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Multi-armed bandit problems

e Setting: K slot machines (one-armed bandits) with reward ~ v; and mean p;
e Sequential aspect: At each round t > 1, choice m; € [K].
e Bandit feedback: Observe only feedback X; ~ v, with mean p,

e Objective: Maximize reward or expected reward, notion of regret
T T
Re=3X o Yum— Y wT.
t=1 t=1 i1€[K]

e Exploitation: Playing the machines estimated as better (high mean reward).
e Exploration: Need to have good estimates [i; of each mean reward.
e Stochastic optimization Maximize function of (771,...,Tk) with unknown ;.

e Applications: Medical experiments, Advertisement, Al in games, - - -
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Multi-armed bandits - Stochastic optimization

e Sequential aspect: At each round t > 1, choice m; € [K].
e Bandit feedback: Observe feedback X; ~ v, with mean loss i,
e Objective: Minimize expected regret, with L(x) = (u, x)

T T

1 1 1
RT:TZL(em):fZHm——ZMzT—Zuz = (fzem)-

t=1 t=1 i€[K] t=1

e In this example, we seek to minimize L(p;), with p; = (T1/T, ..., Tx/T)".

e Stochastic optimization of L on AX,
with unknown g

e Feedback on pu tied to variable p;

e Optimum at p, = e,.
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Generalization - Motivation

e Bandit aspect: Each round t > 1, choice m; € | K], observe bandit feedback.
e Objective: Minimize unknown convex loss L in the variable p;

e Example: Basket of K goods, utility maximization with unknown (;
K K o5 K
_ Bi _ B AN _ . .
v=]I7 =111 (7) L(p) = = 3 Ailog(p).

e Simple example for problem with no optimal action, but optimal strategy

e Stochastic optimization of L on AX,
with unknown (3

e Feedback on ( tied to variable p;

e Optimum at p,; = Eﬁzﬁ
J
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Generalization - Motivation

e Generalization: Any setting where the loss is a function of p; (proportions).

e Applications: Ressource allocation, experimental design, with uncertainty

2

)

o Estimation: Unknown vector # € R¥, K sources with variances o

A 5 o2 1 x o2 " o2
E[HH_HHQ]:ZE:TZTMT L(p) = P
i=1 i=1 i=1

2, feedback on p,.

o Sequential resource allocation: L(p) = %Hp — Dy

e Stochastic optimization of L on AX,
with unknown parameter.

e Feedback on parameter tied to
variable p;.

e Optimum at p, € A¥, error

L(pT) - L(p*) .
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Problem description

Bandit Optimization:

e Unknown convex function L : A® — R.
e At each round t > 1, choice m; € |K].

e Observe vector g;, proxy of the gradient such that w.p. 1 —9

90 — ViL(pe)]| < \/ 2oett/o),

motivated by the parametric setting as a bandit feedback.

Objective: Choosing the actions 7y, ..., 7 in order to minimize L(pr).

Measure: The performance of any policy is

E[L(pr)] — L(px) -
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Comparison review

e Bandit problems

o No regrets: The loss is not cumulative, and for e,, € AE

1 — 1 —
= ; Llen,) # L(T ; em)

o No individual best action, but optimal mixed strategy.

e Stochastic optimization

o Constraint x; = p;, variable not chosen freely in the domain.

o Gradient feedback tied to the actions, not independent stochastic.

e Existing work Linear bandits with known convex loss

Agrwal, Devanur, et al., Evan-Dar et al.

“Rules” of bandit problems, “Endgame” of stochastic optimization.
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Algorithmic approach

e Problem setting imposes the dynamic on variable p; € AX

¢ 1 1

t+1pt+t—|—1 T4l pt+H—1( 7Tt+1_pt)7

Pt+1 =

similar to a gradient-type update, in the direction e, ., — p;.

e The Frank-Wolfe algorithm on a convex domain C follows

Tio1 = (1—y) T +vicii1 = T+ (ct+1 —:zzt) , forciiq € argrgin(Vf(xt), u) .
ue

Frank and Wolfe (56)

o If VL(p:) were known, we could take

rppq € argilli(mVL(pt), u) .
u

Ci+1
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Algorithmic approach

o If VL(p:) were known, applying the Frank-Wolfe algorithm with v, = 1/(¢ + 1):

€ryy € argmin{VL(p;), u) = argmin V;L(py) .
ue AK i€[K]

e For a C-smooth function, guarantee of L(pr) — L(ps) < Clog(eT)/T

e With unknown function, naive idea: using g; as a proxy for the gradient.

e Even for linear functional L (multi-armed bandits), known to be problematic.
e Usual fix: correcting for uncertainty. UCB algorithm on ji; = g;.

€r,, € argmin fiy ; — oy ; = argmin(fi; — oy, u), Auver et al. (02)
i€[K] ue AK

where « ; is the size of a valid confidence region, order 1//T;.
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Upper-confidence Frank-Wolfe algorithm

e Transferring

idea of UCB by generalizing it to Frank-Wolfe:

Input: K, pg = 1;x1/ K, sequence (0;)¢>o;

for t > 0 do

Observe g;, noisy estimate of V L(p;);

for i € [K] do
Uri = Gi, — \/21og(t/d:) /T

end

Select Tt41 € argminiE[K] Ut,i;
Update pi11 = pr + tj%l(@wtﬂ — Pt)

end

e Each coefficient is penalized by uncertainty, promoting exploration

e Runs in time O(KT), omitting gradient computations.

e Proof elements from convex optimization and UCB combined for guarantees.
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Results - Slow rate

e Adapting the proof of convergence for known gradients for C'-smooth functions

C'log(eT
L(pT) p* < —th g )

7

H/—/ Opt “term

error of choice

e Together, this yields, for smooth convex functions, the slow rate

E[L(pr)] -

\/K log(T) N C'log(eT) + ¢
= .

e In the linear case, matches the results of UCB for multi-armed bandits.

e Up to logarithmic terms, matching lower bound in the linear case.
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Results - Fast rate

o Instance-dependent fast rates, in multi-armed bandits with gaps A® = 1, — p,

o @ log

E[L(pr)] — L(ps+) <

A
e Proof idea: T(L(pr) — L(pyx)) = >, ;é*A(Z)T@- and

Z JTi < (ZA(i)Ti)l/2<Zl/A(i)>

1% 1F* 1F*

1/2

e General lower bound built on

Azl/\/T

e Geometric interpretation in the S
simplex corner
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Results - Fast rate

e Possible to extend to gradient gaps AY(L) = V,;L(p,)

BIL()] - L(p) < 28 S 5

e Proof idea: T(L(pr) — L(py)) =~

VT < (LA

1FE* 1FE*

e General lower bound built on

Azl/\/T

e Geometric interpretation in the
simplex corner
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Results - Fast rate

e Possible to extend to gradient gaps A(L) = V;L(p,) — V. L(p,)

e log Z C log(T)

E[L(pr)] — L(p.) < NGIL: Z

e Proof idea: T'(L(pr) — L(p+)) = D iy AWT; and

> e (3 a0m) (a0

1% 1F* 1F*

e General lower bound built on

Azl/\/T

e Geometric interpretation in the N
simplex corner

VL (p*)
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Results - Fast rate

e Slow rate improved to fast rate by adding structure: but mixed strategies?

e We consider u-strongly convex functions

f) 2 F@) + V@) (y— o)+ Sl =yl
with dist(p,, OAE) =n > 0.

e Classical hypothesis in stochastic optimization and in Frank-Wolfe.

Polyak and Tsybakov, Garber and Hazan, Jaggi, Lafond et al.

e Not always exploitable, in online and bandit problems.

Shamir, Jamieson et al.
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Results - Fast rate

e For L that is u-strongly convex and C-smooth with dist(p,, 0AX) =n > 0.

e Improve the convexity bound L(p;) — L(pyx) < VL(p:) ' (p: — e4,) to

L(p)) — L(py) <y 2|VL(py) ' (pr — ex,)|?. (Lacoste-Julien and Jaggi)
e Fast rate for u-strongly convex functions with interior minimum

B(L(pr)| - Lip.) < o 26 0) | Jlos(T) 1

T T ST

for the same algorithm.

e Proof idea:

o If e; decay fast enough, can replace average error by % Y ez,

o The slow rate implies that T;(T") ~ p, ;T
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Upper bounds - Summary

e Slow rate for (C-smooth functions

K log(T
E[L (pT p* \/

e Fast rate

o With corner condition

BL(pr)] - Lip.) S "2 ;

o With strong convexity and interior minimum

log*(T)

E[L(pr)] = L(p+) < (K ps1) =7

e Remarks

o Optimal for the slow rate, lower bound with linear forms.

o Optimal over restricted classes: with gaps, or strong convexity.
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Conclusion

e Contributions

o New model linking stochastic optimization and bandit problem.
o Natural playground for various applications with sequential decision-making.

o Solution also bridging these two domains, adaptive fast rates.

e Open questions

o More complicated feedbacks, or side information.
o Other “objectives’ depending on the whole trajectory, not just proportions.
o Other classes of function: regularity, assumptions.

o More precise understanding of parameter roles in the complexity.
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