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Problem Setting

Many machine learning problems can be formulated as

min

Convex, smooth functions with

-Lipschitz continuous

gradients

Convex, non-smooth function
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Problem Setting

min

– -norm with linear

operator

– -norm

– nuclear norm

Applications: LASSO, Robust PCA, Logistic Regression
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Proximal Gradient Descent

min

This problem can be solved using proximal gradient descent:

prox

where the proximal operator is defined as

prox argmin

This algorithm requires the evaluation of gradients per iteration.
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Stochastic Gradient Descent

Computing the full gradient is expensive for large , so we can replace

with an estimate of the gradient, , where

SGD
SGD

SAGA
SAGA

SVRG
SVRG

The index is chosen uniformly at random.

— The gradient is stored for future iterates.

— The full gradient is computed every iterations and

stored for future iterates.
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Convergence Rates

With the minimiser of , the suboptimality at

iteration is .

For proximal gradient descent on convex objectives,

For SVRG and SAGA,
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Accelerating Full Gradient Methods

Nesterov’s momentum trick is a slight modification that offers enormous

acceleration:

prox

With and chosen appropriately,

and this rate is optimal.
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Visualising Momentum

Figure: Using gradient descent to minimize without momentum.
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Visualising Momentum

Figure: Using gradient descent to minimize with momentum.
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Accelerating Stochastic Gradient Methods

In the stochastic setting, momentum propagates “bad” gradient evaluations, so

it is unclear whether momentum-based methods improve performance.

“Katyusha” (Allen-Zhu, 2017) achieves the optimal -rate using negative

momentum and linear coupling:

prox
SVRG

prox
SVRG

The term “attracts” , supposedly limiting the effects of detrimental

gradient evaluations.
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Our Results

Using linear-coupling analysis, we prove the following:

Theorem

Consider the algorithm

prox

prox

with
SAGA

or
SVRG

. Choosing and appropriately,

Our analysis can be easily extended to many other (variance-reduced)

stochastic gradient estimators.
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Our Results
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Figure: Comparing stochastic gradient methods on a sparse logistic regression problem (see poster for details).

“Atalanta” uses our acceleration framework with the SAGA gradient estimate,

and is extremely fast.
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