamma \alpha \widetilde{\nabla} f(x_{k+1}) \right) \\ z_{k+1} &= \operatorname{prox} \left(z_k - \gamma \widetilde{\nabla} f(x_{k+1}) \right) \end{split}$$

with $\widetilde{\nabla}=\widetilde{\nabla}_{\mathrm{SAGA}}$ or $\widetilde{\nabla}_{\mathrm{SVRG}}.$ Choosing α and γ appropriately,

$$F(x_k) - F(x^*) \leq \mathcal{O}\left(\frac{1}{k^2}\right)$$

Our analysis can be easily extended to many other (variance-reduced) stochastic gradient estimators.

Our Results

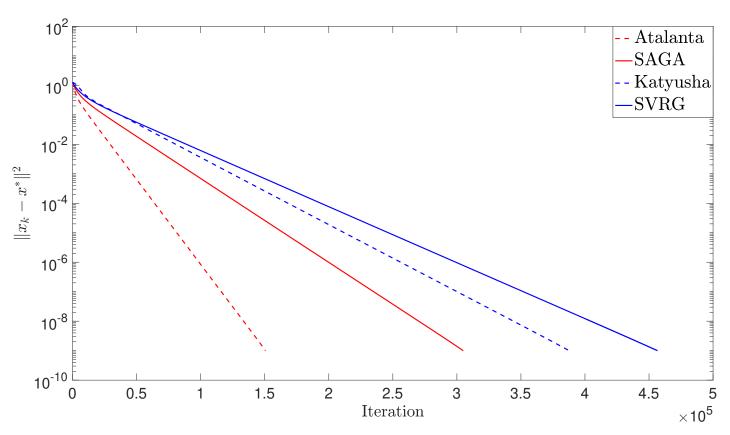


Figure: Comparing stochastic gradient methods on a sparse logistic regression problem (see poster for details).

"Atalanta" uses our acceleration framework with the SAGA gradient estimate, and is extremely fast.