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1 Introduction and motivation
In flood modelling the rainfall distribution is often assumed to be uniform or is only varying on coarse scales, e.g.
is constant on each 5×5km2 grid, leading to a fairly even rainfall spread across catchments. Given that rainfall
and especially summer rainfall tends to be more localised [13, 20], such coarse or uniform rain distributions
are unrealistic and can lead to several problems in flood risk assessment. As an example, consider the observed
rainfall over the Thames estuary for July 2014 in Fig. 1. This radar image shows extremely localized rainfall
over Canvey Island that led to severe flooding in the surrounding area. If the rainfall had been spread evenly
across the region, as is often assumed in flood modelling, it would have been less likely to lead to any flooding.
The issue is that when the spatial distribution of rainfall is assumed or smoothed to be too uniform then it
cannot capture more localized precipitation events. Consequently, the flood risk in some areas may be over-
or underestimated, which leads to inefficient use of vital resources, with some communities missing out on
necessary flood protection while other communities are overprotected. There are certain techniques that can be
employed to alleviate this rainfall distribution problem, known as “continuous simulation” and “Monte Carlo
analysis” [14, 18]. The question is whether the extra cost and time involved in applying these techniques is
worth the added confidence. The challenge for mathematicians is to find an approach that gets some of the
benefits of a more detailed approach, with only a minimal increase in the modelling costs.

Improved understanding of rainfall patterns can be crucial in improved forecasting of extreme flood events.
Just as the temporal variations in these patterns are important in being able to forecast clustered flood events over
only short time periods, potentially causing cumulative flood damage, combined spatial and temporal rainfall
variations across the entire catchment can also lead to cumulative extreme flood damage. Consider for example
heavy rainfall in the upper catchment of a river, causing a flood peak in a hydrograph propagating downstream.
Consider either a new weather pattern or the same weather pattern causing another heavy rainfall event at a later
time but further downstream near a city. When the latter event causes a second flood peak coalescing entirely
or partially with the first flood peak, then an extreme, cumulative flood event can unfold. At present, there is
a lack of understanding the extreme risk of such a spatiotemporal rainfall distribution and their resulting flood
risk. Flood models often do not deal very well with such complicated rainfall distrbutions, and certainly not
when model rainfall is uniformly distributed over the catchment [14].

We aim to develop a methodology to improve flood predictions for complex spatio-temporal distributions
of rainfall in a catchment with only a minimal increase in the modelling resource and time. Providing a full
picture of the rainfall distribution across a large river catchment is prohibitively expensive in terms of computa-
tional resources and time. We will outline a tractable approach achieved by using pattern recognition to reduce
the dimensionality and by sampling spatially varying extreme rainfall distributions using novel Monte Carlo
techniques.

To aid the approach in this study, we used a simplified modelling environment, inspired by and used in the
mathematical design of the tabletop flood-demonstrator “Wetropolis” [4]. Wetropolis conceptualises the science
of flooding and rainfall in an idealised river catchment. Physically, it is comprised of a river channel, possibly
with a canal running in parallel, a reservoir for water storage, a porous flow cell with observable groundwater
flow analogous to an upper catchment of porous moorland and random “rainfall”, the latter which occasionally
leads to flooding in the idealised urban area of Wetropolis. Rain falls either in the reservoir or in the moor. We
use a idealised mathematical model version of Wetropolis to sample rainfall intensity. It enables us to define
an impact metric, based on a weighted rainfall intensity, and a damage function relating to flood extent, i.e. a
threshold water level within the city area of the model. It thus allows us to formulate a minimisation problem
for spatiotemporal multi-variate rainfall distributions in a clear manner.

The challenge posed above, on the use of the spatial distribution of rainfall in flood models with only a
minimal increase in the modelling resource and time, was presented to the study group by Dr. Adam Baylis of
the Environment Agency (EA). The EA is an executive non-departmental public body, sponsored by DEFRA
(the Department for Environmental, Food and Rural Affairs), responsible for protecting and improving the
environment, including management of flood risk.
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Figure 1: Hyrad radar hourly accumulation precipitation data over Canvey Island July 20th 2014 with each
square having a size of 500× 500m2 in an overview (top), with the Thames estuary outlined underneath, as
well as a zoom-in over Canvey Island (bottom) with accumulated rainfall in mm (Source: Environment Agency,
2014).
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1.1 Spatially varying rainfall patterns
To investigate the effects of spatio-temporal rainfall distributions, we will consider a hierarchy of test cases to
simulate rainfall, in one dynamic setting, including:

(1) spatially uniform rainfall as a reference case mimicing what is often done in the current flood forecasting
practice;

(2) spatially varying rainfall (e.g. as for Canvey Island [3]); and,

(3) both temporally and spatially varying rainfall (e.g. as for the Medway [14]).

1.2 Probabilistic forecasting of flood events
Probabilistic forecasting is commonplace for flood prediction [7, 18, 9]. In this setting it is traditionally done
with ensemble-based methods. Ensemble-based methods of probabilistic flood forecasting can incorporate
spatio-temporal variation in rainfall patterns naturally. Once we can simulate spatially and temporally varying
rainfall patterns, this incorporation is visualised via the following chain of events:

Input: Sampling rainfall events −→ Black-box flood model︸ ︷︷ ︸
expensive!

−→ Output: Postprocess / forecast.

The components of this chain are as follows:

Sampling rainfall events: The first component describes the sampling of rainfall events from a spatio-temporal
distribution. The distribution that one samples from here is primarily dependent on the assumptions
that one makes about the rainfall patterns in a certain catchment. Typical behaviour of such rainfall
patterns should be known and a distribution could be inferred from this. Clearly, the more complicated the
distribution, e.g. with more degrees of freedom, the more challenging the forecasting problem becomes.
The challenge arises because with a fixed-sized and finite ensemble of simulations it is difficult to find
a good approximation to the likelihood of rare flood events. Our optimisation algorithm concerns this
component of the event chain.

Black-box flood model: The next component of the forecasting process contains most of the leg-work. One
must usually run some black-box flood model with inputs (source term, topography) over a time interval
and in space over the catchment / domain. This is by far the most computationally expensive part of the
forecasting process. In some cases this black-box model will be the shallow water equations (SWEs)
although this is a particularly expensive choice [10, 12, 5]. In this report we concentrate on a simpler
one-dimensional flood model (used in the design of Wetropolis) for the forecasting component.

Postprocess and forecast: The final component usually takes the form of a statistical postprocessing / forecast-
ing method. For example, given an ensemble of simulations derived from the last part (black-box model),
one can compute statistics of the flood forecast via Monte Carlo methods. Here, a variety of verification
/ scoring techniques can be used to evaluate the quality / performance of the forecast [11].

There are various ways to reduce the computational complexity of the above chain to arrive at feasible
forecasts. Variance reduction is a popular choice when using Monte Carlo in the estimating statistics to fore-
casts; multilevel methods have raised significant interest in the last decade. We refer also to a feasibility study
of Maths Foresees’ network, which looked into applying this particular variance reduction technique to flood
ensemble forecasts [12].

2 Methodology
Given that the most expensive part of the forecast process is the black-box flood model, it is in our interest to
only generate simulations of this model with optimised samples of spatio-temporal rainfall (the first component
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identified above). In this section, we define and apply an optimization problem to generate trained samples
of certain catchment’s spatio-temporal rainfall patterns that lead to predictions for rare flood events. The opti-
misation problem will be chosen to be a linear function of the spatio-temporal rainfall function r, involving a
spatio-temporal function f which we train on the data. Since these are shown to be optimised samples for each
catchment, one may only need to run the black-box model once for a “best guess” forecast or a handful times
for the corresponding probabilistic forecast.

2.1 Wetropolis as black-box flood model
Wetropolis is a flood demonstrator built for a public outreach and engagement project of the Maths Foresees’
network [4], see its overview in Fig. 2. It offers a suitable model environment for our study. Wetropolis fits on a
table-top of size 1.4×1.4m2. It consists of a winding river channel with a constant upstream inflow at x = 0m
using a coordinate x∈ [0,L] following the centre of this winding channel, random inflow from an outflow pipe of
a reservoir centred at x1 = 0.925m as well as random inflow from a porous moor with an overflow strip centred
at x2 = 2.038m. Currently, L = 5.21m while in the original mathematical design L = 4.21m. The walled river
channel has a rectangular section of width wr = 0.05m with a higher wall on one side and a lower wall on the
other side of height 0.015m running into a slanted 0.1m-wide flood plain on the right when facing downstream.
The latter plain slopes 0.005m at right angles from the channel centre line upward into a wall. The river slope
is 1 : 100.

In the mathematical model facilitating Wetropolis’ design, the dynamics was modelled as follows:

• river flow was modelled using the one-dimensional St. Venant equation with only a rectangular cross-
section of width wr for the river depth hr(x, t) as function of the distance x and time t;

• the level hres(t) of the reservoir was modelled using mass conservation with rain inflow and outflow using
a rectangular weir equation (e.g., [16]) across the width of the reservoir;

• the moor was modelled using a nonlinear diffusion equation for porous media flow with depth- and width-
averaged ground water level hm(y, t) as function of a centre-line coordinate y and time, cf. [1]; coordinate
y ∈ [0,Ly] lies normal to the river channel at x = x2; rain falls uniformly on the moor, on one side there is
a wall with no through-flow and on the other side at y = 0 the water flows out at a base level via a weir
equation across the width of the moor; and,

• Wetropolis’ model contains a city located between the coordinates x∈ [x−c ,x+c ] with a threshold bank level
of 0.02m, above which the city floods.

Rainfall is random. It varies both in location and rain amount. Rain location is fourfold: either in the reservoir,
both in reservoir and moor, in the moor or not. Rain amount is (10,20,40)% or 90% during a “Wetropolis” day
of wd = 10s. Both rain location and amount are drawn randomly from a discrete distribution with outcomes
(3/16,7/16,5/16,1/16)2. In the table-top set-up these are drawn visually every 10s when (two) steel balls fall
through two skew-symmetric Galton boards [4].

Here, we will consider a simplified version of the above one-dimensional mathematical model. We keep
the river channel with along-channel coordinate x ∈ [0,L], but have replaced the reservoir and groundwater
cell with two point sources of rainwater supply at two distinct coordinates x1 and x2 along the catchment. So
neither the reservoir nor the ground water are modelled with the detail given above. Instead rainwater supply
is drawn randomly using Richardson’s 1981 model of precipition, with a two-state Markov chain-exponential
distribution of rain [6]. We have thus simplified the spatial pattern of the rainfall at only x = x1 and x = x2, two
degrees of freedom instead of the reservoir level hres(t) and instead of the continuum of multiple groundwater
levels hm(y, t). The city located between the coordinates x ∈ [x−c ,x

+
c ] remains the target area of interest for our

flood forecasts. Such a simplified model can be easily numerically discretized and can run the wd = 10s of
real-time in less than a second on a laptop. Hence, we can quickly and efficiently model flood events to test the
methodology proposed in the present study.

The kinematic model for river flow in a rectangular channel is a simplification of the St. Venant or cross-
sectionally averaged shallow-water equations with parametrized bottom drag. The latter St. Venant equations
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Figure 2: Schematic of the Wetropolis flood demonstrator in one dimension (top scale) and a photograph
(bottom). Flow of water goes from left to right, with an outflow boundary at the right end of the catchment (top
scale). The curvilinear x–coordinate following the river channel is given as a line above the schematic on which
the rainfall point sources are located at the coordinates x1 and x2. The city is indicated in red by the zone within
the interval x ∈ [x−c ,x

+
c ].

read

∂tA+∂x(Au) =Q≡ Q1δ (x− x1)+Q2δ (x− x2) (1a)

∂tu+u∂xu+g∂xhr =−g(∂xb+C2
mu|u|/R(hr)

4/3) (1b)

with cross-section A(x, t) = wrhr(x, t), averaged velocity u(x, t), average water depth hr(x, t) relative to the
lowest point in a river cross-section, bottom topography b(x), acceleration of gravity g = 9.81m/s2, hydraulic
radius R(h) = wet area/wetted perimeter = wrh/(2h+wr) with Manning friction coefficient Cm ∈ [0.01,0.15]
(for tabulated values of Cm, see [16]) and rainfall r(x, t) with volumetric discharge terms Q1 and Q2 expressed
as cubic metres per second, localised at x1 and x2 via two delta functions δ (·). In Wetropolis b(x) = −Sx
with slope S = 0.01. The kinematic approximation arises when the underlined terms in (1) form the dominant
balance, such that

u = R(hr)
2/3
√
−∂xb/Cm. (2)

Substitution of (2) into the continuity equation (1a) while using the definition of A yields the kinematic river
flow equation

∂tA+∂xF(A) = r(x, t)≡ Q1δ (x− x1)+Q2δ (x− x2) (3)

with flux F = F(A)≡ AR(A/wr)
2/3√−∂xb/Cm, or

∂t(wrhr)+∂x
(
wrhrR(hr)

2/3
√
−∂xb/Cm

)
=Q1δ (x− x1)+Q2δ (x− x2). (4a)

This is a hyperbolic equation with positive characteristic since ∂AF/∂A > 0 or (1/wr)∂hr F∂hr > 0 with flux
F(hr,Cm,∂xb,wr)/wr = wrhrR(hr)

2/3√−∂xb/Cm. Hence, only an upstream boundary condition is required,
expressed in terms of an influx

Q0(t) = A(0, t)u(0, t) = F (hr(0, t),Cm,∂xb|x=0,wr) (4b)
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as well as an initial condition
hr0(x) = hr(x,0). (4c)

A better approximation is to balance the free surface gradient g∂x(h+b) with the friction term, which yields an
advection-diffusion equation (cf. [2]1).

The numerical discretization of (4) consists of a straighforward first-order finite-volume Godunov discreti-
sation with upwind numerical flux (cf. [15])

hn+1
k =hn

k−
∆tn
∆xk

((
hn

kR(hn
k)

2/3
√
−∂xb/Cm|xk+1/2

)
−
(
hn

k−1R(hn
k−1)

2/3
√
−∂xb/Cm|xk−1/2

))
+∆tnQn

1δk,x1 +∆tnQn
2δk,x2 , (5)

in which we have partitioned the line into k = 1, . . . ,Nk elements of finite volumes with (varying) time interval
∆tn = tn+1− tn between time levels tn and tn+1 for n = 0,1, . . . and approximation ∆xkhn

k ≈
∫ xk+1/2

xk−1/2 hr(x, tn)dx
with the kth–cell width ∆xk = xk+1/2− xk−1/2 based on cell edges xk+1/2 and xk−1/2. The modified “Kronecker
delta” symbol is defined as follows: δk,x1 = 1 when x1 lies in cell k and zero otherwise. At the initial time n = 0,
we take ∆xkh0

k ≈
∫ xk+1/2

xk−1/2 hr(x,0)dx.
The random rainfall distributions are based on Richardson’s approach [19]. In the first approach we assume

the distributions to be independent at the two locations. Per location, the distribution consists of a two-state
Markov chain determining whether the day is dry, a state with value 1, or wet, a state with value 2 with associated
transition probabilities. Given the transition probability P(1|2) of a wet day with state 2 following a dry day
with state 1 and the transition probability P(2|2) of a wet day following a wet day, the remaining transition
probabilities are given by:

P(1|1) = 1−P(1|2) and P(2|1) = 1−P(2|2). (6)

Hence, if the day was dry then the chance of it remaining dry is 1−P(1|2) while the chance of it becoming wet
is 1−P(2|2). In the case that the previous day was in the wet state, the precipitation Yd at the next day nd is
drawn from an exponential distribution

fe(yd) = λe−λyd such that Yd ∼ ln(U(nd))/λ (7)

with uniform distribution U(nd). Here, the Markov-chain-exponential values P(1|2) = 0.226 and P(2|2) =
0.475 as well as λ = 0.282 used are based on a fit to weather data from Spokane, Washington, cf. [19].

In the second approach, building on the above, we introduce correlations between the two sites, as follows.
A 4×4 matrix Pi j with i, j = 1,2,3,4 of correlated transition probabilities is built. On the previous day, we now
have four states: dd) both locations are dry (state 1), dr) location x1 is dry but location x2 is wet (state 2), rd)
location x1 is wet and location x2 is dry or rr) both locations are wet, with corresponding states 2. The transition
probabilities to wet states are then determined as follows:

dd→ rr : 1+P33 and 1+P33 (8a)
dr→ rr : 1+P31 and 1+P11 (8b)
rr→ rr : 1+P11 and 1+P11 (8c)
rd→ rr : 1+P11 and 1+P13. (8d)

We now use one shared uniform distribution U1 on a day as well as occasionally a second one U2. When it has
only been wet at location x2 (dr-case) then Yd2 ∼− ln(3U1/4+U2/4)λ . When it has only been wet at location
x1 (rd-case) then Yd1 ∼ − ln(U1)λ . When it has only been wet at both locations then Yd1 ∼ − ln(U1)λ and
Yd2 ∼− ln(3U1/4+U2/4)λ .

In the third approach we took artificially simulated data relating to daily rainfall at different sites over part
of Ashdown Forest in Sussex. This dataset is part of an example dataset provided with the R-package RGLIM-
CLIM [6], designed for modelling and simulation of univariate or multivariate daily weather sequences at single

1An asymptotic justification thereof was given by Gavin Esler at the second General Assembley of the Maths Foresees’ network in
Edinburgh, September 2016, cf. [17].
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or multiple sites. According to the manual, the dataset was generated by simulating a different generalised lin-
ear model fitted, with appropriate modifications. The data exhibit many typical features of rainfall sequences
in temperate climates. We used data from sites G3 and G6 as realisations of variables Y nd

d1 and Y nd
d2 , for which

approximately 14% of the values are missing (at random). Due to the time restriction of the study group, we
simply omitted the dates with missing rainfall data, potentially making this dataset unreliable. If we were to
repeat this, we would fit the missing data using GLM methods implemented in the RGLIMCLIM software, as
described in the example in [6].

For either of these three apporaches, let us now denote rainfall random variable on a particular day nd as
Y nd

d1 ∼ Yd1 and Y nd
d2 ∼ Yd2, and their realisations as ynd

d1 and ynd
d2 respectively. Then we can define the rainfall

function as a piecewise constant function over each Wetropolis day of 10s, given by

r(x, t) =


Q1 = sry

nd
d1, if x = x1 and t−10nd ∈ [0,10s)

Q2 = sry
nd
d2, if x = x2 and t−10nd ∈ [0,10s)

0, otherwise

for all nd ∈ N. The manually determined scale factor sr = (wvLyR0)/3 adjusts the Spokane to the Wetropolis
precipitation settings based on Wetropolis design values with the width and length of the moor wv = 0.095m
and Ly = 0.925m and the rainfall R0 = 2.048mm/s.

2.2 The damage and impact metric
Our primary goal is to define a mathematical approach to assess the impact of spatio-temperal rainfall dis-
tributions on flooding of a target area. Here, the target area chosen is a city region where the impact would
be most severe. First, there is the damage metric. Second, there is the idea that this metric is a complicated
function of the precipitations, complicated because we need to solve the hydrological model to evaluate it. We
explore whether we can replace this complicated function by a simpler one, a linear functional of the rainfall,
involving a spatio-temporal function f (x, t) which we train on data. The damage functional D [r] to evaluate the
impacts of rare flood events depends on the spatio-temporal rain function r(x, t), indirectly via hr(x, t) through
the hydrological model, and is defined as

D [r] =
∫ T

0

∫ x+city

x−c
max(hr(x, t)−hc,0) dxdt (9)

over a sufficiently long period T . The impact functional depends on the rain r and the function f as follows

Dest [r| f ] =
∫ T

0

∫ L

0
f (x, t)r(x, t)dxdt. (10)

The mathematical approach is now formulated as the following minimisation problem

G = min
f

{
‖D [r]−Dest [r| f ]‖2

}
. (11)

This damage functional (9) is a function of the flood water depth hr(x, t), over the area of interest: the
city. In practice, rather than being based on the water depth, one would desire the damage functional to be
primarily a function of the financial cost resulting from damage to the areas of interest in a catchment. However
there is good reason to believe the two are positively correlated; a case study into certain catchments found a
close coupling between the water depth from flooding and the financial cost avoided from installing barriers
preventing floods [8].

The optimisation problem posed to determine f (x, t) is rather complicated and involves many degrees of
freedom but there are a few simplifications possible. First, both the damage and impact functionals are only
nonzero when there is a flood event, so the minimisation integral will become a sum of integrals over the
duration of each storm event. Second, here a storm event is defined to occur when the river level at the start
of the city at x = x−c surpasses a certain flood threshold h(xc− , t) > hc = 0.02m. Every such storm event has
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a duration nd,0− nd,1 Wetropolis days with an associated timeline, as indicated in Fig. 3, where t0 = nd,0 · 10s
and t1 = nd,1 · 10s are respectively the start and end time of the flooding in the city. Third, the minimisation
function and rain function are here chosen to depend only on two spatial locations such that: f (x, t)r(x, t) ≈
f1(t)r(x, t)δ (x− x1)+ f2(t)r(x, t)δ (x− x2). Over all storm events we parametrise f1,2 with three parameters
each.

Fourth, given the simplification for f and that rainfall is resolved only per Wetropolis day, we also simplify
the rainfall function over the period attributed to each flood event, i.e. r(x, t) for t ∈ [t−1, t1] with t0− t−1 =
20s = 2wd (see Fig. 3), so that it can be characterised approximately with only three values. The additional
time considered before the start of the flood, t ∈ [t−1, t0), highlights that the damage is caused by rain events
that started in the past. In practice the delay of the flood will depend on the level and the water levels but in
the calculation only a gross estimate seemed to be required. This is based on bespoke training data from the
Wetropolis model. It must be noted, however, that this is a crude assumption and does not account for multiple
rain storms in quick succession causing long-lasting floods.

Note that the second, third and fourth simplifications are particular to our simplified and illustrative Wetropo-
lis setup. Details are explained in the next section.

t−1 t0 t1

flood, i.e. h(xc, t) > hcpre-flood

rainfall associated to the flood

Figure 3: Timeline of a flood event.

2.3 Least squares minimisation problem
A reference case is to take a uniform function f (x, t) amounting to equal weighting of extreme rainfall events,
i.e. only counting those that caused (any) damage. The minimisation problem aims to find an optimised function
f (x, t) relating impact and damage functionals.

We have defined the localised functions in space f1 and f2 representing the temporal variation in rainfall at
each of the two source coordinates, respectively, and thus the spatio-temporal variation in rainfall over the whole
catchment and the entire duration of the record. For simplicity, we have chosen three coefficients per location,
yielding six αi, j, i = {1,2}, j = {1,2,3}, in total making up both functions as follows fi(t) = ∑

3
j=1 vi, j(t)αi, j.

The three degrees of freedom in each function represents the ‘start’, ‘middle’ and ‘end’ of a given flood, deter-
mined over all storm events. Therefore

vi, j(t) =

{
1, ( j−1)(t1−t−1)

3 ≤ t− t−1 ≤ j(t1−t−1)
3 ,

0, otherwise.

Moreover, the rainfall function r(x, t) is piecewise constant at each location. During a particular storm that
lasts for a few Wetropolis days, we only have daily resolution, whereas by the way we have defined f we might
be interested in better/worse resolution than the daily rainfall over the time period attributed to the flood. We
would like to make the rainfall resolution consistent over storm durations of any number of Wetropolis days.
We achieve this via piecewise linear interpolation over rainfall at a particular location xi during Wetropolis
days related to the storm, this is over points (10nd ,r(x,10nd))) such that 10nd ∈ [t−1, t1] with nd a positive
integer, and t−1 and t1 related to a particular storm. We denote the obtained interpolation function as r̃i(t) and
define r̃i, j := r̃i

(
t−1 +

( j−1)(t1−t−1)
nr

)
for j = 1,2, . . . ,nr +1. The value of the positive integer nr can be chosen

depending on the desired resolution, but we choose nr = 3. We then approximate rainfall at a location xi via
r(xi, t)≈ ∑

3
j=1 r̃i, jvi, j(t), which further simplifies our impact function.

We now explain how to train f1,2 around data of flood events and use it to predict future flood events whilst
capturing spatio-temporal patterns in rainfall over a catchment. Given that we have a “training set” of N flood
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events via continuous simulation of Wetropolis, we can frame the above minimisation problem as a least squares
minimisation problem.

Each recorded flood event, m = 1, ...,N, has an associated time period T m = [tm
−1, t

m
1 ] and rainfall magnitude

r(x, t)1T m(t) which is nonzero at the time of the storm. In detail, we derive the impact of storm m to be

Im( f ) =
∫ L

0

∫ T

0
f (x, t)r(x, t)1T m(t)dt dx (12a)

=
∫ L

0

∫ tm
1

tm
−1

f (x, t)r(x, t) (12b)

=
2

∑
i=1

∫ L

0

∫ tm
1

tm
−1

fi(t)r(x, t)δ (x− xi)dt dx (12c)

=
2

∑
i=1

∫ tm
1

tm
−1

fi(t)r(xi, t)dt (12d)

=
2

∑
i=1

3

∑
j=1

αi, j

∫ j(tm
1 −tm

−1)/3

( j−1)(tm
1 −tm

−1)/3
vi, j(t)r(xi, t)dt (12e)

=
2

∑
i=1

3

∑
j=1

αi, j

∫ j(tm
1 −tm

−1)/3

( j−1)(tm
1 −tm

−1)/3
r(xi, t)dt (12f)

=
2

∑
i=1

3

∑
j=1

αi, j

∫ j(tm
1 −tm

−1)/3

( j−1)(tm
1 −tm

−1)/3

3

∑
k=1

r̃i,kvi,k(t)dt (12g)

=
2

∑
i=1

3

∑
j=1

αi, j

∫ j(tm
1 −tm

−1)/3

( j−1)(tm
1 −tm

−1)/3
r̃i, j dt (12h)

=
tm
1 − tm

−1

3

2

∑
i=1

3

∑
j=1

αi, j r̃i, j. (12i)

3 Results
In this section we will optimise f over a training set of flood events (continuous simulation of Wetropolis). This
will then allow us to test the effectiveness of the method at constructing “best guess” forecasts of the damage
of future flood events based on a testing set of rainfall storms. The effectiveness of the optimisation will be
based on the improvement it offers over using an uniform f over both rainfall locations and temporally constant
throughout each flood.

Both spatially correlated and uncorrelated scenarios of training and testing rainfall and flood data will be
used to confirm if the first two test cases highlighted in subsection 1.1 (uniform and spatially correlated) hold.
As the rainfall data will be simulated continuously over time, the third case (spatio-temporal rainfall) is also
tested. The correlated rainfall data will be produced by using an R–package, RGLIMCLIM, with two rainfall
sites [6].

The training sets of flood events are simulated over about 5000 Wetropolis days and the optimisation is also
done over this period. The use of these optimised coefficients in forecasting mode is left for future research.

3.1 Spatially uncorrelated rainfall patterns
In the uncorrelated rainfall case, the fitted function f appears from Figure 4 to predict the damage from a
particular storm event much more accurately than using an uniform f , especially in smaller flood events.
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Figure 4: Predicted values of Dest( f ) with uniform f (left panel) and optimised f (right panel) against the
damage functional, I = D , for the testing set of flood events with spatially uncorrelated rainfall patterns.

3.2 Spatially correlated rainfall patterns
The test function f becomes more important in the spatially correlated rainfall case, and it has to be able to
capture the spatial dependence of the two rainfall locations to be able to accurately predict the damage of the
test flood events. One can see from Figure 5 that using the proposed method, fitting f around the training
data, does lead to improved correlations of flood events better than that of using an uniform f . Whilst there is
little change for smaller flood events, the root-mean-square-error (RMSE) from that of a perfect prediction is
significantly improved in the case of using the optimised f because of the larger flood events. Two main outliers
effect the cases when using an uniform f ; these are much more constrained when using the optimised f .

Figure 5: Same as in Figure 4, but for the testing set of flood events with spatially correlated rainfall patterns.
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4 Conclusion and discussion
In this report, we have proposed a technique to take into account spatio-temporal variability of rainfall without
needing the computational resources of full continuous Monte Carlo simulations. The idea is relate flood dam-
age directly to the rainfall through a function that is trained on simulation data. This “optimisation” over the
spatio-temporal function f (x, t) was done before simulation of a black-box flood forecasting model which may
be more efficient than traditional Monte Carlo sampling strategies. The method has been shown to work on a
simple proof of concept using an idealised two-rainfall-site model, Wetropolis, by leading to increased accuracy
of predictions to flood events in cases where rainfall is both spatially correlated and uncorrelated.

We have left out the uncertainty quantification aspect of the least squares minimisation problem used in this
report for simplicity. This uncertainty quantification, by means of confidence interval around the least squares
minimisation, for example, could be utilised in this method to capture probability bands on our forecast. This
still only requires very few runs of our black-box flood model; once again showing the method is more efficient
than traditional Monte Carlo sampling ideas.

Our approach in principle allows to a priori gauge the damage caused, here in city, given a certain spatio-
temporal rainfall metric, using either observed or predicted rainfall r(x, t).

Future extensons of this research and further recommendations are as follows:

• The use of the optimised coefficients f in forecasting mode is left for future research.

• In reality rain can fall over a large area, so the spatial variability in the minimiser f (x, t) and the rainfall
r(x, t) has much more spatial variability. This can be tested in the actual Wetropolis model in which rain
falls (uniformly) on the moor but is delayed by the groundwater dynamics, including previous hydrolog-
ical history.

• The correlation between the damage and impact functionals includes the delay between rainfall and the
reulting river level dynamics. Here it is modelled as a set delay ∆tr but this needs to be explored further.

• Our approach should be compared and explored for different rainfall scenerios and rainfall generators,
including a comparisoon between the uncorrelated and correlated rainfall generators based on Richardson
[19] and the Chandler [6] used in this study.
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