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Traditional approaches to density estimation

o Task: estimate an unknown density function fo: RY — [0, c0)
based on a random sample Xi,..., X, id fo.

e Parametric approaches (e.g. maximum likelihood estimation for
Gaussian densities): often produce estimators that are
analytically tractable and/or easy to compute, but parametric
assumptions can be too restrictive.

e Non-parametric approaches (e.g. kernel density estimation):
flexible, but often require the choice of one or more tuning
parameters (e.g. kernel bandwidths).



Log-concave densities

f: RY — [0,00) is said to be log-concave if log f is concave.
When d = 1: unimodal with exponentially decaying tails.
Examples: Gaussian, logistic, Gumbel and uniform densities.

Log-concave density estimation: best of the parametric and
non-parametric worlds — modelling flexibility and fully automatic
procedures.



The log-concave maximum likelihood estimator

N

e f, maximises the log-likelihood function Y7 ; log f(X;) over
log-concave densities f.

e Cule, Samworth and Stewart (2010): #, exists and is unique with
probability 1 if fy is log-concave and n > d + 1.

e log 1?,, is a 'tent pole function’ with tent poles at the Xj;
f, is supported on the convex hull of the data.



Plot when d =1
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Plot when d = 2




Performance of f,

e Introduce a global loss function: squared Hellinger distance
dii(f,g) = Jps (VF — /B)*.
e Worst-case risk bounds for 7?,, (Kim and Samworth, 2016):
n—4/5

d
sup Eg{di(f f)} Sa {n?logn  d
d

fo log-concave

1;
2;
n~12logn 3

e In dimensions 1,2, 3, £, has essentially the best possible
worst-case performance (achievable by any estimator); it is
(almost) minimax optimal.



Adaptation properties

e Motivation: log f, is concave and piecewise affine, so it is
natural to expect more accuracy when log fy is also close to
piecewise affine.

e Kim, Guntuboyina and Samworth (2018) showed that if d = 1
and fy is (close to) log k-affine, then

2 k
Eq{dfi(fa, o)} < —log®* .

e New result: if d =2,3 and fy is (close to) a log k-affine function
supported on a polyhedral set with at most m facets, then

k(k + m)

Er{dii(fn f0)} Sa log™ n,

where 75 =9/2 and 73 = 8.



