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Multi-armed bandit problems

• Setting: K slot machines (one-armed bandits) with reward ∼ νi and mean µi

• Sequential aspect: At each round t ≥ 1, choice πt ∈ [K].

• Bandit feedback: Observe only feedback Xt ∼ νπt with mean µπt

• Objective: Maximize reward or expected reward, notion of regret

RT =

T∑
t=1

Xt or
T∑
t=1

µπt =
∑
i∈[K]

µi Ti .

• Exploitation: Playing the machines estimated as better (high mean reward).

• Exploration: Need to have good estimates µ̂i of each mean reward.

• Stochastic optimization Maximize function of (T1, . . . , TK) with unknown µi.

• Applications: Medical experiments, Advertisement, AI in games, · · ·
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Multi-armed bandits - Stochastic optimization

• Sequential aspect: At each round t ≥ 1, choice πt ∈ [K].

• Bandit feedback: Observe feedback Xt ∼ νπt with mean loss µπt.

• Objective: Minimize expected regret, with L(x) = 〈µ, x〉

RT =
1

T

T∑
t=1

L(eπt) =
1

T

T∑
t=1

µπt =
1

T

∑
i∈[K]

µiTi =
∑
i∈[K]

µi
Ti
T

= L
( 1

T

T∑
t=1

eπt

)
.

• In this example, we seek to minimize L(pt), with pt = (T1/T, . . . , TK/T )>.

• Stochastic optimization of L on ∆K,
with unknown µ

• Feedback on µ tied to variable pt

• Optimum at p? = e?.
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Generalization - Motivation

• Bandit aspect: Each round t ≥ 1, choice πt ∈ [K], observe bandit feedback.

• Objective: Minimize unknown convex loss L in the variable pt

• Example: Basket of K goods, utility maximization with unknown βi

U =

K∏
i=1

T βii = TB
K∏
i=1

(Ti
T

)βi
L(p) = −

K∑
i=1

βi log(pi) .

• Simple example for problem with no optimal action, but optimal strategy

• Stochastic optimization of L on ∆K,
with unknown β

• Feedback on β tied to variable pt

• Optimum at p?,i = βi∑
βj

.
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Generalization - Motivation

• Generalization: Any setting where the loss is a function of pt (proportions).

• Applications: Ressource allocation, experimental design, with uncertainty

◦ Estimation: Unknown vector θ ∈ RK, K sources with variances σ2
i

E[‖θ̂ − θ‖22] =

K∑
i=1

σ2
i

Ti
=

1

T

K∑
i=1

σ2
i

Ti/T
L(p) =

K∑
i=1

σ2
i

pi
.

◦ Sequential resource allocation: L(p) = 1
2‖p− p?‖22, feedback on p?.

• Stochastic optimization of L on ∆K,
with unknown parameter.

• Feedback on parameter tied to
variable pt.

• Optimum at p? ∈ ∆K, error

L(pT )− L(p?) .
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Problem description

Bandit Optimization:

• Unknown convex function L : ∆K → R.

• At each round t ≥ 1, choice πt ∈ [K].

• Observe vector ĝt, proxy of the gradient such that w.p. 1− δ

|ĝt,i −∇iL(pt)| ≤
√

2 log(t/δ)

Ti
,

motivated by the parametric setting as a bandit feedback.

Objective: Choosing the actions π1, . . . , πT in order to minimize L(pT ).

Measure: The performance of any policy is

E[L(pT )]− L(p?) .
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Comparison review

• Bandit problems

◦ No regrets: The loss is not cumulative, and for eπt ∈ ∆K

1

T

T∑
t=1

L(eπt) 6= L
( 1

T

T∑
t=1

eπt

)
◦ No individual best action, but optimal mixed strategy.

• Stochastic optimization

◦ Constraint xt = pt, variable not chosen freely in the domain.

◦ Gradient feedback tied to the actions, not independent stochastic.

• Existing work Linear bandits with known convex loss

Agrwal, Devanur, et al., Evan-Dar et al.

“Rules” of bandit problems, “Endgame” of stochastic optimization.
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Algorithmic approach

• Problem setting imposes the dynamic on variable pt ∈ ∆K

pt+1 =
t

t+ 1
pt +

1

t+ 1
eπt+1 = pt +

1

t+ 1

(
eπt+1 − pt

)
,

similar to a gradient-type update, in the direction eπt+1 − pt.

• The Frank-Wolfe algorithm on a convex domain C follows

xt+1 = (1−γt)xt+γtct+1 = xt+γt
(
ct+1−xt

)
, for ct+1 ∈ argmin

u∈C
〈∇f(xt), u〉 .

Frank and Wolfe (56)

• If ∇L(pt) were known, we could take

eπt+1 ∈ argmin
u∈∆K

〈∇L(pt), u〉 .

xtxt

�rf(xt)�rf(xt)

ct+1ct+1
xt+1xt+1
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Algorithmic approach

• If ∇L(pt) were known, applying the Frank-Wolfe algorithm with γt = 1/(t+ 1):

eπt+1 ∈ argmin
u∈∆K

〈∇L(pt), u〉 = argmin
i∈[K]

∇iL(pt) .

• For a C-smooth function, guarantee of L(pT )− L(p?) ≤ C log(eT )/T

• With unknown function, naive idea: using ĝt as a proxy for the gradient.

• Even for linear functional L (multi-armed bandits), known to be problematic.

• Usual fix: correcting for uncertainty. UCB algorithm on µ̂t = ĝt.

eπt+1 ∈ argmin
i∈[K]

µ̂t,i − αt,i = argmin
u∈∆K

〈µ̂t − αt, u〉 , Auer et al. (02)

where αt,i is the size of a valid confidence region, order 1/
√
Ti.
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Upper-confidence Frank-Wolfe algorithm

• Transferring idea of UCB by generalizing it to Frank-Wolfe:

Input: K, p0 = 1[K]/K, sequence (δt)t≥0;
for t ≥ 0 do

Observe ĝt, noisy estimate of ∇L(pt);
for i ∈ [K] do

Ût,i = ĝti −
√

2 log(t/δt)/Ti
end

Select πt+1 ∈ argmini∈[K] Ût,i;

Update pt+1 = pt + 1
t+1(eπt+1 − pt)

end

• Each coefficient is penalized by uncertainty, promoting exploration

• Runs in time O(KT ), omitting gradient computations.

• Proof elements from convex optimization and UCB combined for guarantees.
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Results - Slow rate

• Adapting the proof of convergence for known gradients for C-smooth functions

L(pT )− L(p?) ≤
1

T

T∑
t=1

εt︸ ︷︷ ︸
error of choice

+
C log(eT )

T︸ ︷︷ ︸
opt. term

.

• Together, this yields, for smooth convex functions, the slow rate

E[L(pT )]− L(p?) ≤ c2
√
K log(T )

T
+
C log(eT ) + c1

T
.

• In the linear case, matches the results of UCB for multi-armed bandits.

• Up to logarithmic terms, matching lower bound in the linear case.
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Results - Fast rate

• Instance-dependent fast rates, in multi-armed bandits with gaps ∆(i) = µi− µ?

E[L(pT )]− L(p?) ≤
c2 log(T )

T

∑
i6=?

1

∆(i)
+
c1
T
.

• Proof idea: T (L(pT )− L(p?)) =
∑
i6=?∆(i)Ti and

∑
i6=?

√
Ti ≤

(∑
i6=?

∆(i)Ti

)1/2(∑
i6=?

1/∆(i)
)1/2

.

• General lower bound built on
∆ ≈ 1/

√
T

• Geometric interpretation in the
simplex corner

�µ�µ
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Results - Fast rate

• Possible to extend to gradient gaps ∆(i)(L) = ∇iL(p?)−∇?L(p?)

E[L(pT )]− L(p?) ≤
c2 log(T )

T

∑
i6=?

1

∆(i)(L)
+
c1
T

+
C log(T )

T
.

• Proof idea: T (L(pT )− L(p?)) ≈
∑
i6=?∆(i)(L)Ti and

∑
i 6=?

√
Ti ≤

(∑
i6=?

∆(i)(L)Ti

)1/2(∑
i6=?

1/∆(i)(L)
)1/2

.

• General lower bound built on
∆ ≈ 1/

√
T

• Geometric interpretation in the
simplex corner

�µ�µ
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Results - Fast rate

• Slow rate improved to fast rate by adding structure: but mixed strategies?

• We consider µ-strongly convex functions

f(y) ≥ f(x) +∇f(x)>(y − x) +
µ

2
‖x− y‖22 .

with dist(p?, ∂∆K) = η > 0.

• Classical hypothesis in stochastic optimization and in Frank-Wolfe.

Polyak and Tsybakov, Garber and Hazan, Jaggi, Lafond et al.

• Not always exploitable, in online and bandit problems.

Shamir, Jamieson et al.
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Results - Fast rate

• For L that is µ-strongly convex and C-smooth with dist(p?, ∂∆K) = η > 0.

• Improve the convexity bound L(pt)− L(p?) ≤ ∇L(pt)
>(pt − e?t) to

L(pt)− L(p?) ≤ γ−2|∇L(pt)
>(pt − e?t)|2 . (Lacoste-Julien and Jaggi)

• Fast rate for µ-strongly convex functions with interior minimum

E[L(pT )]− L(p?) ≤ c1
log2(T )

T
+ c2

log(T )

T
+ c3

1

T
,

for the same algorithm.

• Proof idea:

◦ If εt decay fast enough, can replace average error by 1
T

∑
ε2
t .

◦ The slow rate implies that Ti(T ) ≈ p?,iT
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Upper bounds - Summary

• Slow rate for C-smooth functions

E[L(pT )]− L(p?) .

√
K log(T )

T

• Fast rate

◦ With corner condition

E[L(pT )]− L(p?) .
log(T )

T

∑
i6=?

1

∆(i)(L)

◦ With strong convexity and interior minimum

E[L(pT )]− L(p?) . c(K,µ, η)
log2(T )

T

• Remarks

◦ Optimal for the slow rate, lower bound with linear forms.

◦ Optimal over restricted classes: with gaps, or strong convexity.
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Conclusion

• Contributions

◦ New model linking stochastic optimization and bandit problem.

◦ Natural playground for various applications with sequential decision-making.

◦ Solution also bridging these two domains, adaptive fast rates.

• Open questions

◦ More complicated feedbacks, or side information.

◦ Other “objectives” depending on the whole trajectory, not just proportions.

◦ Other classes of function: regularity, assumptions.

◦ More precise understanding of parameter roles in the complexity.
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