Sequential decision-making under uncertainty: Bandit optimization

Quentin Berthet

The Alan Turing Institute

CCIMI - Connecting with Industry - 2017

Q. Berthet (Cambridge)

V. Perchet (ENS Paris-Saclay & Criteo)

Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe
 Q. Berthet, V. Perchet, NIPS 2017
 arxiv.org/abs/1702.06917

Multi-armed bandit problems

- Setting: K slot machines (one-armed bandits) with reward $\sim \nu_i$ and mean μ_i
- Sequential aspect: At each round $t \ge 1$, choice $\pi_t \in [K]$.
- Bandit feedback: Observe only feedback $X_t \sim \nu_{\pi_t}$ with mean μ_{π_t}
- Objective: Maximize reward or expected reward, notion of regret

$$R_T = \sum_{t=1}^T X_t$$
 or $\sum_{t=1}^T \mu_{\pi_t} = \sum_{i \in [K]} \mu_i T_i$.

- **Exploitation:** Playing the machines estimated as better (high mean reward).
- **Exploration:** Need to have good estimates $\hat{\mu}_i$ of each mean reward.
- Stochastic optimization Maximize function of (T_1, \ldots, T_K) with unknown μ_i .
- Applications: Medical experiments, Advertisement, Al in games, ···

Multi-armed bandits - Stochastic optimization

- Sequential aspect: At each round $t \ge 1$, choice $\pi_t \in [K]$.
- **Bandit feedback:** Observe feedback $X_t \sim \nu_{\pi_t}$ with mean loss μ_{π_t} .
- **Objective:** Minimize expected regret, with $L(x) = \langle \mu, x \rangle$

$$R_T = \frac{1}{T} \sum_{t=1}^T L(e_{\pi_t}) = \frac{1}{T} \sum_{t=1}^T \mu_{\pi_t} = \frac{1}{T} \sum_{i \in [K]} \mu_i T_i = \sum_{i \in [K]} \mu_i \frac{T_i}{T} = L\left(\frac{1}{T} \sum_{t=1}^T e_{\pi_t}\right)$$

- In this example, we seek to minimize $L(p_t)$, with $p_t = (T_1/T, \ldots, T_K/T)^{\top}$.
- Stochastic optimization of L on Δ^K , with unknown μ
- Feedback on μ tied to variable p_t
- Optimum at $p_{\star} = e_{\star}$.

Generalization - Motivation

- **Bandit aspect:** Each round $t \ge 1$, choice $\pi_t \in [K]$, observe bandit feedback.
- **Objective:** Minimize unknown convex loss L in the variable p_t
- **Example:** Basket of K goods, utility maximization with unknown β_i

$$U = \prod_{i=1}^{K} T_i^{\beta_i} = T^B \prod_{i=1}^{K} \left(\frac{T_i}{T}\right)^{\beta_i} \qquad L(p) = -\sum_{i=1}^{K} \beta_i \log(p_i) \,.$$

- Simple example for problem with no optimal action, but optimal strategy
- Stochastic optimization of L on Δ^K , with unknown β
- Feedback on β tied to variable p_t

• Optimum at
$$p_{\star,i} = \frac{\beta_i}{\sum \beta_j}$$

Generalization - Motivation

- Generalization: Any setting where the loss is a function of p_t (proportions).
- Applications: Ressource allocation, experimental design, with uncertainty
 - Estimation: Unknown vector $\theta \in \mathbf{R}^{K}$, K sources with variances σ_{i}^{2}

$$\mathbf{E}[\|\hat{\theta} - \theta\|_{2}^{2}] = \sum_{i=1}^{K} \frac{\sigma_{i}^{2}}{T_{i}} = \frac{1}{T} \sum_{i=1}^{K} \frac{\sigma_{i}^{2}}{T_{i}/T} \qquad L(p) = \sum_{i=1}^{K} \frac{\sigma_{i}^{2}}{p_{i}}.$$

• Sequential resource allocation: $L(p) = \frac{1}{2} ||p - p_{\star}||_2^2$, feedback on p_{\star} .

- Stochastic optimization of L on Δ^K , with unknown parameter.
- Feedback on parameter tied to variable p_t .
- Optimum at $p_{\star} \in \Delta^K$, error

$$L(p_T) - L(p_\star) \, .$$

Problem description

Bandit Optimization:

- Unknown **convex** function $L : \Delta^K \to \mathbf{R}$.
- At each round $t \ge 1$, choice $\pi_t \in [K]$.
- Observe vector \hat{g}_t , proxy of the gradient such that w.p. $1-\delta$

$$|\hat{g}_{t,i} - \nabla_i L(p_t)| \le \sqrt{\frac{2\log(t/\delta)}{T_i}},$$

motivated by the parametric setting as a bandit feedback.

Objective: Choosing the actions π_1, \ldots, π_T in order to minimize $L(p_T)$.

Measure: The performance of any policy is

$$\mathbf{E}[L(p_T)] - L(p_\star) \, .$$

Comparison review

• Bandit problems

• No regrets: The loss is not cumulative, and for $e_{\pi_t} \in \Delta^K$

$$\frac{1}{T}\sum_{t=1}^{T}L(e_{\pi_t}) \neq L\left(\frac{1}{T}\sum_{t=1}^{T}e_{\pi_t}\right)$$

 $\circ~$ No individual best action, but optimal mixed strategy.

• Stochastic optimization

- Constraint $x_t = p_t$, variable not chosen freely in the domain.
- Gradient feedback tied to the actions, not independent stochastic.
- Existing work Linear bandits with known convex loss

Agrwal, Devanur, et al., Evan-Dar et al.

"Rules" of bandit problems, "Endgame" of stochastic optimization.

Algorithmic approach

• Problem setting imposes the dynamic on variable $p_t \in \Delta^K$

$$p_{t+1} = \frac{t}{t+1}p_t + \frac{1}{t+1}e_{\pi_{t+1}} = p_t + \frac{1}{t+1}(e_{\pi_{t+1}} - p_t),$$

similar to a gradient-type update, in the direction $e_{\pi_{t+1}} - p_t$.

• The Frank-Wolfe algorithm on a convex domain $\mathcal C$ follows

$$x_{t+1} = (1 - \gamma_t)x_t + \gamma_t c_{t+1} = x_t + \gamma_t \left(c_{t+1} - x_t\right), \text{ for } c_{t+1} \in \operatorname*{argmin}_{u \in \mathcal{C}} \langle \nabla f(x_t), u \rangle.$$

Frank and Wolfe (56)

• If $\nabla L(p_t)$ were known, we could take $e_{\pi_{t+1}} \in \underset{u \in \Delta^K}{\operatorname{argmin}} \langle \nabla L(p_t), u \rangle$.

Algorithmic approach

• If $\nabla L(p_t)$ were known, applying the Frank-Wolfe algorithm with $\gamma_t = 1/(t+1)$:

$$e_{\pi_{t+1}} \in \underset{u \in \Delta^K}{\operatorname{argmin}} \langle \nabla L(p_t), u \rangle = \underset{i \in [K]}{\operatorname{argmin}} \nabla_i L(p_t) \,.$$

- For a C-smooth function, guarantee of $L(p_T) L(p_{\star}) \le C \log(eT)/T$
- With unknown function, naive idea: using \hat{g}_t as a proxy for the gradient.
- Even for linear functional L (multi-armed bandits), known to be problematic.
- Usual fix: correcting for uncertainty. UCB algorithm on $\hat{\mu}_t = \hat{g}_t$.

$$e_{\pi_{t+1}} \in \underset{i \in [K]}{\operatorname{argmin}} \hat{\mu}_{t,i} - \alpha_{t,i} = \underset{u \in \Delta^K}{\operatorname{argmin}} \langle \hat{\mu}_t - \alpha_t, u \rangle, \quad \text{Auer et al. (02)}$$

where $\alpha_{t,i}$ is the size of a valid confidence region, order $1/\sqrt{T_i}$.

Upper-confidence Frank-Wolfe algorithm

• Transferring idea of UCB by generalizing it to Frank-Wolfe:

Input: K, $p_0 = \mathbf{1}_{[K]}/K$, sequence $(\delta_t)_{t \ge 0}$; for $t \ge 0$ do Observe \hat{g}_t , noisy estimate of $\nabla L(p_t)$; for $i \in [K]$ do $| \hat{U}_{t,i} = \hat{g}_{t_i} - \sqrt{2\log(t/\delta_t)/T_i}$ end Select $\pi_{t+1} \in \operatorname{argmin}_{i \in [K]} \hat{U}_{t,i}$; Update $p_{t+1} = p_t + \frac{1}{t+1}(e_{\pi_{t+1}} - p_t)$ end

- Each coefficient is penalized by uncertainty, promoting exploration
- Runs in time O(KT), omitting gradient computations.
- Proof elements from convex optimization and UCB combined for guarantees.

Results - Slow rate

• Adapting the proof of convergence for known gradients for C-smooth functions

$$L(p_T) - L(p_\star) \le \underbrace{\frac{1}{T} \sum_{t=1}^T \varepsilon_t}_{\text{error of choice}} + \underbrace{\frac{C \log(eT)}{T}}_{\text{opt. term}}.$$

• Together, this yields, for smooth convex functions, the **slow rate**

$$\mathbf{E}[L(p_T)] - L(p_\star) \le c_2 \sqrt{\frac{K \log(T)}{T}} + \frac{C \log(eT) + c_1}{T}$$

- In the linear case, matches the results of UCB for multi-armed bandits.
- Up to logarithmic terms, matching lower bound in the linear case.

• Instance-dependent fast rates, in multi-armed bandits with gaps $\Delta^{(i)} = \mu_i - \mu_\star$

$$\mathbf{E}[L(p_T)] - L(p_\star) \le \frac{c_2 \log(T)}{T} \sum_{i \neq \star} \frac{1}{\Delta^{(i)}} + \frac{c_1}{T}.$$

• Proof idea: $T(L(p_T) - L(p_\star)) = \sum_{i \neq \star} \Delta^{(i)} T_i$ and

$$\sum_{i \neq \star} \sqrt{T_i} \le \Big(\sum_{i \neq \star} \Delta^{(i)} T_i\Big)^{1/2} \Big(\sum_{i \neq \star} 1/\Delta^{(i)}\Big)^{1/2}$$

- General lower bound built on $\Delta\approx 1/\sqrt{T}$
- Geometric interpretation in the simplex corner

• Possible to extend to gradient gaps $\Delta^{(i)}(L) = \nabla_i L(p_\star) - \nabla_\star L(p_\star)$

$$\mathbf{E}[L(p_T)] - L(p_{\star}) \le \frac{c_2 \log(T)}{T} \sum_{i \neq \star} \frac{1}{\Delta^{(i)}(L)} + \frac{c_1}{T} + \frac{C \log(T)}{T}.$$

• Proof idea: $T(L(p_T) - L(p_\star)) \approx \sum_{i \neq \star} \Delta^{(i)}(L) T_i$ and

$$\sum_{i \neq \star} \sqrt{T_i} \le \Big(\sum_{i \neq \star} \Delta^{(i)}(L) T_i\Big)^{1/2} \Big(\sum_{i \neq \star} 1/\Delta^{(i)}(L)\Big)^{1/2}$$

- General lower bound built on $\Delta\approx 1/\sqrt{T}$
- Geometric interpretation in the simplex corner

• Possible to extend to gradient gaps $\Delta^{(i)}(L) = \nabla_i L(p_\star) - \nabla_\star L(p_\star)$

$$\mathbf{E}[L(p_T)] - L(p_{\star}) \le \frac{c_2 \log(T)}{T} \sum_{i \neq \star} \frac{1}{\Delta^{(i)}(L)} + \frac{c_1}{T} + \frac{C \log(T)}{T}.$$

• Proof idea: $T(L(p_T) - L(p_\star)) \approx \sum_{i \neq \star} \Delta^{(i)} T_i$ and

$$\sum_{i \neq \star} \sqrt{T_i} \le \Big(\sum_{i \neq \star} \Delta^{(i)} T_i\Big)^{1/2} \Big(\sum_{i \neq \star} 1/\Delta^{(i)}\Big)^{1/2}$$

- General lower bound built on $\Delta\approx 1/\sqrt{T}$
- Geometric interpretation in the simplex corner

• Possible to extend to gradient gaps $\Delta^{(i)}(L) = \nabla_i L(p_\star) - \nabla_\star L(p_\star)$

$$\mathbf{E}[L(p_T)] - L(p_{\star}) \le \frac{c_2 \log(T)}{T} \sum_{i \neq \star} \frac{1}{\Delta^{(i)}(L)} + \frac{c_1}{T} + \frac{C \log(T)}{T}.$$

• Proof idea: $T(L(p_T) - L(p_\star)) \approx \sum_{i \neq \star} \Delta^{(i)} T_i$ and

$$\sum_{i \neq \star} \sqrt{T_i} \le \Big(\sum_{i \neq \star} \Delta^{(i)} T_i\Big)^{1/2} \Big(\sum_{i \neq \star} 1/\Delta^{(i)}\Big)^{1/2}$$

- General lower bound built on $\Delta\approx 1/\sqrt{T}$
- Geometric interpretation in the simplex corner

• Possible to extend to gradient gaps $\Delta^{(i)}(L) = \nabla_i L(p_\star) - \nabla_\star L(p_\star)$

$$\mathbf{E}[L(p_T)] - L(p_{\star}) \le \frac{c_2 \log(T)}{T} \sum_{i \neq \star} \frac{1}{\Delta^{(i)}(L)} + \frac{c_1}{T} + \frac{C \log(T)}{T}.$$

• Proof idea: $T(L(p_T) - L(p_\star)) \approx \sum_{i \neq \star} \Delta^{(i)} T_i$ and

$$\sum_{i \neq \star} \sqrt{T_i} \le \left(\sum_{i \neq \star} \Delta^{(i)} T_i\right)^{1/2} \left(\sum_{i \neq \star} 1/\Delta^{(i)}\right)^{1/2}$$

• General lower bound built on
$$\Delta\approx 1/\sqrt{T}$$

• Geometric interpretation in the simplex corner

- Slow rate improved to fast rate by adding structure: but mixed strategies?
- We consider μ -strongly convex functions

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \frac{\mu}{2} ||x - y||_2^2.$$

with dist $(p_{\star}, \partial \Delta^K) = \eta > 0.$

- Classical hypothesis in stochastic optimization and in Frank-Wolfe.
 Polyak and Tsybakov, Garber and Hazan, Jaggi, Lafond et al.
- Not always exploitable, in online and bandit problems.
 Shamir, Jamieson et al.

- For L that is μ -strongly convex and C-smooth with dist $(p_{\star}, \partial \Delta^K) = \eta > 0$.
- Improve the convexity bound $L(p_t) L(p_\star) \leq \nabla L(p_t)^\top (p_t e_{\star_t})$ to

$$L(p_t) - L(p_\star) \le \gamma^{-2} |\nabla L(p_t)^\top (p_t - e_{\star t})|^2$$
. (Lacoste-Julien and Jaggi)

• Fast rate for μ -strongly convex functions with interior minimum

$$\mathbf{E}[L(p_T)] - L(p_{\star}) \le c_1 \frac{\log^2(T)}{T} + c_2 \frac{\log(T)}{T} + c_3 \frac{1}{T},$$

for the same algorithm.

- Proof idea:
 - If ε_t decay fast enough, can replace average error by $\frac{1}{T} \sum \varepsilon_t^2$.
 - The slow rate implies that $T_i(T) \approx p_{\star,i}T$

Upper bounds - Summary

• **Slow rate** for *C*-smooth functions

$$\mathbf{E}[L(p_T)] - L(p_\star) \lesssim \sqrt{\frac{K \log(T)}{T}}$$

• Fast rate

 $\circ~$ With corner condition

$$\mathbf{E}[L(p_T)] - L(p_\star) \lesssim \frac{\log(T)}{T} \sum_{i \neq \star} \frac{1}{\Delta^{(i)}(L)}$$

 $\circ~$ With strong convexity and interior minimum

$$\mathbf{E}[L(p_T)] - L(p_\star) \lesssim c(K, \mu, \eta) \frac{\log^2(T)}{T}$$

• Remarks

- $\circ~$ Optimal for the slow rate, lower bound with linear forms.
- Optimal over restricted classes: with gaps, or strong convexity.

Conclusion

• Contributions

- New model linking stochastic optimization and bandit problem.
- Natural playground for various applications with sequential decision-making.
- Solution also bridging these two domains, adaptive fast rates.

• Open questions

- More complicated feedbacks, or side information.
- Other "objectives" depending on the whole trajectory, not just proportions.
- Other classes of function: regularity, assumptions.
- More precise understanding of parameter roles in the complexity.

Work supported by the Isaac Newton Trust and the Alan Turing Institute.