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Traditional approaches to density estimation

• Task: estimate an unknown density function f0 : Rd → [0,∞)

based on a random sample X1, . . . ,Xn
iid∼ f0.

• Parametric approaches (e.g. maximum likelihood estimation for
Gaussian densities): often produce estimators that are
analytically tractable and/or easy to compute, but parametric
assumptions can be too restrictive.

• Non-parametric approaches (e.g. kernel density estimation):
flexible, but often require the choice of one or more tuning
parameters (e.g. kernel bandwidths).
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Log-concave densities

• f : Rd → [0,∞) is said to be log-concave if log f is concave.

• When d = 1: unimodal with exponentially decaying tails.

• Examples: Gaussian, logistic, Gumbel and uniform densities.

• Log-concave density estimation: best of the parametric and
non-parametric worlds – modelling flexibility and fully automatic
procedures.
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The log-concave maximum likelihood estimator

• f̂n maximises the log-likelihood function
∑n

i=1 log f (Xi ) over
log-concave densities f .

• Cule, Samworth and Stewart (2010): f̂n exists and is unique with
probability 1 if f0 is log-concave and n ≥ d + 1.

• log f̂n is a ‘tent pole function’ with tent poles at the Xi ;
f̂n is supported on the convex hull of the data.
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Plot when d = 1
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Plot when d = 2
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Performance of f̂n

• Introduce a global loss function: squared Hellinger distance
d2
H(f , g) :=

∫
Rd (
√
f −√g)2.

• Worst-case risk bounds for f̂n (Kim and Samworth, 2016):

sup
f0 log-concave

Ef0{d
2
H(f̂n, f0)} .d


n−4/5 d = 1;

n−2/3 log n d = 2;

n−1/2 log n d = 3.

• In dimensions 1, 2, 3, f̂n has essentially the best possible
worst-case performance (achievable by any estimator); it is
(almost) minimax optimal.
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Adaptation properties

• Motivation: log f̂n is concave and piecewise affine, so it is
natural to expect more accuracy when log f0 is also close to
piecewise affine.

• Kim, Guntuboyina and Samworth (2018) showed that if d = 1
and f0 is (close to) log k-affine, then

Ef0{d
2
H(f̂n, f0)} . k

n
log5/4 n.

• New result: if d = 2, 3 and f0 is (close to) a log k-affine function
supported on a polyhedral set with at most m facets, then

Ef0{d
2
H(f̂n, f0)} .d

k(k + m)

n
logγd n,

where γ2 = 9/2 and γ3 = 8.


